MANAGING A TRANSBOUNDARY DEEP GROUNDWATER BODY

M. Samek, A. Scheidleder, C. Schilling
GEOGRAPHICAL SITUATION
PROBLEM

• Different intensive use of thermal groundwater on both sides
 – Spa (Germany)
 – Hydro Geothermal (Austria)

• Decreasing of observed water pressure
 – Less water
 – Higher costs

• Transboundary groundwater body
 – Different legal regulations
 – Different administrative structures
 – Different interests
 – Different culture to solve problems
LEGAL FRAME

REGensburg Treaty

- International Treaty on Water Management Cooperation in the Danube River Basin
- Establish 1987
- Permanent bilateral Water Commission Austria - Germany

Expert Group “Thermal water” was installed 1992 and instructed

- to supervise the elaboration of the groundwater model
- to make proposals on how to manage the groundwater resource
- to lead and accompany the management
MANAGEMENT STRATEGIES I

• Investigations and Studies
 - Hydrogeological Model (Conceptual Model) 1996
 - 2D - Mathematical Groundwater Model 1998
 - Hydraulic-Thermal Combined Groundwater Model 2007
 - Deficit analysis (2012) and model revision (ongoing)

• Exchange of relevant information and data
 ➢ Austrian – German Expert Group “Thermal Water”

 Report about:
 - Current development
 - Planned projects
 - Collected data
 - Experience with guideline papers

 Basis for:
 - Prepare further investigations
 - Information to a wider audience (public information)
MANAGEMENT STRATEGIES II

• Guideline Papers

 Content:
 - Management principles
 - Dimensioning of plants for the thermal water use
 - Required application documents
 - Catalogue of requirements
 - Model Application

• Monitoring, data collection and reporting

 Principles:
 - Sufficient Management needs relevant data
 - Combined and harmonised monitoring programme

 Data:
 - presented and documented in annual status reports
 - compiled and summarized in five years special reports
 - accessible to the administration
MANAGEMENT STRATEGIES III

• Application, maintenance and further development of the mathematical groundwater model

 Mathematical Model is a relevant instrument for managing the deep transboundary groundwater body
 - Evaluate required water abstraction
 - Prognoses for management
 - Statements about existing thermal water use

 Basis for water law approval process on both sides

 In guideline papers determined
 - Application, maintenance and further development
 - Documentation of the calculations
CONCLUSIONS

Step 1: (socio-economic and institutional aspects)
- Problem - Identification
- Installation of an expert group
- Common approach to solve the problem
- Cooperation between administration, expert group and scientists

Step 2: (hydrogeological aspects)
- Delineation and description
- Data collection
- Hydro geological / conceptual model
- 2D-groundwater model

Step 3: (Legal aspects)
- Legal and institutional cooperation
- Guidelines – managing and protection
- Recommendations – use of the guidelines
ICPDR GUIDANCE FOR TRANSBOUNDARY GW BODIES

- ICPDR is mandated to elaborate a **Danube River Basin Management Plan** based on National River Basin Management Plans of Danube Countries

- **Guidance for transboundary GW bodies** to support DRBM elaboration and to provide:

 - **Guidance** on the **selection and characterisation** of GWBs of basin wide importance, **monitoring**, **data reporting**… with focus on WFD requirements

 - **Templates** to support structured and harmonised information and data exchange