Hydropower in the Alpine Region

Figures, small hydropower and main concerns

Andrea Bianchini
Consultant of the Italian Ministry for the Environment, Land and Sea
Italian Delegation to the Alpine Convention, member of the Platform “Water Management in the Alps”
Eurac Research
INTRODUCTION

Based on the mandate from the X Ministerial Conference of the Alpine Convention (2009), the Platform “Water Management in the Alps” has worked out common guidelines on the use of small hydropower including good practice examples, then approved by the XI Alpine Conference in 2011. The Platform, jointly chaired by Italy and Slovenia, was then mandated by the XIV Alpine Conference to prepare a follow-up on the Common guidelines in 2017-2018, in order to evaluate how the guidelines serve the needs of regional / local administrations.
BENEFITS AND IMPACTS OF HYDROPOWER
Pros and cons of hydropower generation in the Alpine Region

↑ ENV. Almost emission-free form of electricity generation (CO2 savings)
↑ ECO. Domestic and renewable source of energy (reduces energy dependency from external sources)
↑ ECO. Long lifespan, low operational and maintenance costs, attractive long term payback ratios
↑ ECO. Contributes to covering peaks of energy demand
↑ ECO. Highly decentralised and close to the consumer (supply security)
↑ SOC. Socio-economic development of peripheral alpine regions, in particular if charges are levied
↑ SOC. Potential multi-functionality of reservoirs used for hydropower (water storage in low flow and flood lamination in peak flows, recreational purposes, irrigation, etc.)

↓ ENV. Loss of natural landscape
↓ ENV. Interruption of river continuity (impacts on hydromorphology and biocenosis)
↓ ENV. Changes in river morphology, loss of habitats (loss of dynamic processes of sediment, thalweg incision)
↓ ENV. No residual water or lack of sufficient residual water; hydro-peaking
↓ ENV. Impoundment (increase of water temperature and decrease of oxygen content, increased deposition of fine sediment upstream, need for flushing)

STRENGTHS
Renewable energy
“Economic raw material”
Low operational and maintenance costs
Energetic independency
Good payback for investors

WEAKNESSES
“Hard” infrastructures
Cumulative effect of infrastructures on water bodies

OPPORTUNITIES
Reducing greenhouse gases emissions
Skilled green jobs required
Local communities can profit of charges
Multi-functionality of reservoirs i.e. for flood control and droughts mitigation

THREATS
Landscape alteration
Ecosystems alteration
Potential conflicts over the use of water resources

POLICY BACKGROUND

General policy objectives

- High hydroelectric potential
- National goals for renewable energy
- Increasing the production of renewable energy from hydropower generation

Pressures - Expectations

- Important value of ecosystems and landscape
- Rarity of remaining unexploited rivers

Conflicts of Interests

- Minimizing the impairment of the aquatic ecosystem and landscape
- Good reasons and need for achievement of both objectives!

How to strike a balance (optimisation task) between these two objectives?

HYDROPOWER DIFFUSION

State of the art based on 2004-2007 data and focus on small HP
ELECTRICITY PRODUCTION

The share of hydropower in the Alpine Countries

HYDROPOWER PRODUCTION

Synthesis framework on the Alpine region

- Number of hydropower stations (5084 stations)
- Hydropower production in 2005 (84'419 GWh)

Hydropower stations up to 10 MW:
- Enlobe 90% of all hydropower stations
- Yield 14% of the total hydropower production

<table>
<thead>
<tr>
<th>Capacity Range</th>
<th>Production (%)</th>
<th>Stations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 300 kW</td>
<td>1.3%</td>
<td>57.2%</td>
</tr>
<tr>
<td>300 kW - 1'000 kW</td>
<td>2.5%</td>
<td>17.6%</td>
</tr>
<tr>
<td>1'000 kW - 5'000 kW</td>
<td>6.0%</td>
<td>12.6%</td>
</tr>
<tr>
<td>5'000 kW - 10'000 kW</td>
<td>4.2%</td>
<td>2.9%</td>
</tr>
<tr>
<td>> 10'000 kW</td>
<td>86.1%</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

MAIN OPEN ISSUES
What can we conclude from these figures?

Is it small hydropower useful for the achievement of the renewable energy goals?
Is it the current incentivisation really sustainable?
Where and when should we promote small hydropower?
How can we avoid major impacts of small hydropower and the cumulative effect of many plants?
WHEN CHOOSING SMALL HYDROPOWER
Recommendations 5 and 6 on small hydropower

<table>
<thead>
<tr>
<th>Infrastructure related Small Hydropower Plants</th>
<th>Off-grid Small Hydropower Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure related hydropower plants, exploiting only the water that is already used by the primary goal of the infrastructure, are in general not additionally affecting aquatic ecosystems and are economically favorable.</td>
<td>In the weighing of interests, the purpose of the SHP needs to be given due consideration: In particular providing electric auto-supply, where the connection to the public grid would lead to disproportionate costs and no better environmental options are given, constitutes a strong argument in favor of building SHP in such remote individual locations (e.g. Alpine huts, remote farming, etc.).</td>
</tr>
<tr>
<td>Thus, from an environmental point of view, such multipurpose SHP is in general considered appropriate and desirable.</td>
<td></td>
</tr>
</tbody>
</table>

WHEN CHOOSING SMALL HYDROPOWER

Recommendations 7, 8 and 9 on small hydropower

<table>
<thead>
<tr>
<th>Refurbishment, reopening</th>
<th>Ecological upgrading</th>
<th>Renewal of concession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refurbishment of existing operating plants and reopening of disused plants in order to optimize the production of hydropower and minimizing the ecological impacts should be generally promoted and prioritized. However there should be a periodical examination if further mitigation of negative impacts and compliance with existing environmental legislation can be achieved by the application of best practice without entailing disproportionate costs.</td>
<td>Ecological upgrading of existing operating plants in order to mitigate the impacts on the ecological status and on landscape should be generally promoted by means of incentives in order to accelerate fulfillment of legal requirements earlier or even to go beyond these minimal requirements</td>
<td>Renewal of concessions or licenses can generally be considered appropriate in case it complies with the existing environmental legislation. Nevertheless the ecological potential of the site should be considered and concessions or licenses should be limited in time, being as short as possible without compromising the investment.</td>
</tr>
</tbody>
</table>
WHERE?

Where SHP hydropower is desirable and where not?

Where are the favorable locations to increase SHP production in line with national renewable energy targets?
Favorable locations are those that exhibit on the one hand a high hydro-electric potential and have on the other hand a relatively low ecological and landscape value.

The search for the most favorable locations takes necessarily place on a regional level.
Next to the „where“ there is also the how question: if new SHP-facilities are being built, all practical steps have to be taken to mitigate the adverse impacts on the environment and the landscape.
THE TWO-LEVELS PROCEDURE
Each the decision in the right place

Favorable locations - “WHERE”

Technical solutions - “HOW”

Transparent, structured and criteria based procedure, combining two levels:

REGIONAL LEVEL (Where)
Development of a “regional strategy”, classifying the potential appropriateness of water bodies for hydropower use independently from individual application
→ Hydroelectric potential
→ Ecological and landscape value

LOCAL LEVEL (How)
Project specific evaluation of the local situation and the individual application by weighing all pros and cons
→ Evaluation of the regional level
→ Installation and site specific criteria
→ Further socio-economic aspects

The common guidelines then provide guidance for this two-level procedure, also suggesting a pool of common alpine-wide criteria for that task

THE REGIONAL PRE-PLANNING

Where are the favorable sites for new SHPs?

Development of a regional strategy (regional pre-planning). Transparent evaluation and classification of the potential appropriateness of river stretches for hydropower use. Better if shared with the public.

Considered criteria:
- Theoretical hydroelectric potential
- Ecologic and landscape value of the river stretches
- Areas under special protection

Table: Classification of River Stretches

<table>
<thead>
<tr>
<th>Hydro-electrical Potential</th>
<th>Ecological and Landscape Value</th>
<th>Favourable</th>
<th>Less-Favourable</th>
<th>Non-Favourable</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>for hydro-electrical exploitation</td>
<td>complying with the legal environmental (and other) standards, construction of SHPs in general possible</td>
<td>additional aspects and in-depth assessment weighing all relevant criteria indispensable</td>
<td>SHPs possible only in exceptional cases (e.g. auto-supply)</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE REGIONAL PRE-PLANNING

Good example

AT THE LOCAL LEVEL
Decision on authorization for individual project applications

The authorization is not just about judging if projects should be allowed in certain areas or not but also about the way how projects should be realized.

Pre-planning at regional level
General information on appropriateness of a location
no project specific aspects

APPLICATION FOR SHP PROJECT at a certain location
NEED TO TAKE A DECISION

LOCAL IN-DEPTH ASSESSMENT OF THE CONCRETE PROJECT APPLICATION

For individual applications only
Considering all sustainability dimensions
Holistic weighing of all relevant criteria

Evaluation at regional level +
Installation specific criteria
Further socio-economic aspects including impacts on other sectors.

SITE- AND INSTALLATION SPECIFIC DECISION
Decision on authorization (including specific requirements)

Regional Strategy
Hydroelectric potential
Ecological and Landscape value

AT THE LOCAL LEVEL
Example of site-specific criteria to be considered

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>CRITERIA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy balance or “energy payback ratio”</td>
<td>Conflicts with other water users</td>
<td>Locally, downstream and upstream</td>
</tr>
<tr>
<td>Specific investments</td>
<td>Conformity with local spatial planning</td>
<td></td>
</tr>
<tr>
<td>Use of hydroelectric potential</td>
<td>Necessity of further infrastructure for construction and operation</td>
<td>Access, power-lines, etc.</td>
</tr>
<tr>
<td>Minimisation of impacts</td>
<td>Effect on tourism</td>
<td>Potential positive and negative effects on tourism</td>
</tr>
<tr>
<td>Synergies with existing infrastructures</td>
<td>Regional economic effects</td>
<td>Taxes, income for the public; investments in local economy, induced employment</td>
</tr>
<tr>
<td>Sewage dilution coefficient on the residual flow stretch</td>
<td>Relevany certifications</td>
<td>e.g. green energy labels; ISO 14000; ...</td>
</tr>
<tr>
<td>Integration in the landscape</td>
<td>Other socio-political considerations</td>
<td></td>
</tr>
<tr>
<td>Ecological impacts downstream and upstream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid relevancy</td>
<td>e.g. Importance for the grid stability</td>
<td></td>
</tr>
</tbody>
</table>

Possible additional criteria for the comparison of applications competing on the same river stretch:

Specific power output kW/m Power output related to the length of the residual flow stretch and impounded river length.

CONCLUSIONS

Clear commitment to respect both main objectives (use of the resource and renewable energy goals “vs” protection) → no unilateral maximisation but optimization, it means restrictions and limitations for both sides.

Approach for the development and promotion of (S)HP to reach the targets for renewable energy in a smart way
• 2 levels procedure for a “controlled” increase of production: from general to detail
• smart and transparent “use-and-protection pre-planning” on a regional scale
• optimisation task carried out both, at regional and local level

Being a pre-requisite for the local assessment and decision about authorization of an individual project, the establishment of the regional strategy should be carried out as soon as possible.
CONCLUSIONS

Strategic planning provides “regional maps” showing the appropriateness of river stretches for hydropower use. Relevant (environmental) legal framework is translated into information to the potential investor about the chances for building a SHP at a certain place.

Decision based on the regional strategy and grounded on a project and site-specific assessment.

Instruments of public participation such as i.e. “river contracts” can help the dialogue between public authorities, stakeholders and citizens, increasing the public acceptance of the criteria and the approved projects.

The experience gained in the Alpine Convention context has already inspired the ICPDR guidelines and it is at the basis of the Italian binding guidelines → good replicability.
Thank you for the attention

Andrea Bianchini
Via Ludovisi 45
00187 Roma
bianchini.minambiente@gmail.com
andrea.bianchini@eurac.edu
+39 342 7491514
www.minambiente.it/pagina/la-convenzione-delle-alpi