The Billion Prices Project:
Building Economic Indicators From Online Data

Alberto Cavallo
MIT Sloan

UNECE CPI Meeting, Geneva, May 31st 2012
Our approach: use online data to build real-time economic indicators around the world

1. **Use scraping technology**
2. **Connect to thousands of online retailers every day**
3. **Find individual items**
4. **Store key item information in a database**
5. **Calculate real-time Indexes**

- Date
- Item
- Price
- Description

![Diagram showing the steps of the approach](image)
How do we collect data?

Key Scraping Guidelines

- Our prices are collected from public online sources, using a technique called “web scraping”

- A software downloads the webpage, analyses the html code, identifies price data, and stores it in a database

Scraping Example

<table>
<thead>
<tr>
<th>ID</th>
<th>ID2</th>
<th>PRODUCTO</th>
<th>MARCA</th>
<th>TAMANNO</th>
<th>BULKPRICE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>342</td>
<td>Leche Condensada</td>
<td>Leche Suiza</td>
<td>Lata 305 g</td>
<td>$0.764</td>
<td>0.880</td>
</tr>
<tr>
<td>2</td>
<td>342</td>
<td>Leche Condensada</td>
<td>Nestlé</td>
<td>Descremada, Lata 305 g</td>
<td>$0.764</td>
<td>0.880</td>
</tr>
<tr>
<td>3</td>
<td>399</td>
<td>Leche Condensada</td>
<td>Nestlé</td>
<td>Envasado Flexible 350 g</td>
<td>$0.764</td>
<td>0.880</td>
</tr>
<tr>
<td>4</td>
<td>301</td>
<td>Leche Condensada</td>
<td>Nestlé</td>
<td>Lata 305 g</td>
<td>$0.764</td>
<td>0.880</td>
</tr>
<tr>
<td>5</td>
<td>151</td>
<td>Leche Condensada</td>
<td>Nestlé</td>
<td>Pack 3 unidades, Lata 200 g</td>
<td>$0.764</td>
<td>0.880</td>
</tr>
</tbody>
</table>
Online prices as a new source of data

Advantages:
• Low cost
• High-frequency (daily)
• Data can be collected remotely in ~70 countries
• Data is available in real-time, with no delays
• Product details: brand, package size, sale indicator, price control, etc.
• Information on all products sold in each retailer (census within retailer)
• Elementary indices can be built with hundreds of homogeneous products
• Product sampled automatically from the moment they are introduced until they disappear from the store

Disadvantages:
• Relatively few retailers covered
• Only ~60% CPI categories online (most services are not yet available online)
• No quantities (unlike in scanner data)
Our method involves three stages

Technology & Processes

<table>
<thead>
<tr>
<th>Data Capture</th>
<th>Data Processing</th>
<th>Index Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Multiple specialized applications for each step of the scraping process</td>
<td>- Data is automatically cleaned and homogenized</td>
<td>- Statistics and indices are computed on a daily basis</td>
</tr>
<tr>
<td>- Customized scraping for each retailer</td>
<td>- Need to classify and select items and retailers to be used in the indices</td>
<td>- We use standard CPI techniques to compute elementary indices, and aggregate them using official CPI weights</td>
</tr>
<tr>
<td>- Needs to be updated every time the “look and feel” of a website changes</td>
<td>- Monitoring controls to check scraping, cleaning, statistics</td>
<td>- For aggregate indices, compensate for things that we cannot monitor online (eg services)</td>
</tr>
</tbody>
</table>
Aggregate Price Indices

- Currently available for 18 countries: USA, Argentina, Australia, Chile, China, Colombia, France, Germany, Ireland, Italy, Japan, Netherlands, Russia, South Africa, Spain, UK, Uruguay, and Venezuela
- Daily indices, published with a 3-day lag
- US and Argentina indices are publicly available online
- Main use: detect changes in CPI trends
US Daily Price Index

Source: BPP – PriceStats – BLS (CPI-U, US city-average, all items, NSA)
US Annual Inflation

Source: BPP – PriceStats – BLS (CPI-U, US city-average, all items, NSA)
US Monthly Inflation

Source: BPP – PriceStats – BLS (CPI-U, US city-average, all items, NSA)
Annual Inflation Rates

Argentina: CPI and Online Index

Australia: Annual Inflation

China: Supermarket Index

Colombia: Annual Inflation

Germany: Annual Inflation

Ireland: Annual Inflation

Russia: Annual Inflation

UK: Annual Inflation

Venezuela: Annual Inflation

Source: PriceStats - StateStreet
Things we have learned

- Most retailers are ok with data scraping for statistical purposes as long as you:
 1) Follow their rules and avoid putting strain on their servers
 2) Explain to them that you are trying to compute aggregate statistics, not to disclose their pricing practices to competitors (which some companies are trying to do)

- Online prices behave like offline prices even if the online market is small
 - In some countries (eg US) online and offline markets are closely integrated \(\rightarrow \) similar price levels & pricing strategies
 - Often online prices have a markup over offline data, but it tends to be constant over time \(\rightarrow \) implies similar inflation rates
 - In countries where online markets are not well developed, online and offline prices can be identical because firms do not have a differentiated pricing strategy online (they simply show their offline database in their website)

- Data needs to be “pulled” from the retailers, not “pushed” by them (i.e. collected, not self-reported)
 - Ensures reliability
 - Prevents self-reporting biases
Things we have learned

- Online prices can react faster to shocks, providing anticipation in inflation trends
 - Lower menu costs or consumer anger
- Online data makes it easier to deal with product introductions and overlapping quality adjustments
 - Every model or version of a product is automatically included in the sample as soon as they are available to consumers
- Online data work best as an alternative source of data, not as a separate sector or location that needs special treatment
- There are lots of issues that still need to be addressed:
 - Deal with sectors whose prices are not yet online
 - Determine mechanisms to select retailers sampled
 - Explore potential complementarities with scanner data to update weights
Other Indicators
RESEARCH

DAILY TRACKING OF COMMODITY PRICES: THE E-BREAD INDEX

Description:

This project investigates and shows how scraping online prices could provide real-time insights on price dynamics, focusing on the case of bread in 6 Latin American countries.

Partners: Billion Prices Project at MIT
Economic Activity and Natural Disasters

The Impact of Japan’s 2011 Earthquake on Product Availability

- Japanese Industrial Production
- Goods availability in Japan (20-day average)
Related Initiatives

• Argentina’s “Real Inflation”
 – www.inflacionverdadera.com
 – Started in 2007 to provide an alternative inflation estimates when official data became unreliable

• Billion Prices Project at MIT
 – bpp.mit.edu
 – Started in 2008
 – Conduct academic research on inflation and pricing behaviors
 – Joint work with Prof. Roberto Rigobon (MIT Sloan)

• PriceStats LLC
 – www.pricestats.com
 – Founded in 2011 to collect data and produce daily price indexes
 – Partners with State Street Bank to distribute indices to the financial sector
 – PriceStats’ Argentina index is published in The Economist every week
Conclusions

• Scraped online data can provide a reliable complementary source of information for consumer price indices
 – Immediate application in sectors that are available online: e.g. electronics, apparel, household products, and supermarkets

• This is a long-term research agenda