The Nile Basin Decision Support System

Analytic tool for water resources planning jointly developed by Nile Riparians

Abdulkarim H Seid
Head, Water Resources Management
10 Apr 2014
The Nile Basin

Basic data:
- Shared by 11 countries
- Area: 3.2 million km²
- Average annual discharge: ≈ 85 (+/-) BCM
- Population of basin countries ≈ 400 + Mill
- Population in the basin ≈ 230+ Mill

Flow contribution by regions
- 86 % from Ethiopian highlands; highly seasonal flows; > 70 % of flow in 3 months
- 14 % from Equatorial Lakes

- All flow generated most upstream; yet upstream parts least developed → growing population and economies upstream → pressure for development
- Downstream parts nearly totally dependent on flow from upstream; → concerns of possible impacts by upstream
- Balancing development in mutually beneficial manner for the riparians primary target of NBI
Cooperative management of shared waters

Need for Jointly developed tools…..

- Sustainable management of shared waters need cooperation among riparians at all stages— from planning to implementation to management and monitoring
- Joint planning and management of water resources measures (dams, canal, etc) should also be seen as confidence building activities
- Joint planning needs tools that are owned and trusted by all riparians
- Therefore, such tools need to be developed in a transparent and participatory manner
- Use of jointly developed tools can:
 - Help build confidence in planning outcomes
 - Foster technical collaboration (learning by doing)
 - Expand level of understanding of common issues,
- The Nile Basin Decision Support System (NB DSS) is analytic tool developed by the Nile riparians
The Nile Basin Decision Support System is a comprehensive analytical framework that offers:

- The software framework for storage, processing, interpretation and visualization of data
- Suite of models for simulating river-lake/reservoir systems
- Toolset for analyses of water resources problems, evaluate alternative scenarios
- Suite of tools for generating information needed for decision making
- Toolsets for collaborative decision making in water resources
Nile Basin DSS: Key Components

Data/information management system
- Time Series analysis toolkit
- Basic GIS functionality
- Integrated database
- Ensemble generator (for probabilistic analysis)

Modeling System
- Water balance and allocation model
- Rainfall-runoff modeling tools
- Hydrodynamic modeling
- Soil erosion process model
- Crop water requirement
- Model linking/nesting tool

Decision making/Analysis tools
- Scenario management (including indicator calculation)
- Multi-objective optimization
- Economic analysis tools
- Multi-criteria analysis tool
Nile Basin Decision Support System (DSS):

Integrating environmental objectives in decision making

A *response function*.. predicting fish = f(impoundment area,)

DSS Script implementing response function

Environmental indicators for each scenario
NB Decision Support System

Types of information it generates

Basin hydrology and Changes

Environmental, Social Economics Indicators

Environmental indicators

- **Footprint Areas**
 - Ecologically Sensitive Areas
 - Carbon emissions
 - Fisheries Production

- **Downstream Areas**
 - Floodplain/Wetland Area Inundated
 - Biological Production
 - Abundance of Pest Black flies
 - Bank Stability
 - Recovery Distance
 - Seasonal Shift

- **Water Quality**
 - Phytoplankton Growth Potential
 - Aquatic Macrophytes Growth Potential
 - Water pollution g/s

Food security and Livelihoods:

- Impact on Recession agriculture;
- Fish Productivity;

Displacement
What Nile Basin DSS it provides …

- **Multiple functionality** needed for water resources planning ranging from data processing to modeling, scenario analyses to multi-criteria decision making

- An **integrated framework**

- **Generic system that** can be applied at different scales

- **Data security**: multi-level user access control; data protection, metadata and change log to record history of data processing,

- **Expandable software architecture**

- **Multiple deployment options**: on institutional networks (LAN) or as single – standalone installation

- **A continuously evolving software system ...**
Catchment Planning using NB DSS

Case Study: Awoja Catchment, Uganda

Objective: to prepare a catchment management plan for the Awoja Catchment, Lake Kyoga sub-basin, covering

- Agreed investments in infrastructure and other interventions; and
- Water management interventions and actions

NBI Secretariat provides:
- Technical support to national project team and consultants
- Training to national project team