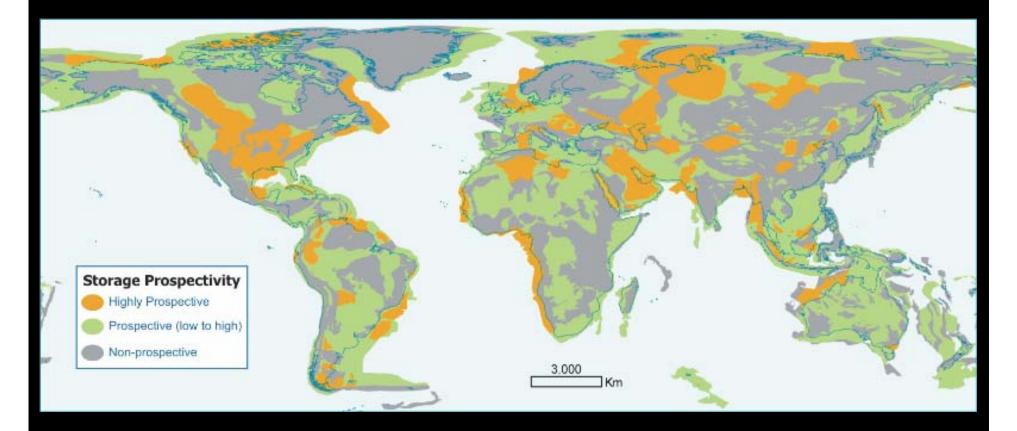
Key issues and challenges in securing reliable and efficient underground storage of CO₂


Thomas Vangkilde-Pedersen Geological Survey of Denmark and Greenland

UNECE Forum on fostering investments in cleaner electricity production from fossil fuels, Geneva, 2007-11-27

10.61 12451

Storage capacity estimation Site selection & characterization Safety - site monitoring

World map of CO₂ storage prospectivity

• From Bradshaw & Dance 2004

Assessment Scales and Resolution

- Country: high level, minimal data
- Basin: identify and quantify storage potential
- Regional: increased level of detail, identify prospects
- Local: very detailed, pre-engineering site selection
- Site: engineering level for permitting, design and implementation
- Note: Depending on the size of a country in relation to its sedimentary basin(s), the order of the top two or three may interchange

• From Stefan Bachu, CSLF, 2007

CO₂ storage potential pyramid

Increasing cost of storage

Better quality injection

site and source

Lower

Theoretical capacity including large uneconomic/unrealistic volumes: regional estimates without storage coefficient

CO₂ storage potential pyramid

Increasing Cost of Stores

Better quality

, injection

Middle

<u>Effective</u> capacity with technical/geological cut off limits applied to theoretical capacity: estimated storage coefficient

Lower

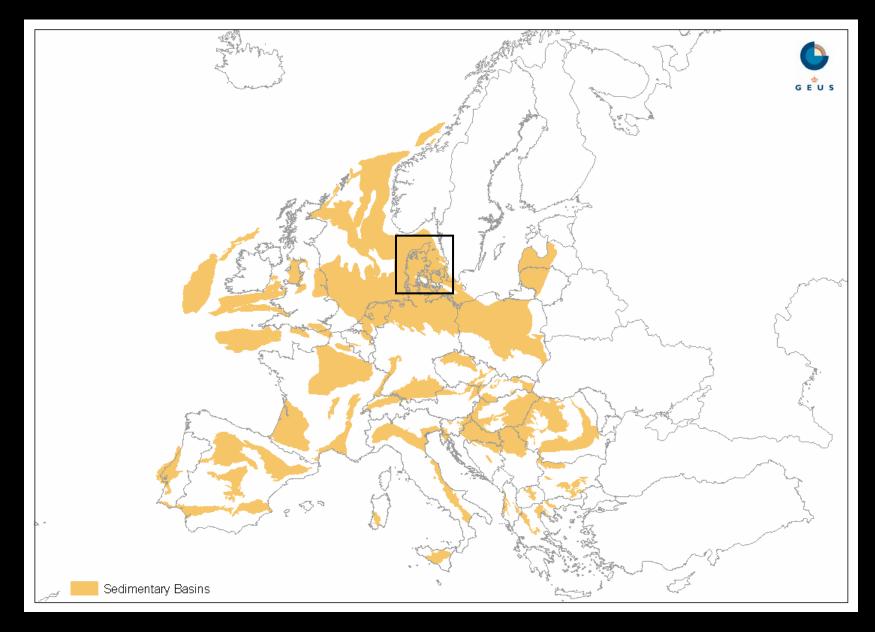
<u>Theoretical</u> capacity including large uneconomic/unrealistic volumes: regional estimates without storage coefficient

CO₂ storage potential pyramid

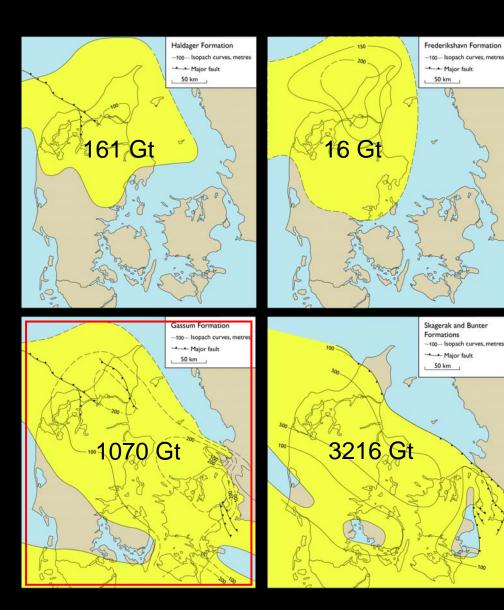
Better quality

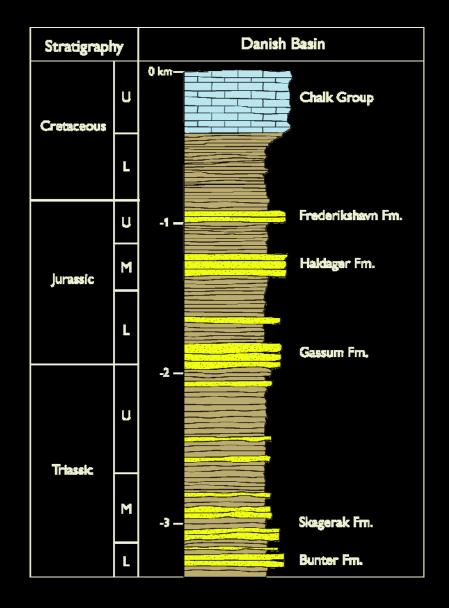
Upper

Practical capacity with economic and regulatory barriers applied to effective capacity and with Increasing Cost of storage matching of sources and sinks: case studies

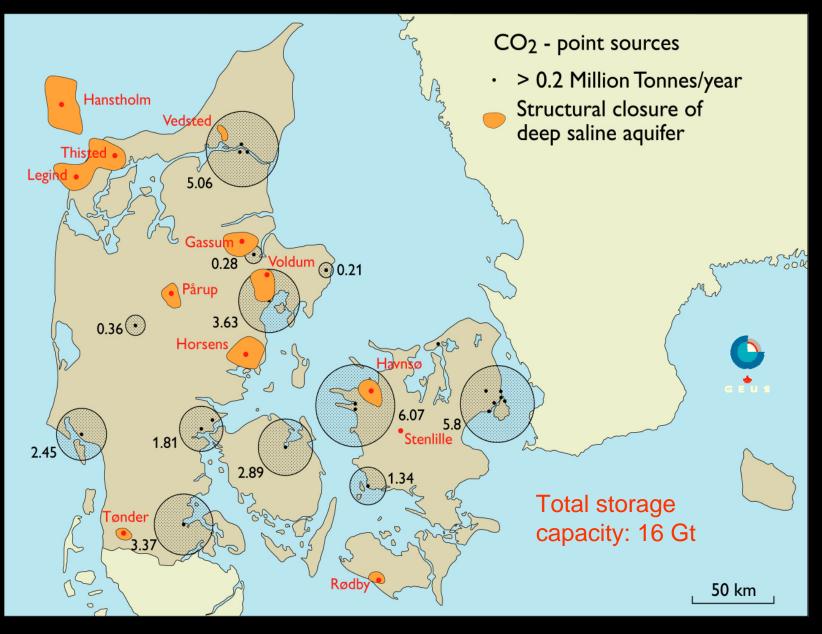

Middle

Effective capacity with technical/geological cut off limits applied to theoretical capacity: estimated storage coefficient


Lower


Theoretical capacity including large uneconomic/unrealistic volumes: regional estimates without storage coefficient

European map of CO₂ storage prospectivity



Regional map of CO₂ storage potential

Site specific CO₂ storage capacity

- Regional screening incl. capacity estimations
- Ranking of sites
- Site selection
- Site characterization
- Storage design and construction
- Injection operations incl. monitoring
- Site closure
- Post closure incl. monitoring

- ✓ Regional screening incl. capacity estimations
- Ranking of sites
- Site selection
- Site characterization
- Storage design and construction
- Injection operations incl. monitoring
- Site closure
- Post closure incl. monitoring

- ✓ Regional screening incl. capacity estimations
- Ranking of sites
- Site selection
- Site characterization
- Storage design and construction
- Injection operations incl. monitoring
- Site closure
- Post closure incl. monitoring

- ✓ Regional screening incl. capacity estimations
- Ranking of sites
- Site selection
- Site characterization
- Storage design and construction
- Injection operations incl. monitoring
- Site closure
- Post closure incl. monitoring

Basic ranking and selection criteria

- Sufficient depth and storage capacity
 - supercritical CO₂ below 700-800 m (rule of thumb)
 - porosity may deteriorate below 2500-3000 m
 - trap type / areal extent / thickness
 - storage capacity
- Sufficient injectivity to be economically viable
 - permeability (as a rule of thumb > 200 mD)
 - reservoir lithology
 - heterogeneity of reservoir
- Integrity of seal
 - seal lithology and permeability
 - seal capillary pressure and pore entry pressure
 - faulting / tectonic activity / fracture pressure

What needs to be characterized

- Geometry of layers
 - traditional tools from petroleum exploration
- Geology
 - Lithology and geological reservoir models
- Petrophysics
 - permeability and porosity
- Mineralogy and geochemistry
 - interaction of CO₂ with fluids and rocks
 - Numerical simulations
- Stress regime and tectonic activity
- Reservoir and caprock properties
 - Numerical simulations

Why monitoring ?

- Monitoring will play a key role in demonstrating that storage performance meets appropriate standards
- It is highly unlikely that a careful chosen and managed storage site will leak, but the regulators are responsible for protecting the environment
- Monitoring shall take place for a variety of reasons:
 - Environmental reasons
 - for human health and safety
 - for protecting potable aquifers, habitats, biodiversity
 - Providing data to answer questions from public
 - leakage has been demonstrated to be a key public concern
 - Financial reasons
 - the market need confidence in the technology
 - storage accountable in future phases of the European ETS

Monitoring techniques

Monitoring buoys

Microbiology

Remote sensing

Geophysical methods

Soil gas

Laboratory experiments

Site monitoring

- Experience from industrial storage sites
 - Sleipner (4D seismic)
 - K12B (tracer injection)
 - InSalah (microseis)
 - Weyburn (soil gas measurements)
- Learn from fields with natural occurrence of CO₂
 - detect CO₂ migration pathways
 - test suitable monitoring techniques
 - study impact on humans and ecosystems
- Development of new metods
 - microbiology (vegetation, bacteria, etc. response to CO₂)
 - remote sensing (thermal imaging, vegetation stress)
 - offshore monitoring buoys (detecting CO₂ and CH₄)
 - resistivity, magnetometry, microgravity
 - natural tracers

Worst case scenario is business as usual!

Need to get started now!