Estimating sub-national behaviour in the Danish microsimulation model SMILE

Marianne Frank Hansen
DREAM

Joint Eurostat/UNECE Work Session on Demographic Projections
Geneva, 18-20 April 2016
Outline

• Background information.
• The microsimulation model SMILE.
• Estimating transition probabilities by classification – the CTREE algorithm.
• Method challenged by ambition to identify geographical areas likely to be characterized by future exodus and depopulation
• Principal component analysis – PCA.
• Using PCA as a pre-process to aid convergence of classification algorithm.
Background information

- **Danish Rational Economic Agents Model** is an independent institution founded in 1997
- **Purpose**: Developing and maintaining tools to analyse structural policy, and fiscal sustainability
- **Annual projections on future demography, educational attainment, and labour market participation.**
- **National population projection with Statistics Denmark since 2010.**
The microsimulation model SMILE

- **Simulation Model for Individual Lifecycle Evaluation**
- Developed to project future housing demand
- Requires projection of the number of households
- Initial population consists of 2,8 mio. households comprising 5,5 mio. individuals.
- Transition between states is decided by event exposure and Monte Carlo simulation.
- Events: demography, education, labourmarket participation, retirement, change in cohabitation patterns, moving, dwelling choice.
The microsimulation model SMILE

• Transition probabilities associated with events are described by a vast range of high dimensional characteristics:

 - Family structure and gender (3)
 - Age (120)
 - Origin (5/15)
 - Children or not (2)
 - Education level (6/12)
 - Labourmarket status (2/3)
 - Geographic location (11)
 - Dwelling type (5)
 - Dwelling category (9)
 - Dwelling size (8)
 - Dwelling building year (12)
 - Dwelling area (5)

• Curse of dimensionality
Estimating transition probabilities by classification

- Curse of dimensionality challenges estimation of transition probabilities.
- Solved by classifying observations with similar responses by CTREE algorithm on pooled data.
- New Task: Identify geographical areas likely to be characterized by future exodus and depopulation
 - expand geographical covariate from 11 regions to 98 municipalities.
 - classification algorithm does not converge!!!
Estimating transition probabilities by classification

- Conditional inference trees (CTREEs) is an algorithm used to classify observations with similar behaviour/response from a range of characteristics.
- Decision tree grouping data by recursive binary splits
- Observations are grouped such that there is:
 - Minimum variation within a group
 - Maximum variation across groups
- Splits decided by statistical tests and stopping criteria.
- Calculate probability of event for each terminal group.
CTREE algorithm

1. Test for independence between any of the explanatory variables and the response. Stop if $p > 0.05$.
2. Otherwise select the input variable with the strongest association to the response.
3. Find optimal binary split point for the selected input variable.
4. Recursively repeat from 1) until a stopping criterion is reached.
Example: Decision tree

- The probability of moving - binary response.

```
Older than 25 years
  /  
/    
Yes  No

Highest education > Short-cycle higher

Family type

Yes

No

Couple

Single

Gender

9 %

Older than 35 years

17 %

13 %

Female

27 %

Male

21 %

9 %

11 %

13 %

27 %

21 %
```
Example: Decision tree
Convergence issues

• Induced when expanding the dimension of the geographic variable to 98.

• Solutions:
 • Use smaller sample when classifying
 • Change stopping criteria or test to allow for fewer splits
 • Order/rank elements of geography variable (municipalities)

• Ordered vs. non-ordered variables.

• Choice of ranking measure?

• Using the position of the municipality in a principal component vector will allow ranking to spring from multiple features…
Principal Component Analysis

- Data matrix X, n obs., p variables/features
- A principal component, Z_k, $k = \min(n-1, p)$ is a linear combination of columns in X

$$Z_k = \phi_{1k} X_1 + \phi_{2k} X_2 + \ldots + \phi_{pk} X_p$$

$$z_{ik} = \phi_{1k} x_{i1} + \phi_{2k} x_{i2} + \ldots + \phi_{pk} x_{ip}$$

- Loadings and scores
- Principal component are determined successively
Principal Component Analysis

- Center X_1, \ldots, X_p to have zero mean
- 1st PC (Z_1):

$$\max \left\{ \frac{1}{n} \sum_{i=1}^{n} z_{i1}^2 \right\} \quad \text{s.t.} \quad \sum_{j=1}^{p} \phi_{j1}^2 = 1$$

- 2nd PC (Z_2):

$$\max \left\{ \frac{1}{n} \sum_{i=1}^{n} z_{i2}^2 \right\} \quad \text{s.t.} \quad \sum_{j=1}^{p} \phi_{j2}^2 = 1 \quad \text{and} \quad \text{corr}(Z_1, Z_2) = 0$$
Principal Component Analysis

Source: Figure 6.14, Hastie & Tibshirani (2013).
Ranking municipalities by principal component score values

• Set of principal components constitutes a low-dimensional representation of data.

• Z_k spans the variability in data, hence observations s and t are more similar than observations s and u, when

$$|Z_{sk} - Z_{tk}| < |Z_{sk} - Z_{uk}|$$

→ Principal component score values can be used to rank geographic areas based on multiple features.
Ranking municipalities by principal component score values

- Municipality Fundamentals Database of The Ministry of Social Affairs and the Interior.
- 60 variables describing demographic, socioeconomic and economic features of each municipality.
- Data \(x_{ij}, \ i = 1, \ldots, 98, \ j = 1, \ldots, 60 \)
- Perform PCA on \(X \).
- Rank the 98 municipalities by elements in \(Z_k \).
- Estimate CTREE with ranked elements of geographic feature variable(s).
Negative correlation:

- Share of pop. in urban housing.
- Share of pop. commuting.
- Per capita revenue from real estate and income taxes.
- Share living in social housing.
- Land value per capita.
- High level of education.
- Population density.
- Share of Western immigrants.
Score values of 2nd PC
Budget balance

Negative correlation:
- Exp. per capita
- Share of pop. with basic education
- Cash benefit recipients
- Unemployment

Positive correlation:
- Income tax per capita
- Land value per capita
- Owner-occupied housing
- High level of education.
Conclusion

• Classification is a useful tool when estimating behaviour based on a large number of high dimensional covariates.
• Expert knowledge of behavioural patterns or model tuning not required.
• PCA can be used to aid convergence of CTREE by ranking variable elements from multiple features.
• Allows for the introduction of detailed sub-national behaviour in SMILE
For more information please visit

www.dreammodel.dk