Content of the Hazard Rating Document

Maureen Heraty Wood
EC-JRC-IPSC Major Accident Hazards Bureau

www.jrc.ec.europa.eu

Serving society
Stimulating innovation
Supporting legislation
Outline of the Presentation

• Background of the project
• Content of the document
History of hazard rating systems

• The Seveso II Directive (96/82/EC) first introduced a legal basis for introducing a hazard rating system in 1996
 • Article 18 – Competent Authority can apply a “systematic appraisal” system to prioritise inspection of upper tier sites in lieu of annual inspections.

• Originally, a small number of MS & EEA applied a hazard rating system, but over the years it has grown to nearly 50%.
 • Useful for communicating with other inspectorates
 • Resource management and prioritisation tool
 • Less popular in smaller industrialised countries (~100 Seveso sites)

• Used also for the International River Commissions of the Danube and Odra Rivers

• No information on other systems outside these contexts.
In 2012, CoP included development of a “guide on methodology for hazard rating” as a priority for 2013-2014.

JRC-MAHB agreed to collaborate with the Bureau since hazard rating systems and methodologies are also relevant to the Seveso Directive.

The document is not a “guide” per se, but a compilation of country methodologies and practices in regard to hazard rating.

- No single methodology recommended
- No comparison or evaluation of methods used

Intended to help ECE countries build capacity to implement effective industrial risk management programmes.
Description of the project

• The project was centered on a survey of EU and ECE countries to obtain information on their hazard rating systems.

• The results of the survey were turned into a document describing the main details of the hazard rating systems of each respondent.

• With the support of UN ECE, the JRC-MAHB led the survey. It consisted of questions on the following topics.
 • Purpose, scope and legal status
 • Elements (inputs) of the rating system
 • Outputs of the system
 • Distribution and accessibility of outputs
 • Ease of use, transparency, effectiveness
Survey responses

With UN ECE, In total, 48 countries were contacted.

- 17 responses were received from 16 countries.
 - Belgium provided two responses for two different hazard rating systems

<table>
<thead>
<tr>
<th>Category</th>
<th>Requested</th>
<th>Responses</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU</td>
<td>28</td>
<td>10</td>
<td>Belgium, Bulgaria, Croatia, Czech Republic, Finland, Germany, Poland, Sweden, United Kingdom</td>
</tr>
<tr>
<td>EEA/EFTA</td>
<td>3</td>
<td>2</td>
<td>Norway, Switzerland</td>
</tr>
<tr>
<td>Outside EU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southeast Europe</td>
<td>5</td>
<td>1</td>
<td>Serbia</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>4</td>
<td>2</td>
<td>Republic of Moldova, Ukraine</td>
</tr>
<tr>
<td>Caucasus</td>
<td>3</td>
<td>1</td>
<td>Armenia</td>
</tr>
<tr>
<td>Central Asia</td>
<td>5</td>
<td>1</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>International</td>
<td></td>
<td>1</td>
<td>International River Commissions of the Danube Elbe and Odra rivers</td>
</tr>
</tbody>
</table>
Content of the Document
The resulting document consists of an executive summary and 3 sections:

- Background
- Findings from the survey
- Conclusions
- Annexes
Purpose

- Evaluating individual operator performance
- Inspection scheduling
- Deciding on themes of future inspections
- Evaluating effectiveness of the enforcement
- Planning future policy strategy
- Identifying safety performance trends
- Prioritizing other interventions
- Other

Figure 1: Purpose of the hazard rating system (N=17)
Scope

Kind of establishments covered by the hazard rating systems in percentage (N=17)
Legal status

Status of formal adaptation into legal requirements (N = 15)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium (RRT), Bulgaria, Croatia, Czech Republic, International (WRI), Kyrgyzstan, Poland, Serbia</td>
<td>Belgium (LOPI), Finland, Germany, Republic of Moldova, Norway, Sweden, Switzerland, United Kingdom</td>
</tr>
</tbody>
</table>
Depth of experience

Systems of respondents distributed by different age groups
Availability by Language

Language(s) of the hazard rating systems (N=14)

<table>
<thead>
<tr>
<th>National</th>
<th>No. of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium (RRT and LOP), Bulgaria, Czech Republic, Finland, Germany, International (WRI), Norway, Poland, Serbia, Sweden, Switzerland, Ukraine</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English</th>
<th>No. of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>International (WRI), Norway, Serbia, United Kingdom</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Russian</th>
<th>No. of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyrgyzstan</td>
<td>2</td>
</tr>
</tbody>
</table>
Frequency of application

Frequency by which the hazard rating exercise is conducted (N=16)

- **Annually**: Bulgaria, Croatia, Norway, Poland, Sweden, United Kingdom (35 responses)
- **Continuously used**: International (WRI), Serbia, Switzerland (18 responses)
- **After an inspection**: Belgium (LOPI), Finland, Germany, Republic of Moldova, Sweden (29 responses)
- **Other**: Czech Republic, Belgium (RRT), Norway (24 responses)
Elements (Inputs) of the rating system

- Hazardous substances present
- Production or process conditions
- Possible risk recipients
- The Seveso classification of the site
- Accident and near miss history
- Inspection records or compliance...
- Installations design, maintenance and...
- Enforcement records and compliance
- Size of the site
- History of public complaints
- Operator audits or self-assessments
- Standardized hazard rating system
- Safety culture elements
- Numeric performance rating from...
- Other
How output is defined

- Indicators are assigned to objective data
- Indicators or qualitative rankings developed from qualitative analysis
- Indicators or qualitative rankings developed from operator questionnaire
- Indexes used for interpretation
- Some data are generated using a proprietary software programme
- Some data are generated using a commercial software programme

Output of the system (N=16)
Availability status of IT or web-based tools (N=14)

- **Yes**: Belgium (RRT), Poland, Ukraine (29 responses)
- **No**: Belgium (LOPI), Bulgaria, Czech Republic, Finland, Germany, International (WRI), Serbia, Sweden, Switzerland, United Kingdom (64 responses)
- **Other**: Norway (7 responses)
Distribution and accessibility of outputs

Figure 12: Recipients receiving a formal copy of results (N=15)
Effectiveness

<table>
<thead>
<tr>
<th>Opinion</th>
<th>Responses</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Satisfied</td>
<td>3</td>
<td>International (WRI), Switzerland, United Kingdom</td>
</tr>
<tr>
<td>Satisfied</td>
<td>5</td>
<td>Belgium (RRT), Bulgaria, Finland, Germany (Hessen), Poland</td>
</tr>
<tr>
<td>Neutral</td>
<td>5</td>
<td>Belgium (LOPI), Czech Republic, Serbia, Sweden, Ukraine</td>
</tr>
<tr>
<td>Unsatisfied</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Very unsatisfied</td>
<td>0</td>
<td>None</td>
</tr>
</tbody>
</table>

Opinion on effectiveness of the system
Ease of use

Opinion on ease of application (N=13)
Transparency of the system results (N = 14)

- Interpretation doesn’t require much guidance: Bulgaria, Germany, International (WRI), Poland, Ukraine
- Interpretation requires some guidance: Belgium (RRT), Finland, Sweden, Switzerland, United Kingdom
- Interpretation requires a lot of guidance and possibly training: Belgium (LOPI), Czech Republic, Republic of Moldova, Serbia
Conclusions

Annex 1
CASE STUDY 1: UNITED KINGDOM
CASE STUDY 2: SWEDEN
CASE STUDY 3: BELGIUM - RRT
CASE STUDY 4: BELGIUM - LOPI

Annex 2
Copy of the survey

Annex 3
List of contacts (TBA)
EVALUATION METHODOLOGY:
Prioritisation is based on the intrinsic site hazard and the performance of the site in managing major hazard risks. Two elements:

a. A simple safety ranking scheme assigns numbers to ‘unchanging’ features about the site and the surrounding area. The site is given a base score that describes the main activity/type of site, which is then multiplied by a factor that reflects the density of the local population. Where the site presents a high ‘societal’ risk another multiplying factor is applied.

b. The environmental rating system works in a very similar way: Numbers are attached to site type and multiplied by ‘pathway’ and ‘sensitivity’ factors to give the ‘environmental’ ranking score.

The safety and environmental scores are then combined to give an overall CA score/rank for the site. This remains relatively static, changing only when there are significant changes to inventories/ processes or the surrounding population/environment ...
EVALUATION METHODOLOGY

The Rapid Ranking Technique (RRT) consists in the calculation of two indices: a Fire and Explosion Index, measuring the hazards related to fire and explosions and a Toxicity index, measuring the hazard related to toxicity. The calculation of these two indices takes account of the following:

- the energy release potential of the hazardous substances involved;
- the toxicity release potential of the hazardous substances involved;
- the general process hazards, related to the chemical reaction involved, handling of the chemicals; and
- some specific process hazards related to process temperature, pressure and other process conditions.

Based on the Fire & Explosion and Toxicity Index, establishments are categorised into three categories ranging from low hazardous to high hazardous. Each hazard category is linked to a minimum inspection frequency ...
Thank you for your kind attention!