2018 ICP Waters report: Regional assessment of the current extent of acidification of surface waters in Europe and North America

Lead author: Kari Austnes, ICP Waters programme Centre
Contributors:
Julian Aherne (IE, CA), Jens Arle (GE), Marina Čičendajeva (LA), Suzanne Couture (CA), Jens Fölster (SW), Øyvind Garmo (NO), Jakub Hruška (CZ), Don Monteith (UK), Max Posch (NL), Michela Rogora (IT), James Sample (NO), Sandra Steingruber (CH), John Stoddard (US), Rafał Ułańczyk (PL), Herman van Dam (NL), Manuel Toro Velasco (SP), Jussi Vuorenmaa (FI), Richard F. Wright (NO), Heleen de Wit (NO)
Objectives

• Assess the current extent of surface water acidification in Europe and North America
 – Identify REGIONAL EXTENT and SEVERITY of surface water acidification
 – Identify POTENTIALLY ACIDIFIED regions where lack of sufficient data availability

• Relevant for informing CLRTAP and NEC Directive
 – Address the need for further emission reduction
 – Highlights how surface water monitoring is used to document ecosystem effects of air pollution
Call for national contributions

• Country reports
 – Acid sensitivity, acidification status and monitoring

• Data
 – From sensitive regions; larger scale surveys, not only ICP Waters sites; recent average data – current situation

• Contributors
 – Canada, Czech Republic, Finland, Germany, Ireland, Italy, Latvia, Netherlands, Norway, Poland, Spain, Sweden, Switzerland, United Kingdom, United States
Relations between acid deposition and surface water acidification

![Graph showing catchment depositions and lake concentrations over time with a fish icon and Černé Lake, Czech Republic text.]
Available maps of critical loads exceedance

- Exceedance of critical loads = acidification likely
- No longer exceedance ≠ no longer acidified
Sensitivity and S deposition - Europe
National data – acidification status (ANC)

ANC in Europe [ueq/l]

ANC in North America [ueq/l]
National data submitted to ICP Waters

• Acidification is observed in all countries
 – Regional issue or smaller scale
 – Still severe or close to chemical recovery

• Differences in types of datasets – comparison must be made with care
Water Framework Directive also reports on acidification status

- Water Framework directive is EU policy instrument for maintaining good ecological status of (surface) waters
- Ecological status is reported for ‘all’ water bodies → Lakes >0.5 km², rivers with catchment >10 km²
- Acidification status one of several quality elements
- Reporting system does not guarantee consistent information on acid deposition impacts on surface waters
Water Framework Directive Data

Acidification Status Rivers

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>7958</td>
<td>40%</td>
</tr>
<tr>
<td>Belgium</td>
<td>513</td>
<td>20%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>795</td>
<td>35%</td>
</tr>
<tr>
<td>Croatia</td>
<td>1484</td>
<td>30%</td>
</tr>
<tr>
<td>Cyprus</td>
<td>174</td>
<td>10%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1042</td>
<td>5%</td>
</tr>
<tr>
<td>Denmark</td>
<td>5858</td>
<td>20%</td>
</tr>
<tr>
<td>Estonia</td>
<td>644</td>
<td>30%</td>
</tr>
<tr>
<td>Finland</td>
<td>1896</td>
<td>25%</td>
</tr>
<tr>
<td>France</td>
<td>10699</td>
<td>5%</td>
</tr>
<tr>
<td>Germany</td>
<td>8749</td>
<td>40%</td>
</tr>
<tr>
<td>Hungary</td>
<td>872</td>
<td>4%</td>
</tr>
<tr>
<td>Italy</td>
<td>6258</td>
<td>20%</td>
</tr>
<tr>
<td>Latvia</td>
<td>203</td>
<td>4%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>110</td>
<td>2%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>246</td>
<td>15%</td>
</tr>
<tr>
<td>Poland</td>
<td>4584</td>
<td>20%</td>
</tr>
<tr>
<td>Portugal</td>
<td>1807</td>
<td>5%</td>
</tr>
<tr>
<td>Romania</td>
<td>2891</td>
<td>40%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1510</td>
<td>5%</td>
</tr>
<tr>
<td>Slovenia</td>
<td>134</td>
<td>2%</td>
</tr>
<tr>
<td>Spain</td>
<td>4309</td>
<td>10%</td>
</tr>
<tr>
<td>Sweden</td>
<td>15091</td>
<td>5%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>7501</td>
<td>100%</td>
</tr>
</tbody>
</table>

Legend:
- Less than good
- Good
- High
- Not applicable
- Monitored but not used
- Unknown

Acidification Status Lakes

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>62</td>
<td>10%</td>
</tr>
<tr>
<td>Belgium</td>
<td>18</td>
<td>2%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>31</td>
<td>5%</td>
</tr>
<tr>
<td>Croatia</td>
<td>37</td>
<td>5%</td>
</tr>
<tr>
<td>Cyprus</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>60</td>
<td>10%</td>
</tr>
<tr>
<td>Denmark</td>
<td>687</td>
<td>10%</td>
</tr>
<tr>
<td>Estonia</td>
<td>89</td>
<td>1%</td>
</tr>
<tr>
<td>Finland</td>
<td>4537</td>
<td>10%</td>
</tr>
<tr>
<td>France</td>
<td>404</td>
<td>1%</td>
</tr>
<tr>
<td>Germany</td>
<td>709</td>
<td>10%</td>
</tr>
<tr>
<td>Hungary</td>
<td>61</td>
<td>2%</td>
</tr>
<tr>
<td>Italy</td>
<td>204</td>
<td>2%</td>
</tr>
<tr>
<td>Latvia</td>
<td>259</td>
<td>3%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>448</td>
<td>10%</td>
</tr>
<tr>
<td>Poland</td>
<td>1044</td>
<td>5%</td>
</tr>
<tr>
<td>Portugal</td>
<td>23</td>
<td>1%</td>
</tr>
<tr>
<td>Romania</td>
<td>124</td>
<td>10%</td>
</tr>
<tr>
<td>Slovenia</td>
<td>12</td>
<td>2%</td>
</tr>
<tr>
<td>Spain</td>
<td>321</td>
<td>2%</td>
</tr>
<tr>
<td>Sweden</td>
<td>7422</td>
<td>10%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1068</td>
<td>100%</td>
</tr>
</tbody>
</table>

Legend:
- Less than good
- Good
- High
- Not applicable
- Monitored but not used
- Unknown
Country reports – sensitivity to acidification

Czech Republic

Ireland

Poland
Country reports - status

- Norway: 7% of area has acidified lakes
- Sweden: 10% of lakes acidified

Maps showing regions in the United Kingdom, Spain, and Norway with different classifications for lake acidity.

Classification 2015 Ca 1880, TOC 2015:
- High
- Good
- Moderate
- Poor
- Bad
Country reports - trends

United States

1980s

2017

ANC (µeq L⁻¹)

< 20
20 - 50
50 - 200
200 - 500
> 500

Heleen de Wit
Country reports – extent & severity

Most severe
• Norway, Sweden, the UK
• US, Ireland
• Netherlands, Czech Republic
• Canada, Finland, Switzerland
• Germany, Italy, Poland
• Spain, Latvia

Minor problem
• BUT local hot spots may occur even where acidification is not a major, regional issue
• Surface waters in Germany, Italy, Poland and, to a lesser degree, Finland, Switzerland and Canada seem closest to chemical recovery
• No information on biological recovery!
Acidification in regions where national reports are lacking

- Based on literature and partly WFD results

- **Strong evidence of acidification**: Slovakia, Russia and Armenia

- **Likely (WFD reporting)**: Belgium (Luxembourg)

- **Former data, but no current data**: France, Bulgaria, Romania

- **Acid-sensitive & deposition, no data**: West Balkan countries

- Possibly smaller acid-sensitive areas with sufficient deposition to cause acidification; can’t be identified from the low resolution European maps.
Importance of NEC directive monitoring

• Representative
 – Allows upscaling
 – Expectation of increased monitoring in some countries

• Targeted
 – Relevant sites and parameters

• Wider coverage
 – Obligation for all EU countries (with sensitive areas)

• Contribute to review of critical loads and levels
 – Important for further emission reductions
Summarizing

• Surface water acidification remains an issue, but extent and severity varies
• Acidification can occur in countries where there is currently little information
• NEC Directive monitoring will help
• EU WFD reporting of limited value for assessing surface water acidification
• Further emission reductions useful for reaching and speeding up recovery
• Formal document of summary available at UNECE homepage
• Report will be available at ICP Waters homepage in the beginning of October (www.icp-waters.no)
Why surface waters take time to recover

• Recovery is slow
 – Replenishment of base cations slow process
 – Biological recovery requires stable chemistry above critical limits and dispersal

• Climate change and intensified forestry may counteract recovery
Outline of the report

• Acid sensitivity and regions with potentially acidified surface waters

• Acidification status overview from
 – Submitted national data, Water Framework Directive

• Country reports

• Discussion
 – Current extent of acidification
 – Do we have sufficient information?
 • Role of NEC Directive monitoring
 – The future of acidified surface waters
Do we have sufficient information?

- Limited reporting of critical loads for water
- Low/reduced regular monitoring, few large surveys
- Regions with sparse/no recent information
- WFD data insufficient and ambiguous
 - Large water bodies – missing the most sensitive systems
 - Different approaches to assigning acidification status
 - Unclear whether not reported = not relevant
 - Difficult to identify whether the acidification is due to air pollution