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Summary 
We propose a comprehensive mortality forecasting framework, which overcomes 
several of the limitations associated with existing approaches. Firstly, our approach 
accounts for lack of fit of conventional models by specifying a negative binomial 
error structure, correctly accounting overdispersion without over-fitting.  

Secondly, the facility to impose smoothness in parameter series which vary over 
age, cohort, and time is integrated into the modelling process using generalised 
additive models (GAMs). GAMs allow parametric functions and unstructured (but 
smooth) functions of explanatory variables to appear in the model simultaneously. 
In particular, GAMs allow us to differentially smooth components, such as cohorts, 
more aggressively in areas of sparse data for the component concerned. 

While GAMs can provide a reasonable fit for the ages where there is adequate data, 
estimation and extrapolation of mortality rates using a GAM at higher ages is 
problematic due to high variation in crude rates. At these ages, parametric models 
can give a more robust fit, enabling a borrowing of strength across age groups. Our 
forecasting methodology is based on a smooth transition between a GAM at lower 
ages and a fully parametric model at higher ages. 
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I. Mortality Forecasting: A Brief Review 

1. There are many studies on mortality modelling in the literature. Although, 
theoretical modelling started in 1725 with de Moivre and followed by 
Gompertz in 1825, the history of stochastic modelling is more recent (for 
an overview, see Tabeau et al. 2001). The first stochastic model was 
published by Lee and Carter in 1992. Since then a variety of mortality 
models have been proposed. More details on such models can be found in 
Booth and Tickle (2008) who give a comprehensive review on 
developments in mortality modelling and forecasting since the 1980s. 

2. The original Lee-Carter model uses two factors, i.e. age and period, in a 
bilinear model for mortality rates. Various extensions of the basic Lee-
Carter model have been proposed, most notably the introduction of cohort 
effects (Renshaw and Haberman, 2006). Smooth versions of the Lee-Carter 
model include approches developed by De Jong and Tickle (2006) and 
Delwarde et al (2007). Alternatively, linear (rather than bilinear) models 
with age and period as factors were investigated by Renshaw and 
Haberman (2003). Alternative linear structures were developed and 
compared by Cairns et al (2011).  Currie et al (2004) proposed modelling 
mortality as a smooth function in two dimensions (age and time) using P-
spline methodology. 

3. An alternative to modelling mortality rates is to model mortality 
improvements. This approach is taken by the Continuous Mortality 
Investigation and mortality improvements by calendar year are modelled 
using an age-period-cohort structure (CMI WP49, 2010). Haberman and 
Renshaw (2012, 2013), Börger and Aleksic (2014) are other studies 
proposing to model mortality improvements. 

II. Proposed Model: Motivation and Description 

4. Let 𝜇𝑥𝑡 denote central mortality rates at age 𝑥 in year 𝑡, then we consider 
as the initial model specification  

 log
𝜇𝑥𝑡
𝜇𝑥 𝑡−1

= 𝛼𝑥 + 𝜅𝑡 + 𝛾𝑡−𝑥  (1) 

where 𝛼𝑥  can be interpreted as a baseline annual mortality improvement at 
age 𝑥, 𝜅𝑡 as the level of mortality improvement in year 𝑡  and 𝛾𝑡−𝑥 
represents cohort differences in mortality improvement since cohorts are 
indexed by year of birth (𝑡 − 𝑥). This model requires an extra 
identifiability constraint, which we impose on the cohort effects as 
∑(𝑡 − 𝑥)𝛾𝑡−𝑥 = 0. Börger and Aleksic advocate the use of this model for 
projecting mortality, and we also find that it has the required properties of 
adequately and robustly fitting the observed data. 

5. Model (1) is an age-period-cohort model for log-mortality differences 
(mortality logratios). Note that, here, we represent mortality improvements 
as logratios, rather than as relative differences, where the model (1) would 
be expressed as 
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𝜇𝑥𝑡 − 𝜇𝑥 𝑡−1

𝜇𝑥 𝑡−1
= 𝛼𝑥 + 𝜅𝑡 + 𝛾𝑡−𝑥 . 

 
 

6. For all but large mortality rates, differences between log 𝜇𝑥𝑡
𝜇𝑥 𝑡−1

 and 
𝜇𝑥𝑡−𝜇𝑥 𝑡−1
𝜇𝑥 𝑡−1

 are negligible. 

7. Estimation of the model parameters can be based on the Poisson log-
likelihood 

𝑙(𝜃) =  −�𝐸𝑥𝑡𝜇𝑥𝑡(𝜃)
𝑥,𝑡

+�𝑑𝑥𝑡
𝑥,𝑡

log𝜇𝑥𝑡(𝜃) 

where 𝜃 represents the model parameters (𝛼𝑥 ,𝜅𝑡 ,𝛾𝑡−𝑥 ), 𝑑𝑥𝑡 is the 
observed death count and 𝐸𝑥𝑡 the central exposed to risk at age 𝑥 in year 𝑡.  

8. In terms of mortality rates, model (1) can be expressed as 

 log𝜇𝑥𝑡 = 𝜇𝑥0 + 𝛼𝑥𝑡 + 𝜅𝑡 + 𝛾𝑡−𝑥  (2) 

where there is a straightforward correspondence between the  𝜅𝑡  and 
𝛾𝑡−𝑥  parameters of models (1) and (2). Later, we present parameter 
estimates for the parameters of (1), together with 𝜇𝑥0. 

9. Note that we have also investigated the fit of bilinear models, such as Lee-
Carter-type models to mortality data. Whilst these models can provide a 
satisfactory fit, they have some undesirable features. In particular their 
parameter estimates can be sensitive to the range of years used for fitting. 
There is a lack of robustness of the model parameter estimates (especially 
the non-stationarity of the period and cohort series) to the time window 
used for estimation and this, in turn, affects the projections of mortality 
rates. These concerns do not affect the goodness-of-fit of the models 
(although we find our models to fit at least as well), however they do 
present challenges when using the models to coherently project future 
mortality rates. Another important consideration is that bilinear models are 
more challenging to estimate efficiently. 

10. On the other hand, model (2) is efficient to fit, being simply a generalised 
linear model. Furthermore its parameter estimates seem to be robust to the 
time window used to fit the models. However note that under the Poisson 
model the variance is restricted to be equal to the mean, an assumption 
which is implausible for a large inhomogeneous population. A more 
flexible model would be a negative binomial model where the log-
likelihood is 

𝑙(𝜃,a) =  � a log �
a

𝐸𝑥𝑡𝜇𝑥𝑡(𝜃) + a
�

𝑥,𝑡

 + �𝑑𝑥𝑡
𝑥,𝑡

log�
𝐸𝑥𝑡𝜇𝑥𝑡(𝜃)

𝐸𝑥𝑡𝜇𝑥𝑡(𝜃) + 𝑎�
 

+� log𝛤(a+𝑑𝑥𝑡)− 𝑛 log𝛤(a)
𝑥,𝑡
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where  a is the dispersion parameter such that the variance is 𝐸𝑥𝑡𝜇𝑥𝑡(𝜃) +
(𝐸𝑥𝑡𝜇𝑥𝑡(𝜃))2/a  and 𝑛 is the number of positive 𝐸𝑥𝑡 . 

11. Figure 1 presents the maximum likelihood estimates of the model 
parameters of model (1) under the Poisson distribution (black solid line) 
and negative binomial distribution (red solid line) for males aged between 
1 and 96 using UK data for years 1961-2013.  

 
Figure 1. Maximum likelihood estimates of the parameters of model (3) under the 
Poisson model (black line) and the negative binomial model (red line), data for 
males  1961–2013 

 

12. Goodness-of-fit of the model can be assessed by comparing its fit to an 
unstructured (smooth) model fitted using P-spline methodology (Currie et 
al, 2004) for smoothing observed mortality rates. The fit of our proposed 
model to the observed data should not be significantly worse. With regard 
to an assessment of model fit, Figure 2 presents, as a heatmap, the square 
of Pearson residuals from the current method used by the ONS (based on 
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the P-splines), and from model (2) under the Poisson distribution. Colour 
code for all the heatmaps is given in Appendix A. 

13. It can be observed from Figure 2 that model (2) fits the data at least as well 
as the unstructured P-splines. Indeed, by conventional goodness-of-fit 
measures (residual deviance), model (2) fits better than the P-spline model, 
even allowing for its increased complexity in terms of the number of 
degrees of freedom required for parameter estimation. Model (2) seems to 
do a better job of estimating mortality  

 

 
Figure 2. Comparison of residuals: the P-spline estimates (left panel) and model 
(2) under the Poisson distribution (right panel). For each year and age group the 
residual is categorised according to its absolute value and plotted with a 
corresponding colour ranging from green (small residuals) through to red (large 
residuals). 

 

in the age range 15-20 (at the start of the “accident hump”). Both models 
have difficulty fitting the 1919 cohort (see Cairns et al, 2016), but arguably 
this cohort is of limited significance for population projection. Both 
models, however, fail to fit when assessed by conventional goodness-of-fit 
measures. Evidence for this is the large number of Pearson residuals with 
absolute value greater than 3. On the other hand, estimates which allow for 
overdispersion, either (2), fitted by maximising a negative binomial 
likelihood, or a P-spline fitted by quasi-likelihood produce standardised 
residuals within a much more acceptable range (see Figure 3). Therefore 
we use the negative binomial model to estimate the model parameters for 
the rest of our analyses. 

14. One advantage of the P-spline approach is that it provides estimates of 
mortality rates which vary smoothly over age and time, as illustrated in 
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Figure 4, which plots mortality improvements for the Poisson model, or 
Figure 5, which plots the corresponding improvements with a fitting 
approach which accounts for overdispersion (maximum Poisson quasi-
likelihood). For model (2), the maximum likelihood estimates of some of 
the model parameters, illustrated in Figure 3, do not vary smoothly. As a 
consequence the estimated mortality rates, presented in Figure 6, are also 
more irregular than would be desirable. However, this can be easily 
overcome by adopting an estimation method (penalised likelihood or 
Bayesian) which penalises roughness in the series of estimates for model 
(2). 

 
Figure 3. Comparison of residuals: the P-spline approach allowing for 
overdispersion (left panel) and model (2) under the negative binomial distribution 
(right panel). For each year and age group the residual is categorised according to 
its absolute value and plotted with a corresponding colour ranging from green 
(small residuals) through to red (large residuals). 
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Figure 4. Heatmap of the fitted mortality improvements for the P-spline model. For 
each year and age group the estimated mortality improvement is categorised 
according to its absolute value and plotted with a corresponding colour ranging 
from green (large decrease) through to red (large increase). 

 
Figure 5. Heatmap of the fitted mortality improvements for the P-spline model 
allowing for overdispersion (penalized quasi-likelihood method). For each year 
and age group the estimated mortality improvement is categorised according to its 
absolute value and plotted with a corresponding colour ranging from green (large 
decrease) through to red (large increase). 
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Figure 6. Heatmap of the fitted mortality improvements for model (2). For each 
year and age group the estimated mortality improvement is categorised according 
to its absolute value and plotted with a corresponding colour ranging from green 
(large decrease) through to red (large increase). 

 

15. One possible way of obtaining smoother estimates is to modify (2) to the 
generalised additive model 

 log𝜇𝑥𝑡 = 𝑠𝜇(𝑥) + 𝑠𝛼(𝑥)𝑡 + 𝜅𝑡 + 𝑠𝛾(𝑡 − 𝑥). (3) 

where 𝑠𝜇, 𝑠𝛼 and 𝑠𝛾 denote arbitrary smooth functions, which can be 
estimated by balancing goodness-of-fit to the observed data with 
smoothness of the corresponding function (Wood, 2006). 

16. Figure 7 displays the estimates for smooth model (3) superimposed over 
the corresponding estimates for model (2). The estimates for model (3) are 
much more regular and have the desired smoothness, and the fitted 
mortality rates, displayed in Figure 8, are also smoother. There is an 
increase in residual deviance, but this is compensated by a corresponding 
decrease in the effective complexity of the model. Note that we choose not 
to smooth the period effect 𝜅𝑡, and this is reflected in the vertical lines 
prominent in Figure 8. 
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Figure 7. Estimates of the parameters of model (3), data for males 1961-2013, (red 
lines) superimposed over the corresponding estimates for model (2) (black lines). 
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Figure 8. Heatmap of the fitted mortality improvements for model (3). For each 
year and age group the estimated mortality improvement is categorised according 
to its absolute value and plotted with a corresponding colour ranging from green 
(large decrease) through to red (large increase). 

 

17. Providing point projections over any future time horizon is straightforward, 
based on the parameter estimates of a model such as (3). Such a projection 
only requires extrapolation of the time effects 𝜅𝑡 for future years t, and the 
cohort effects 𝛾𝑡−𝑥  for future birth cohorts. Our research suggests that it is 
reasonable to set both sets of these future effects to zero (see Figure 7). 

18. For the highest ages x, for which observed mortality experience is sparse, 
we recommend that the baseline mortality 𝜇𝑥0 and the age-specific 
mortality differences 𝛼𝑥 are estimated by using parametric models, for 
example a log-linear model or a logistic model, with parameters estimated 
from the mortality data for the older ages. The resulting log-linear model 
has the form 

 log 𝜇𝑥𝑡 = 𝜇 + 𝜇𝑋𝑥 + (𝛼 + 𝛼𝑋𝑥)𝑡 + 𝜅𝑡 + 𝑠𝛾(𝑡 − 𝑥)      𝑥 > 𝑥0 (4) 

and logistic model has the form 

        log �
𝜇𝑥𝑡

𝛽 − 𝜇𝑥𝑡
� = 𝜇 + 𝜇𝑋𝑥 + (𝛼 + 𝛼𝑋𝑥)𝑡 + 𝜅𝑡 + 𝑠𝛾(𝑡 − 𝑥)      𝑥 > 𝑥0 (5) 

where κt and 𝑠𝛾(𝑡 − 𝑥) is the estimates obtained from fitting (3) to the 
main body of data (0 < 𝑥 ≤ 𝑥0).  Dodd et al (2016) suggest that for UK 
mortality data, an optimal age (𝑥0) at which to make the transition from 
smooth to linear model for log-mortality is 96 for males and 100 for 
females, based on 2010-2012 mortality data. For the transition from 
smooth to logistic model, they suggest age 92 for males, 90 for females. 



 11 

Note that under the logistic model (5) mortality rates flatten off, 
converging to a limiting rate 𝛽 as 𝑥 tends to infinity. We estimate 𝛽 as 
1.7038 for males and 2.6030 for females, values which we set as constant 
over time. 

 
Figure 9. Estimates of the parameters of models (3), (4) and (5), UK, 1961-2013, 
for males (upper panels; 𝑥0 = 96 for log-linear model (solid line) and 𝑥0 = 92 for 
logistic model (dashed line)) and females (lower panels; 𝑥0 = 100 for log-linear 
model (solid line) and 𝑥0 = 90 for logistic model (dashed line)) 

 

19. The log-linear model therefore has the estimates of the baseline mortality  

𝜇𝑥 = �𝑠𝜇
(𝑥)           𝑥 ≤ 𝑥0 

𝜇 + 𝜇𝑋𝑥     𝑥 > 𝑥0
 

 and mortality improvement  

𝛼𝑥 = �𝑠𝛼(𝑥)           𝑥 ≤ 𝑥0 
𝛼 + 𝛼𝑋𝑥     𝑥 > 𝑥0

 

 

for both males and females. For the logistic model these estimates are 
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𝜇𝑥 = �
𝑠𝜇(𝑥)                                                                            𝑥 ≤ 𝑥0 
log(𝛽exp(𝜇 + 𝜇𝑋𝑥)/(1 + exp(𝜇 + 𝜇𝑋𝑥)))      𝑥 > 𝑥0

   

𝛼𝑥 = �
𝑠𝛼(𝑥)                                                                                                                 𝑥 ≤ 𝑥0 

log �
𝛽exp(𝜇 + 𝜇𝑋𝑥 + 𝛼 + 𝛼𝑋𝑥  )

1 + exp (𝜇 + 𝜇𝑋𝑥 + 𝛼 + 𝛼𝑋𝑥  )
� − log �

𝛽exp(𝜇 + 𝜇𝑋𝑥 )
1 + exp (𝜇 + 𝜇𝑋  )

�   𝑥 > 𝑥0
               

 

for males and females. Figure 9 presents the estimates of the parameters 
under the log-linear model (solid lines) and the logistic model (dashed-
lines). 

 

20. We also treat infant (age 0) mortality separately. Here, we exclude the 
period effect 𝜅𝑡, and fit the model  

 log𝜇0𝑡 = 𝜇0 + 𝛼0𝑡 + 𝑠𝛾(𝑡 − 𝑥) (6) 

where 𝑠𝛾(𝑡 − 𝑥) is the estimate obtained from fitting (3) to the main body 
of data (0 < 𝑥 ≤ 𝑥0). Observed and fitted infant mortality using (6) are 
displayed in Figure 10. 

 
Figure 10. Estimates of infant mortality rates, UK, 1961-2013, for males (left 
panel) and females (right panel) using model (6; red lines), compared with 
observed rates (black lines) 

 

III. Projection of mortality rates using the Proposed Method 

21. We investigated the robustness of the proposed methodology by exploring 
the sensitivity of the estimated mortality rates in a later year to changes in 
the data used to estimate the model. Two different approaches were taken. 
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In the first, we compared the estimates of 2013 mortality rates and 2013-14 
mortality improvements for model (3) fitted on ages  1 ≤ 𝑥 ≤ 𝑥0 using 
data from 1961-2013, with the equivalent estimates fitted on 1971-2013 
and 1981-2013; see Figure 11. Then, we compared the estimates of 2011 
mortality rates and 2011-12 mortality using data from 1961-2011, with the 
equivalent estimates fitted on 1961-2012 and 1961-2013; see Figure 12. 
This provides a comparison with the approach based on P-splines (also 
included in the Figures 11 and 12). Our approach seems to be quite robust 
to the fitting window. Arguably, the P-spline approach is over-sensitive to 
mortality history in recent years.  

 

  

Figure 11. Estimated 2011 mortality rates (left panel), and 2011-12 mortality 
improvements (right panel)  for males, UK,  using model (3) and different 
historical fitting periods. 
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Figure 12. Estimated 2011 mortality rates (left panel), and 2011-12 mortality 
improvements (right panel)  for males, UK, using model (3) and different recent 
fitting periods 

 

22. Finally, in Figure 13, we present actual projections, for male UK mortality 
in 2055, based on mortality data from 1961-2013. For comparison, we also 
present the ONS projections and current mortality rates. There are several 
features deserving comment. The first is the good agreement between our 
model and the ONS projections in middle and older ages. In contrast, our 
methods forecasts a very low level of improvement for young adults. This 
is driven by the estimates of the 𝛼𝑥 parameter being close to zero for ages, 
𝑥 in this range (see upper right panel of Figure 9). Conversely, we forecast 
a greater improvement than do ONS for children. The main differences 
between the forecasting methodologies driving these discrepancies is that 
we allow for a cohort effect consistently in a way in which the current 
ONS methodology does not. Hence, for example, observed improvements 
for young adults, over the observed data period, are being attributed, in our 
modelling, to a cohort effect. 
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Figure 13. Forecast 2055 mortality rates and 2013 crude mortality  for males, UK, 
together with ONS forecasts. Here the mortality rates have been transformed to the 
𝑞𝑥 scale (conditional probability of death within 12 months, given survival to age 
𝑥). 

 

IV. Conclusions 

23. Mortality forecasting methods frequently rely on arbitrary and subjective 
inputs, and make insufficient use of the substantial data available on 
mortality rates, their improvement rates, and the associated variability. 

24. The main features of the proposed approach include: 
• The proposed approach is comprehensive and coherent. There are trade-

offs between the fit and robustness of various models that can be used. 
• The proposed models are less reliant on arbitrary assumptions and 

specific interventions. 
• The models make full use of all available sources of information, with 

the potential to also include expert opinion. 
25. Our investigations (across a wide range of countries) indicate that the 

prosed model fits the data at least as well as competing models, and often 
more robustly. 

26. Further development work is required. In particular, we propose to 
investigate extending the model to allow the threshold age 𝑥0 and the 
limiting mortality rate 𝛽 to vary over time, rather than being fixed at their 
optimal 2010-2012 values.  

27. We are also developing a fully Bayesian version of the methodology which 
will allow expert opinion about future mortality rates and/or mortality 
improvements to be coherently incorporated into forecasts. It will also 
allow properly calibrated uncertainty intervals to be presented together 
with the corresponding forecasts. 
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