Discussion paper: Flood risk management in transboundary basins

1. Setting the Scene

Floods and their related flood regime pulses are essential events that determine the natural characteristics of an aquatic environment and its connected wetlands and floodplains, as well as ensure a functioning ecology.

During the last years an increasing trend in extreme flood events has been registered in the UNECE region. This has reflected especially on an increase of economic, social and environmental losses caused by flood events. Major flooding occurred across Europe during the summer of 2013, recalling the significant floods of 2002, with further major events throughout 2014. After the storm surge in northern Europe in October 2014, then flooding and storms in Slovenia, Czech Republic and parts of the Balkans, the severe weather moved to parts of southern Europe hitting significantly Greece and Turkey. In 2014, heavy rains during the summer caused significant damage in southern Siberia, affecting an area covering 400,000 km2, the worst floods since record-keeping began. Southeast Asia also saw large-scale flooding return in 2013, with Cambodia being hit the hardest. At the same time, flood prone areas represent vital assets to the economy of many members of the region, and an eventual relocation of activities out of the floodplains is not an option. Due to the transboundary nature of many rivers, flooding often has transboundary consequences and thus cooperation is required. As a study on floods in a transboundary context concluded that although only 10 percent of all river floods are transboundary, these floods represent a considerable amount of the total number of casualties, displaced/affected individuals and financial damages worldwide\(^1\), suggesting that improved transboundary cooperation can significantly reduce the impacts of floods.

The main advantages of transboundary cooperation are that it broadens the knowledge/information base, enlarges the set of available strategies and enables better and more cost-effective solutions. In addition, widening the geographical area considered by basin planning enables measures to be

located where they create the optimum effect. Moreover, flood forecasting and disaster management are highly dependent on early information sharing and requires forecasting data from the river basin as a whole.

The aim of this paper is to provide background to the second workshop on transboundary flood risk management. This workshop will bring together professionals from all over the world working on transboundary flood risk management and will provide a platform to:

- Exchange experiences concerning the latest developments and the progress made in the transboundary case studies since the 2009 Workshop;
- Identify relevant problems, successful strategies for transboundary flood risk management and new cooperation models and develop new ideas and approaches;
- Present best practice examples of successful transboundary cooperation on flood risk reduction and management;
- Analyse lessons learned from the latest flooding events in 2014;
- Consider the experiences made in the European Union during the implementation of the EU Flood Directive and the current work on flood risk management plans; and
- Review and update the recommendations of the 2009-workshop.

The paper is structured along the workshop program, providing a solid background to each session. It picks up the different contributions received, illustrating the theory. At the end of each chapter a list of potential question to stimulate the discussion during the event is given.

2. The UNECE flooding policy framework

The UNECE Convention on the Protection and Use of Transboundary Watercourses and International Lakes (also known as the Water Convention) is a unique legal and intergovernmental framework for supporting transboundary cooperation in disaster risk reduction. Transboundary flood risk management has been at the core of the work under the Convention on the Protection and Use of Transboundary Watercourses and International Lakes (Water Convention) since its entry into force in 1997. Although the Convention does not cover in detail flood management, the Convention contains many provisions relevant for the management of transboundary floods. The Convention obliges Parties to prevent, control and reduce transboundary impacts, also those resulting from floods or from unilaterally decided flood protection measures such as dams.

The Convention explicitly requires Parties to establish joint monitoring programmes for monitoring the condition of transboundary waters, including floods, as well as to establish warning and alarm procedures. Parties shall also cooperate on the basis of equality and reciprocity by concluding bilateral and multilateral agreements. They shall establish joint bodies which should provide the forum for discussing planned flood prevention measures and for agreeing on possible joint measures. Finally, Parties should assist each other in responding to and recovering from floods.

In order to support implementation of the Convention, the UNECE has also put in place several capacity-building activities, for example, the Seminar on flood prevention, protection and mitigation (Berlin, Germany, 21 - 22 June 2004). In 2006 the UNECE created a new Water and Climate Task Force which was entrusted with activities in two main areas of work: transboundary flood risk management
and water and climate change adaptation. In the area of transboundary flood risk management, the work programme for 2007-2009 focused on the transfer of the experience and results of the European Network of Expertise on Flood Risk Management to non-European Union countries. To this end, a Workshop on Transboundary Flood Risk Management was organized by the United Nations Economic Commission for Europe (UNECE), the Government of Germany, the Government of the Netherlands and the World Meteorological Organization (WMO) on 22-23 April 2009. Based on the workshop materials, the publication “Transboundary Flood Risk Management: Experiences from the UNECE region” was developed. The publication builds on the practical experience from 10 river basins in the UNECE region and aims to document practical experience, together with general conclusions, which can be applied throughout the region.

In order to provide more detailed guidance, model provisions on transboundary flood risk management as well as “Guidance on Water and Adaptation to Climate Change” has been developed and adopted by the Meeting of the Parties in 2006 and 2009. The Guidance outlines a step-wise approach to assessing the impacts of climate change and developing appropriate policy, strategic and operational responses on adaptation. It covers, among other issues, vulnerability assessment, prevention, improving resilience, preparation for and response to extreme events, and preparedness for recovery or aftercare.

Also, the “Guidance on Water Supply and Sanitation in Extreme Weather Events” has been prepared under the framework of the Protocol on Water and Health of the UNECE Water Convention. The Guidance is intended to provide an overview on why and how adaptation policies should consider the vulnerability of and new risk elements for health and environment arising from water services management during adverse weather episodes.

Finally governments around the world have committed to take action to reduce disaster risk, and have adopted a guideline to reduce vulnerabilities to natural hazards, called the Hyogo Framework for Action (Hyogo Framework). The Hyogo Framework for Action (HFA) is the key instrument for implementing disaster risk reduction, adopted by the Member States of the United Nations. Its overarching goal is to build resilience of nations and communities to disasters, by achieving substantive reduction of disaster losses by 2015 – in lives, and in the social, economic, and environmental assets of communities and countries.

3. Flood Forecasting in transboundary basins

Many measures have been devised to help communities adjust to flood hazards and reduce the negative impacts of flooding. These include structural and non-structural, medium- and long-term measures. Of the non-structural measures, complementary to all other forms of intervention, flood forecasting and early warning systems have proved again and again to be an effective and efficient tool for minimizing the negative impacts of floods, and especially saving lives.
3.1 Introduction to Flood Forecasting in transboundary basins

Flood forecasting and early warning systems can be described as the process of predicting the chances of and giving advice about impending flooding, so that people and organizations can act to minimize a flood’s negative impacts. Flood forecasting and timely and reliable flood warning are regarded as prerequisites for the successful mitigation or adaptation of flood damage. A combination of clear and accurate warning messages with a high level of community awareness gives the best level of preparedness for self-reliant action during floods.

Different types of the forecasting step of this process can be distinguished, depending on the staff, technologies and general resources provided for this service:

- **Threshold-based flood alert**: Not a quantitative forecasting, but rather a qualitative estimation of the increase in river flows/water levels, including extrapolations to revise the projection of potential or actual flood conditions.
- **Flood forecasting**: A more definitive service based on simulation tools (e.g. statistical curves, level-to-level correlations or time-of-travel relationships) and modeling (see below), allowing a quantified and time-based prediction of water level, enabling flood warnings with an acceptable degree of confidence and reliability.
- **Vigilance mapping**: A site-specific warning approach relying on map-based visualizations as an Internet service. The levels of risk derived from observations or from models are characterized by a color code (e.g. green, yellow, orange, red) indicating the severity of the expected flood.
- **Inundation forecasting**: The most sophisticated and resource-intensive forecasting service and requires combining a hydrological or hydrodynamic level-and-flow model with digital representations of the flood plain land surface. Good quality models of this type can predict flooding at very precise locations, for example, housing areas or critical infrastructure such as power stations and road or rail bridges.

The Nile Basin case study illustrates a multitude of different flood forecasting methods that are used by the Ministry of Water Resources and Irrigation in Egypt (see Box 1).

Box 1 Flood forecasting in the Nile River Basin, Egypt

<table>
<thead>
<tr>
<th>Flood forecasting is very essential for Egypt and other Nile basin countries for many reasons (both regarding hazard/risk aversion as well as the utilization of the Nile’s water). Different flood forecasting methods are used in Egypt to increase accuracy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed rainfall monitoring is performed by rainfall satellite images (10 days lead time) (done by the Nile Water Sector, who also monitors gauging stations).</td>
</tr>
<tr>
<td>Climatic changes and Nile Basing rainfall indications are monitored through a flood forecasting and simulation center, which uses satellite images and hydrological models (done by the Planning Sector).</td>
</tr>
<tr>
<td>An overall estimation of the size of potential floods (and general water levels) is done by the High Aswan Dam Authority, using previous flow records to extrapolate the size of incoming floods.</td>
</tr>
</tbody>
</table>

2 As used on the webportal Meteoalarm (see http://www.meteoalarm.info/).
Forecasting for one or more years is done by the Nile Research Institute, using statistical forecasting approaches (historical records are analyzed to propose and outline the future flow levels).

3.2 Elements of a viable flood forecasting and early warning system

Most important effective warning means a clear communication or clear line of communication and fast reaction of the people to the communication, include risk awareness. A viable flood forecasting and early warning system for communities at risk requires a combination of good data/information sources, modelling and forecast tools and trained forecasters, proper and adequate communication and dissemination channels, as well as planned and customized responses. To provide effective warnings, flood forecasting and early warning must be focused on the communities and infrastructure within a river basin or other management area (city, district, region etc.), and should address, inter alia, emergency services (police, fire brigades, and in extreme cases, the military), civil defense or contingency managers, the media, affected economic sectors (such as agriculture, industry, hydropower and municipal water supply organizations), water resource and flood control authorities, NGOs involved in relief and rescue and the organizations responsible for critical infrastructures (e.g. transportation, energy and in some cases priority individual premises, such as toxic waste storage sites).

Box 2 Flood forecasting in the Ganges Brahmaputra Meghna Basins, Bangladesh

The Ganges Brahmaputra Meghna (GBM) Basins are shared by China, Nepal, Bhutan, India and Bangladesh as the lowermost riparian country, with a total area of about 1.72 million sq km. Bangladesh, being the lowermost riparian country of the GBM Basins, is the recipient of huge transboundary water flows from upstream countries as well as sediment loads. About 90% of the flood flows of Bangladesh enter via transboundary rivers (57 transboundary rivers in sub-basins enter Bangladesh, 54 from India, 3 from Myanmar), and during the monsoon period, floods cause huge loss of properties, lives and livestock and result in significant economic damage.

Flood forecasting and early warning systems as non-structural measures are being practiced in Bangladesh to enable and persuade people, communities, agencies and organizations to be prepared for upcoming floods and to take the necessary actions to increase safety and reduce damages to lives and properties. For giving a flood warning, the message is sent from the Flood Forecasting and Warning Centre) (FFWC) of the Bangladesh Water Development Board (BWDB) for broadcast to various news agencies, television stations, radio and through mobile phones to designated community centres. The warning system is implemented in the field with the help of public agencies like Bangladesh Meteorological Department (BMD), Department of Disaster Management (DDM), Department of Agricultural Extension (DAE), local communities and NGO’s working in the flood-affected areas. A web-based flood warning system in Bangla (the local language) is also operational. There are some structure-based forecasts for important individual premises in various flood prone areas and on highways. Flood warning dissemination through interactive voice response using mobile phone is becoming more popular and is used more regularly.

The present flood forecasting system forecasts with 3 day lead time (more that 80% confidence). 5-day forecasts are being implemented with acceptable confidence, and collaborative programs with regional integrated early warning systems (RIMES) for 10-day flood forecast are being tested and
3.3 Requirements of flood forecasting and warning

Flood forecasting and early warning systems require a set of technical data that include hydrological data (river level and flow in general and specifically for forecast points and at-risk sites), meteorological data (rainfall data, weather forecasts and rainfall event warnings), topographic data (physical geographic definition of factors that affect runoff and may be required for certain models), and structural/socio-economic data (location of the population, at-risk sites, reservoirs and flood protection, power and transport infrastructure).

Such data then "feed" (hydrological) modelling and forecast tools, preferably at the catchment scale. The most commonly distinguished types of models are rainfall-runoff models or routing models, both types being used successfully for flood warning purposes. Usually, routing methods-based flood forecasting models are simpler and less data-intensive.

The overall interactions between data, forecast technology and "users" (i.e. potentially affected people and organizations) should also be fixed in a so called "Concept of Operations". A flood forecast and early warning system must provide sufficient "lead time" for communities to respond. As an example, the lead time for issuing flood warning in the Chindwin river basin in Myanmar is about one to two days advance for upstream of rivers and small rivers, and about three to five days for downstream of rivers, especially for deltaic area of Ayeyarwady (for another example of lead times, see the description of the Bangladesh case study above). Increasing the lead time enhances the potential for limiting damages and loss of life. At the same time, forecasts and warnings must be sufficiently accurate to promote community confidence (so that people will actually respond when warned). If forecasts are inaccurate, the credibility of the program will be questioned and there will be less/no response.

Also, the channels chosen for notifications/dissemination must be appropriate for the community at risk - first, it should also include information about what the public should actually do. Second, warnings via the internet certainly reach a significant percentage of people living in populated areas - in remote areas, however, a large number of people may not be able to receive warnings distributed via the internet. Alternatives include warnings via local radio, appointed community wardens equipped with direct two-way radio and/or mobile telephone, local means of raising alarms (e.g. church bells, sirens and loud hailers), and "sky shouts" from emergency service helicopters (see description of the channels being used in Bangladesh in the case study description above).

3.4 Flood forecasting and early warning systems in a transboundary setting

In a transboundary setting, many of the necessities for a viable flood forecasting and early warning system are more challenging to implement. At the same time, the transboundary organization of such a system is of great importance, as major flooding events often have impacts in several riparian countries. Benefits of transboundary forecasting include:
Knowledge on the flood formation processes can be shared and opportunities may arise to find better and more cost effective solutions.

Cooperation helps to strengthen the knowledge and information base and enlarge the set of available strategies.

Disaster management is highly dependent on early information and requires data and forecasts from the whole river basin.

The main challenges for transboundary forecasting and early warning systems, which were discussed also at the UNECE’s first workshop on "Transboundary flood risk management" in 2009, include:

- Define information needs and joint information transfer: As stated above, for effective and efficient forecasting and early warning systems, it is essential to have in-depth knowledge of the functioning of the water system and the prevailing hazards and risks, at the basin scale. In a transboundary basin, basin-scale means "across borders" - hence, for being able to assess basin-wide information, common data/information format and a system for joint information transfer needs to be established. The challenge here lies in "harmonizing" often decades-old national practices in flood risk management (including different data/information formats), to render data/information and transfer channels compatible, and to draw up management objectives and list potential strategies for the river basin as a whole, to develop monitoring and information systems that are useful throughout the entire river basin (the case study of Myanmar demonstrates that information needs and joint information transfer are not always satisfactorily resolved even at the national level).

- Compatible systems and forecasting models: A similar challenge lies in the systems and models used to actually forecast a flood event - these are, of course, dependent on the available information, but for greatest effectiveness and efficiency, they would ideally also be compatible and comparable, which can be a specific challenge in a transboundary basin, where different technologies are used in different countries.

Transboundary flood risk management in general, and forecasting/early warning specifically, has both a technical and a political aspect. In some countries, technical cooperation is ahead of institutional and political cooperation, i.e. it is not the technical capacity that is missing for common/integrated flood forecasting and early warning systems, but rather its transboundary institutionalization. In other countries, key problems are related to financing (often expensive systems) and type of processes (very complicated referring to flash floods).

The following example from the Prut river basin demonstrates successful cooperation regarding data exchange and shared management responsibilities.

Box 3 Data exchange in the Prut Basin, Romania/Ukraine/Moldova

An excellent example for successful exchange of data in a transboundary river basin is the EAST-AVERT project in the basin of the river Prut, located in Ukraine, Romania and Moldova. For flood forecasting, information from the Hydrometeorological Service Centres of the Republic of Moldova, of Ukraine and Romania is mutually shared (organized by an agreement). Also, in shared water bodies, like the Costesti - Stanca, the water management is coordinated between specifically created management group on the Romanian side, and an "operating group" on the Moldovan side. In the Costesti - Stanca water body, all decisions on water discharge, power generation and other operational decisions are taken solely on the basis of mutual consultations. It is stated the main
factor contributing to the success of such transboundary agreements as in the Costesti - Stanca water body is the understanding from both sides about the responsibility for possible negative consequences as a result of inadequate management.

3.5 **(Possible) Questions for discussion at the workshop**

1. What are the main hindrances and opportunities for countries to strengthen the transboundary linkages in flood forecasting and related information exchange?

2. Which role did regional policy frameworks or guidelines of e.g. river basin organizations play in setting up transboundary flood forecasting systems?

3. Which ways of warning are the most effective and what kind of low-technology option for warning exists? Which kind of transboundary cooperation is used to share the information about flood warning?

4. How to agree in a cross boarder context on common definitions of key elements of flood forecasting? Countries need to agree on what 1:100 means, as differences lead to very different approaches to management.

4. **Flood risk management in transboundary basins**

Flood Risk Management requires adopting a river basin approach to planning through multidisciplinary inputs in order to reduce flood vulnerability and risks and preserve ecosystems. Flood risk management planning focuses on the reduction of potential adverse consequences of flooding for human health, the environment, cultural heritage and economic activity, on non-structural initiatives and on the reduction of the likelihood of flooding. To achieve this goal, flood risk management plans need to be developed to identify actions and measures to prevent and minimize the impacts of flooding.

Comprehensive flood risk management is crucial to reduce flood risks and it consists of key components that include:

1) **Prevention:** Preventative flood risk management towards preparedness, including spatial planning, the setting of flood defense measures and alarm systems, awareness raising campaigns among the population, etc.

2) **Coping:** Flood management during events, implementing, forecasting frameworks and early warning (as described in the previous chapter), flood measures and evacuation plans; and

3) **Recovery:** Post flood event management, which includes aid, support and cleaning activities as well as the implementation of an appropriate assessment process to identify eventual shortcomings in existing flood management activities and plan improvement.

Box 4 Principles of flood risk management in the Danube River Basin
The Action Plan of the International Commission for the Protection of the Danube River has identified major principles for flood risk management planning: (i) the shift from defensive action against hazards to management of the risk and living with floods (ii) the river basin approach taking into account the Water Framework Directive, (iii) joint action of government, municipalities and stakeholders towards flood risk management and awareness raising, (iv) reduction of flood risks via natural retention, structural flood protection and hazard reduction, and (v) solidarity.

The flood risk management cycle contains the following elements: (i) flood prevention, (ii) flood protection, (iii) flood preparedness, (iv) emergency response and (v) flood damage recovery. For effective integrated flood risk management, all these steps are relevant, although specific local or regional circumstances may require more emphasis on one step than on the other.

![Flood Risk Management cycle](http://www.secom20.eu/floods/flood-risk-management)

Figure 1 Flood risk management cycle

4.1 Joint mapping

Knowledge of hazards and risks, in particular their spatial distribution, is at the core of effective flood risk management planning. The development of flood risk maps is one of key prerequisites to an

efficient flood risk management. Risk maps provide essential information to the public but are also important tools for planning authorities and the insurance industry. The flood risk maps should increase public awareness of the areas at risk of flooding. They should provide information of areas at risk by defining flood risk zones to give input to spatial planning and should support the processes of prioritizing, justifying and targeting investments in order to manage and reduce the element at risk (such as to people, property and the environment).

Maps must be easily readable and show the different hazard levels. They are necessary for the co-ordination of different actions, especially in the transboundary setting. Flood maps are used by various stakeholders for various purposes. As maps are primarily used to identify risk areas, they can help to reduce existing risks, adapt to changing risk factors and help to prevent the build-up of new risks (planning and construction)⁴.

Flood risk maps should show the potential adverse consequences associated with the flood scenarios and expressed in terms of:

- The number of inhabitants potentially affected.
- The type of economic activity in the area potentially affected.
- Installations that might cause accidental pollution.
- Other information that the country considers useful. In the EU for example this is information on environment and cultural heritage.

Transboundary flood maps serve as a basis for investigating and discussing cross-border effects and impacts of flood control measures. Benefits of trans-boundary maps include:

- **Cost-efficiency**: Producing one common flood map can be more cost efficient than producing separate maps for both sides of the border.
- **Improved cooperation**: Common flood maps, along with common early warning systems, can facilitate actions during emergency situations.
- **Good starting point**: Transboundary flood maps can provide a common basis for an integrated cross border approach of flood risk management, spatial planning and nature conservation and development.
- **Strengthening cooperation**: The process of developing a common trans-boundary flood map may strengthen trans-national cooperation and exchange between responsible authorities and may help to increase mutual confidence.

Box 5 Flood risk mapping in the Bug River, Poland, Belarus, Ukraine

Flood Hazard Maps (FHMs) and Flood Risk Maps (FRMs) for the Bug River with compliance with EU Flood Risk Management Directive were developed for the first time in the frame of FLOOD-WISE Project. Therefore common approach (Poland, Belarus and Ukraine) was used for the floods modeling and mapping based on the next suggestions:

- All Bug countries (Poland, Belarus, Ukraine) are using same system of terrain heights (Baltic System);
- To prepare FHMs and FRMs for pilot Bug river basin district area for scenarios 1% (once per 100 years), 5% (once per 20 years); 10% (once per 10 years);
- To use hydraulic method for modeling based on 1D Saint–Venant generalized equations;
- To use hydrological data from Poland, Belarus and Ukrainian sides;
- To use morphological data including existing cross sections coordinates (from Belarus side) and general description of the cross section of the Bug river for the Polish territory;
- To use GIS modeling with using public data (map with scale 1:50000) and data sets on the WEB (map of Wlodawa town with scale 1:25000 and 1:10000, free satellite DEM, CORINE land use data base etc.);
- To take into account existing good practices regarding methodology and technology of the preparation of a Flood Risk Maps and Flood Hazard Maps i.e. LAWA method etc.

On the basis of the need to enhance the natural flood retention capacity of the Amur floodplains and other wetlands, China and Russia have realized that a joint effort is needed to create transboundary GIS map of major river valleys, including all transboundary watercourses. Key steps identified in the Amur Basin for developing a common flood map between China and Russia include:

- Develop map of floodplains, areas flooded with a return period of 200, 100 and 10 years.
- Conduct professional exchanges on floodplain land-use regulation and development of flood-retention areas.
- Identify floodplain water retention areas most important for reducing flood risks.

- Evaluate already achieved reduction in natural flood-retention capacity and risks of further reduction due to water infrastructure development and other human-induced and natural factors.
- Cooperate on strategic environmental assessment of flood-management plans.
- Develop joint comprehensive program for preservation and enhancement of flood retention capacity of floodplains
- Identify floodplain complexes of high value that should be added to transboundary network of protected areas.

Although in most countries the level of expertise is sufficient to deal with flood-related issues, expertise in producing flood risk maps varies significantly. The ability to produce flood risk maps differs significantly between countries in the UNECE region due to differences in knowledge and the availability of technical infrastructure for data gathering and exchange, modelling and mapping, and financial resources.

4.2 Management plans

Flood risk management plans play an important role in the preparedness and prevention of flood-prone areas.

Box 6 Flood Risk Management Plans in the EU

In the EU, Flood Risk Management Plans (FRMP) should include measures to reduce the probability of flooding and its potential consequences. They will address all phases of the flood risk management cycle but focus particularly on prevention (i.e. preventing damage caused by floods by avoiding construction of houses and industries in present and future flood-prone areas or by adapting future developments to the risk of flooding), protection (by taking measures to reduce the likelihood of floods and/or the impact of floods in a specific location such as restoring flood plains and wetlands) and preparedness (e.g. providing instructions to the public on what to do in the event of flooding). Due to the nature of flooding, much flexibility on objectives and measures are left to the Member States in view of subsidiarity. However there is a requirement that the EU Member States shall establish flood risk management plans coordinated at the level of the river basin district (Art 7(1)).

Based on risk assessments and the various management strategies that will be applied, the plans need to formulate instructions for the public and to the organizations involved in deciding what to do to reduce the vulnerability to flooding and what to do in the event of flooding.

Box 7 Flood risk management plans in the Rhine River Basin

The ICPR started in 2010 to draft the 1st FRMP for the International River Basin District (IRBD) Rhine, based among others on the state of implementation of the Action Plan on Floods by 2010. The draft FRMP respects some very important subsidiarity and solidarity principles “upstream-downstream” and “tributaries-main stream” and contains common goals and measures for flood risk management. The draft FRMP is available in German, French and Dutch since December 22th 2014 for public information and consultation according to the FD. The FRMP will be finalized and available in English by December 22th 2015.

Box 8 Flood risk management plans in the Tisza River Basin
The first Ukrainian national experience with respect to introducing the complex approach for flood run-off management was adopting the State comprehensive programme targeting complex flood protection activities at the Tisza river basin, launched in 2002. The Programme entirely corresponds to the EU water management policy. Its activities are being coordinated with the Tisza river basin neighboring states: Hungary, Slovakia and Romania, and their realization will contribute to the flood protection improvement in these countries, especially in Hungary. The Programme provided for the three basic directions to be implemented: modern flood run-off management methods with active and passive management approaches, automated forecasting of the flood threats, basin water resources management approach providing for the high priority of the flood protection system.

At the end of March 2013 a Joint Ukrainian-Hungarian flood protection development programme was elaborated. It is based on the approved joint flood surface profile and meets the national legal norms of the Parties, includes previous researches and elaborations, is connected with the structures built at both sides of the border during the last years and corresponds to the EU Flood Directive principles. The Development Programme was recently approved by the 5th Priority Steering group of the Danube Macro-regional Strategy and by the Government Commissioners of Ukraine and Hungary.

4.3 **Flood risk management Measures**

To help manage floods, risk reduction measures are a critical component of (transboundary) flood risk management plans. Such measures can be:

a. **Structural measures** are those actions that require physical constructions like:
 - Existing dikes improvement for protection against floods and new dikes disposal for flooded urbanized and rural areas;
 - Bank protection – to reduce erosion;
 - Watercourses cleaning: clearing channels small rivers and large channels from silting.
 - Implementation of flood storages to increase water retention capacities of the landscape.

b. **The non-structural measures** actions that do not require physical constructions. They include building codes, land use planning laws and their enforcement, research and assessment, information resources, and public awareness programmes. And the set-up of previously mentioned flood forecasting and early warning systems.

Cooperation across borders requires a permanent effort of coordination and communication in order to establish common objectives and financial allocations. A big challenge is to reduce the flood peak in the upstream area to reduce the hazard in the lower part of the catchment. This is needed at several levels: internally, between specialists and authorities controlling contracts and outward by informing and educating elected officials, funders and users to become strong partners. These efforts must be supported by a determined political will to generate means of implementation.

In the past, hard defense measures have been touted as particularly critical for flood management. The construction of reservoirs and protection dikes have been commonly implemented as both measures change the flood characteristics: reservoirs retain and dykes accelerate the flow, thus both measures have transboundary impacts. Downstream effects depend on the situation and the characteristics of the flood.
Box 9 Flood prevention measures in the Dniester River Basin, Ukraine, Moldova

So far, the main measures for flood protection in the Dniester Basin are reservoirs and levees system. Two reservoirs are constructed on the Dniester River Bed: first is Novodnesrtovsk which is managed by Ukraine and second is Dubasari situated within the Republic of Moldova territory. Both reservoirs are situated in the Middle Part of the basin and are constructed for multipurpose and played an important role in reduction of consequences of the 2008 flood event. Generated maximal discharges of the Dniester River exceeded 5410 m³/s at Zalishchyky post (situated upstream Novodnesrtovsk reservoir and representing natural flow) and 3400 m³/s at Hrusca gauging station (situated upstream Dubasari reservoir) which is 10 times bigger than the average.

In recent years there has been a trend towards emphasizing structural measures less impacting on the natural river behavior and morphology, i.e. ecosystem measures like natural water retention measures. Also the EU has flagged the establishment of natural water retention measures as a top priority.

In other regions there are similar trends, for example from 2003-2012 there has been a widely welcomed policy shift toward greater balance between structural and non-structural measures in flood management in the Amur Basin. Nevertheless up to 60% of proposed budgets in the newly designed “Integrated Scheme for management and protection of water bodies”(2014) have been earmarked for dykes and embankments.

Box 10 Flood risk measures between France and Switzerland

The Franco-Geneva transboundary waters action program was established with the aim for the restoration and enhancement of aquatic environments covering the entire watershed. The agreement helped implement practical management of transboundary waters.

In the watershed Marquet-Gobé-Vengeron, three retention ponds were built between 2005 and 2008, two located on French territory and one in Switzerland. The retention capacity created at the three sites is equaled 60,000 m³. These achievements have helped protect urbanized areas downstream against flooding. Another example is the protection of the Swiss village of Hermance that sits along the river that serves as a national border, with a Swiss bank heavily urbanized and subjected to flooding and a more natural French bank. In the context of cross-border agreements, it was possible to expand the French bank to earn hydraulic capacity and protect the Swiss residential areas against flooding.

Box 11 Flood risk measures in the Rhine River Basin

In the Rhine delta, measures have been implemented to enlarge the river bed (Room for the River); this contributes to reduce flood peaks and flood risks. In addition, renaturalizing measures along tributaries and smaller waters in the catchment have been carried through. Due to the effects of climate change and the expected increase of the number of flood events and also considering the possibility of a greater probability of extreme events (see the work of the ICPR in this field here), in particular supra-regional flood risk management measures will become increasingly important.
Figure 3: Examples for effective retention measures liable to reduce extreme flood levels

An important element in the selection of measures is stakeholder participation. Effective public participation in decision-making enables the public to express, and the decision-maker to take account of, opinions and concerns that may be relevant to those decisions, thereby increasing the accountability and transparency of the decision-making process and contributing to public awareness of environmental issues and support and ownership for the decisions taken. Integrated Water Resources Management (IWRM) principles in this case mean that selection of flood protection measures should be organized taking into account water management options and trade-offs regarding upstream/downstream needs, hydro-energy/flood protection, flows to estuarine marshes/water quality, agriculture/water supply under a variety of climate scenarios.

Box 12 Integrated flood control in the basins of the Dniester, Prut and Siret

The Programme on integrated flood control in the basins of the Dniester, Prut and Siret rivers proposed an integrated approach using active methods of flow management with the passage of floods through various flood tanks (polders) and traditional measures against floods: levees, control beds of rivers, banks consolidation etc. The main task of the Programme was to find the optimal mix of methods for individual rivers and for the basin. Most of these measures are very costly which creates problems in finding funds for their implementation. The main problem with the proposed Flood Protection program, however, is that it was developed without involvement of other stakeholders (hydropower energy authorities, local authorities, academia, NGOs) from Ukraine and no stakeholders at all from Moldova. This resulted in the biased approach to propose only very costly measures within the water management sector only.

4.4 (Possible) Questions for discussion at the workshop

- What are the key challenges for future effective flood protection?
- What institutional arrangements are and multilevel governance is needed to implement a basin-wide approach?
5. Institutional arrangements in transboundary basins

5.1 Introduction to institutional arrangements

Floods have no political borders as rivers flow through various basin countries from their source to their mouth; they have neither national nor regional or institutional boundaries. Therefore, flood management calls for interaction between various disciplines, government and various sectors of society. There is a need to overcome sectoral approaches so that the synergies between the actions of various stakeholders can be maximized and effectiveness can be increased. Institutional and legal arrangements are necessary elements of successful integrated flood risk management. In the case of transboundary basins, this includes the need to cooperate at the transboundary level. In the institutional setting of a policy field, in this case integrated flood risk management, three elements can be distinguished:

- Legal setting: National laws, regulations, directives and international agreements and treaties, e.g. the UNECE Water Convention, together form the legal framework.
- Organizational setting: Institutions and organizations that are involved in integrated flood risk management (on various governmental levels), as well as their mutual relations and cooperation.
- Policy arrangements: Policies, policy intentions and plans that influence flood (and water) management on various governmental levels.

Box 13 The European Floods Directive

The EU Floods Directive entered into force in 2007 and aims to reduce and manage the risks that floods pose to human health, the environment, cultural heritage and economic activity. It covers flooding in rivers, lakes, flash floods, urban floods, coastal floods as well as includes storm surges and tsunamis.

The Directive has to be implemented in three stages. Firstly, the Directive requires Member States to first carry out a preliminary assessment to identify the river basins and associated coastal areas at significant risk of flooding. The assessments have to take into account both observed past occurrences of flooding and long-term developments such as climate change. They include descriptions of past flood events and their adverse consequences as well as assessments of potential future floods and their impacts on human health, environment, cultural heritage and economic...
activity. In international river basins, the work needs to be coordinated across borders between the respective countries sharing a river or other water body basin. As of June 2013, 26 EU Member States have submitted the Preliminary Flood Risk Assessments. By far the most frequent type of flooding reported are fluvial floods. All EU Member States reported human health, environmental, economic and cultural consequences of floods.

In the second stage, Member States drew up flood risk maps for the zones identified as being under significant risk of flooding. The maps are to show the areas which could be flooded with high probability, medium probability (once every 100 years or less) and also with low probability or in case of extreme events or scenarios. Currently in the third stage of implementation of the EU Floods Directive, Flood Risk Management Plans (FRMP) have to be established by the end of 2015 focusing on prevention, protection and preparedness. The FRMPs are prescribed to include objectives of flood risk management and the prioritized measures to achieve those objectives. The FRMPs may include such measures as flood forecasts, early warning systems, sustainable land use practices, improvement of water retention as well as the controlled flooding of certain areas in the case of a flood event among others. The measures need to be aligned across borders so as to not cause damage to countries up or downstream in the same basin.

5.2 Elements of transboundary institutional arrangements

Legal setting

At the transboundary and international levels, international legal frameworks such as the UNECE Water Convention and the EU Floods Directive set general obligations for countries regarding flood risk management and transboundary cooperation.

Water conventions play an important role, as they represent the international legal framework of reference and supports countries through capacity-building activities, basin-specific projects and the elaboration of guidance documents. A step-by-step approach to gain political support is needed. The Convention requires that parties cooperate in research and development and that they exchange information on water quantity and quality. Parties are required to establish a joint monitoring institute to monitor the condition of transboundary waters, including floods, as well as to establish warning and alarm procedures. Parties should also cooperate on the basis of equality and reciprocity by concluding bilateral and multilateral agreements. They should establish joint bodies through concerned institutes to provide forums for discussing planned flood prevention measures and agreeing on possible joint measures.

At the national level, standards of performance and a clear definition and distribution of duties, rights and powers of the various organizations involved should be set out in law. Similarly, procedures and requirements regarding monitoring of compliance and mechanisms for enforcements must be established.

Organizational settings

The achievement of integrated flood risk management in river basins is highly dependent on the organizational setting, within country boundaries as well as crossing boundaries. From a national perspective, integrated flood risk management requires that various roles are played by a complex
set of actors to ensure cooperation and coordination across institutional and disciplinary boundaries. At various governmental levels (national, regional and local) decision making requires coordination such that decisions take account of any impacts on flood management.

Transboundary communication is essential for cooperation. Different perceptions of the problems among riparian countries are an obstacle, and should be overcome through communication, joint studies and monitoring and exchange of data and information. In addition, bi or multilateral agreements are possible through fruitful dialogue and exchange meetings between the governments. There are few examples of success and many examples of failures due to lack of interests from the relatively advantaged upstream countries and lack of political will. Institutions like River Basin Organizations (RBO’s) of transboundary rivers, for example the International Commission for the Protection of the Rhine or the Danube, can fruitfully work for flood management in the river basin.

Box 14 Cooperation between Ukraine and Moldova

As part of an agreement between Moldova and Ukraine, a bilateral commission will be created to promote the sustainable use and conservation of the basin. The signing of this document is an important step in the implementation of Ukraine and the Republic of Moldova with its obligations under the UNECE Convention on transboundary waters, which has not yet been ratified. Increased cooperation of the two countries, including the development and approval of the agreement, was supported by the initiative “Environment and Security” (ENVSEC) through a number of projects conducted jointly by UNECE, the Organization for Security and Cooperation in Europe (OSCE) and the Program for United Nations Environment (UNEP). The signing of the Treaty is the result of the gradual development of cooperation over the last eight years with a wide range of stakeholders in both countries, including the Transnistrian region of Moldova.

Bilateral issues relating to the use and protection of water resources are considered in the framework of an agreement between the governments of Moldova and Ukraine on the protection and use of transboundary waters. Both countries meet regularly to address common issues, working under the auspices of several working groups, including the crucial issues of information exchange (except for water information which is organized through regular exchange of data on water quality in border cross-sections). However, the mechanism of implementation of the agreement is not explicitly designed to address watershed issues outside the border areas.

For the overall development in flood management sector, cooperation is essential to strike a balance between the different needs and priorities and share this precious resource equitably, using water as an instrument of peace. Dialogue should act as triggering instrument for initiation and building up consensus for water cooperation in this region. Formulation of Win-Win Situation should be ensured by both the countries by agreement of the political level on a common agenda and mobilizing public opinion.

Coordination mechanisms

A wide range of co-ordination mechanisms can be employed to facilitate coordination among authorities. These include:

o Formal legal obligations, i.e. where relationships among authorities are defined by law;
o Inter-ministerial committees;
o Co-ordination undertaken by the main Floods authority; and
o Steering groups and advisory bodies.

Box 15 Working Group between Mexico and USA in the Tijuana River Basin

Cooperation between Mexico and USA on transboundary issues of the Tijuana River Basin will be through Minute 320 of the International Boundary and Water Commission (IBWC), which was created by both countries to establish the boundary of each country and to comply, between others, with Treaty between The United States of America and Mexico, signed on 1944.

Implementation of this initiative will be as follows:

A Core Binational Group (CBG) will be established, designated and coordinated by the IBWC, which shall recommend measures for joint cooperation, taking into account previous work and advice of stakeholders in Mexico and the USA. The CBG shall be composed of representatives of IBWC, federal, state and local governments and a representative of NGOs in each country. The CGB will establish Binational Working Groups that will include staff from both countries required depending on the characteristics and nature of the work and within their attributions.

By exploring opportunities for coordination and joint cooperation, those that are of benefit to both countries and promote the sustainable management of transboundary resources in the Tijuana River Basin will be promoted.

A range of joint activities can be carried out to improve transboundary flood management:

- The preparation of shared visions; the identification of flooding issues; monitoring programmes and activities;
- Shared databases;
- Shared management plans;
- Cooperation on measure implementation;
- Public participation activities; and
- Financial cooperation.

Such coordination mechanisms and shared activities have the ability to improve the overall effectiveness of flood risk management services, which will help to prevent floods and reduce risks and impacts.

Policy arrangements

The policies and plans regarding flood risk management are usually made at the national level and need to be aligned with the other riparian countries. Additionally, basin-wide policies and plans may be in place that support cooperation and joint implementation of measures. Development of Flood Risk Management Plans at the transboundary level can be instrumental in this respect. Examples of joint plans include the Danube River Basin Management Plan, the Climate change adaptation strategy for the Rhine catchment, and the draft FRMP for the Elbe.
5.3 (Possible) Questions for discussion at the workshop

- What institutional arrangements are and multilevel governance is needed to implement a basin-wide approach?
- What kind of barriers exists in the transboundary context? It is possible to use synergies to other objectives?
- Does the Water Convention support establishment and improvement of cooperation in your basin?
- What barriers do you encounter in developing joint flood risk management plans in your basin?
- Which other sectors (e.g. energy) need to be involved to have an effective management?

6. Conclusions

The main factors\(^7\) contributing to success of arrangements for cooperation on transboundary flood management and underlying technical systems and institutional arrangements that provide support:

- Improve efficiency of early warning system;
- Diminish flood risks;
- Increase risk awareness and measurement plans;
- Assess effects of measures in a cross border context;
- Improve the cross border information exchange and the use of common information platforms (morphology, hydrology and hydraulics) for flood forecast;
- Decrease of negative effects downstream; and
- Find the best solution based on the river basin management approach.

Threats and challenges related to flood risk planning:

- Lack of coordinating bodies or lack of power of competences to coordinate;
- Language barriers complicate cross-border cooperation;
- Difficulties with cooperation between EU and Non-EU countries in particular due to financial contains and differences in legislation;
- Absence of maps including pilot and other districts with required scales and with good quality is the main obstacle for complex flood risk planning;
- Existing and planned measures at regional level may not (yet) take into consideration transboundary impacts.

Potential ways to harmonize flood risk planning methods across the border (with respect to the requirements of the EU Flood Risk Management Directive if appropriate):

- Forming bilateral or trilateral river basin committees would be a good suggestion and platform for increasing efficiency of flood risk management as well as water resources management including different levels of cooperation, improvement of data exchange, coordination of border measures;
- Exchange of meteorological, hydrological data and data about water quality (chemistry and hydrobiology) on regular basis (at least as once per year);
- Provide information and cross-border exchange of data in on-line regime in case of emergency situation e.g. of floods, accidental pollution etc.;

\(^7\) This chapter is Based on input received by Vladimir Korneev, Central Research Institute for Complex Use of Water Resources, Minsk, Republic of Belarus
- Implementation of the International projects on detail specification of the Flood Risk Maps and Flood Risk Management Plan for the entire transboundary river district based on more detail cartographic information and common hydrological and hydraulic model;
- Implementation of the International project on prototype of Early Warning System development with installation of Automatic Hydrometeorological Stations (AHS).