Renewable Freshwater Resources (C-1)

Data sources, stumbling blocks and simple data validation techniques

Michael Nagy
Environment and Multi-Domain Statistics Section
UNECE Statistical Division
How to collect data?

How to make meaningful statistics (stumbling blocks)?

How to validate statistics and indicators before dissemination?
1. Data sources

Producing of statistics for template C-1 (Renewable Freshwater Resources) is a task of the National Hydrometeorological Institute.

National Statistical Offices should be in a position to ask them the right questions, to understand and to (roughly) validate the data.
Clarifications with Hydrometeorological Institutes

• Are annual water balances available, Long Term Annual Average (LTAA) or other?

• Does the national monitoring network qualify to calculate a national water balance?

• Which methods are used (e.g. following WMO Guide to Hydrological Practices), how are shared water bodies (e.g. border rivers) considered, etc.?

• Data is needed in terms of volume (not height)

• ACTUAL evapo-transpiration is needed
2. Stumbling Blocks

Data collection:
• Unit of measurement
• Transboundary waters
• ACTUAL evapotranspiration

Careful with the interpretation of results:
• Renewable freshwater resources:
 • Adding up (e.g. for a group of countries) will lead to double-counting
 • Ecological flow not considered
• National aggregates do not reflect seasonal or sub-national (river-basement) problems
Stumbling block: Unit of measurement

Often you will get the data on water resources in terms of mm/year, km³/year or another unit.

Unit of measurement of template C1: million m³/year!
Stumbling block: Transboundary waters

Follow multilateral or bilateral agreements according to UNECE Water Convention and/or River Basin Agreements.

Divide 50/50 between the two riparian countries if no agreement.
Stumbling block: ACTUAL evapotranspiration is needed!

You also might get data on the POTENTIAL evapotranspiration (ET), which is not needed for C1.

Potential ET represents the evapotranspiration rate of a short green crop (grass), completely shading the ground, of uniform height and with adequate water status in the soil profile. It is a reflection of the energy available to evaporate water, and of the wind available to transport the water vapour.
Stumbling block: Interpretation of renewable freshwater resources (I)

Country A:
Renewable freshwater resources = 210 = 200 + 10

Country B:
Renewable freshwater resources = 505 = 300 + 205

Renewable freshwater resources of countries A and B together?

a) 715? b) 705? c) 510?
Stumbling block: Interpretation of renewable freshwater resources (II)

Calculation of annual or LTAA renewable freshwater resources on country level provides important information for a range of indicators (e.g. water exploitation index, dependency ratio etc.), but does not consider:

- Ecological requirements (ecological flow)
- Multi- or bilateral agreements
- Seasonal and/or sub-national water stress situations
3. Simple Data Validation

Can the values be true?
What is questionable here? Why?

(Size of country: 85 000 km²)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Unit</th>
<th>1990</th>
<th>1995</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Precipitation</td>
<td>million m³</td>
<td>93000</td>
<td>85000</td>
<td>90000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Actual evapotranspiration</td>
<td>million m³</td>
<td>38000</td>
<td>-</td>
<td>30000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Internal flow</td>
<td>million m³</td>
<td>55000</td>
<td>n/a</td>
<td>85000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Inflow of surface and groundwaters from neighbouring countries</td>
<td>million m³</td>
<td>23000</td>
<td>20000</td>
<td>25000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Renewable freshwater resources</td>
<td>million m³</td>
<td>78000</td>
<td>n/a</td>
<td>105000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Outflow of surface and groundwaters to neighbouring countries</td>
<td>million m³</td>
<td>78000</td>
<td>70000</td>
<td>72000</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Outflow of surface and groundwaters to the sea</td>
<td>million m³</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Avoid empty cells. Is it "0" or “n/a”?

Careful: Templates contain formulas for internal flow and renewable freshwater resources.

Double-check with other data sources, e.g:

- [FAO Aquastat](#)
- [World Bank](#) (average precipitation: divide volume / land area)
- [CIA World Factbook](#)
- Etc.

Suggestion: Long Term Annual Average (LTAA) figures could be useful
Other experiences (collection, stumbling blocks, validation)? Please share them with us!

Thank you very much for your attention!

michael.nagy@unece.org