Safety Guidelines and Good Industry Practices for Oil Terminals

Draft of 27 August 2013

Authors:

Frank Candreva (DNV Oil and Gas, Belgium)
Eddy De Rademaeker (European Federation of Chemical Engineers, Belgium)
Richard Gowland (European Process and Safety Centre, United Kingdom)
Gerhard Winkelmann-Oei (German Federal Environment Agency, Germany)
Acknowledgements

The safety guidelines and good industry practices for oil terminals were developed under the United Nations Economic Commission for Europe Convention on the Transboundary Effects of Industrial Accidents by an international expert group consisting of: Ionel Andreescu (Danube Logistics), Frank Candreva (DNV Oil and Gas, Belgium), Eddy De Rademaeker (European Federation of Chemical Engineers, Belgium), Richard Gowland (European Process and Safety Centre, United Kingdom), Gerd Hofmann (RP Darmstadt, Germany), Alexey Isakov (GCE, Russian Federation), Alexander Moskalenko (GCE, Russian Federation), Frank Otremba (Federal Institute for Materials Research and Testing, Germany), Gerhard Winkelmann-Oei (German Federal Environment Agency, Germany).
Table of contents

Acknowledgements ... 2
Table of contents ... 3
List of abbreviations ... 6
Introduction .. 7
Scope and Definitions ... 8

PART 1: PRINCIPLES AND GENERAL RECOMMENDATIONS .. 9

1. Principles .. 9
 1.1. General recommendations .. 10
 1.1.1. For ECE member States ... 11
 1.1.2. For Competent Authorities ... 11
 1.1.3. For OT Operators .. 13

2. Key topics to be addressed during the lifecycle of an OT .. 16

PART 2 - TECHNICAL AND ORGANIZATIONAL SAFETY ASPECTS 21

1. Design and Construction .. 21
 1.1. Environmental Baseline and Impact Assessment ... 21
 1.2. Facility Siting and Land Use Planning ... 22
 1.2.1. Facility Siting .. 23
 1.2.2. Land Use Planning ... 24
 1.3. Safe Design ... 24
 1.3.1. Primary safety level considerations: ... 24
 1.3.2. Secondary safety level considerations: .. 25
 1.3.3. Tertiary safety level considerations: ... 26
 1.3.4. Information and system interfaces for front-line staff .. 27
 1.4. Quality Assurance during procurement, fabrication, installation and commissioning 27
 1.5. Hazards Management ... 27
 1.5.1. Hazards Management in the Design & Planning phase ... 28
 1.5.2. Hazards Management in the other phases of the OT lifecycle .. 30

2. Operations and Management .. 31
 2.1. Process safety focus ... 31
 2.2. Process Safety Leadership and Safety Culture .. 31
2.3. Organisation and Personnel

2.3.1. Roles and Responsibilities

2.3.2. Staffing and work organisation

2.3.3. Process Safety Knowledge & Competence Assurance

2.3.4. Education and training

2.4. Operating Manual

2.5. Operating Procedures and Safe Work Practices

2.5.1. Operating procedures

2.5.2. Safe Work Practices for non-routine tasks

2.5.3. Shift Handover

2.6. Management of Change

2.6.1. Management of technical change

2.6.2. Management of organisational change

2.7. Good Industry Practice for transport and storage of hazardous materials

2.7.1. Principles for safe transfer management

2.7.2. Operational planning

2.7.3. Operational controls

2.7.4. Principles for consignment of transfer agreements

2.7.5. Procedures for control and monitoring of transfer of hazardous materials

2.7.6. Communications during transfer activities

2.8. Management of abnormal situations

2.8.1. Alarm Management

2.8.2. Turnaround Management

2.9. Investigation of incidents and aftercare

2.9.1. Incident investigation

2.9.2. Damage review and aftercare

2.10. Performance monitoring and compliance assurance

2.11. Records management

2.12. Audit and management review

2.12.1. Audits

2.12.2. Management Reviews

2.13. Learning from experience

3. Asset Integrity & Reliability

3.1. Asset Integrity – General Considerations

3.2. Inspection, Testing and Preventive Maintenance (ITPM)

3.2.1. ITPM during plant commissioning

3.2.2. ITPM during operations
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Emergency Planning and Response</td>
</tr>
<tr>
<td>4.1.</td>
<td>Emergency Plans - General</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Internal Emergency Plans</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>External Emergency Plans</td>
</tr>
<tr>
<td>4.2.</td>
<td>Emergency Response</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Warning and alert Systems</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Emergency Response Equipment</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Emergency Teams</td>
</tr>
<tr>
<td>5.</td>
<td>Managing Lifetime & Decommissioning</td>
</tr>
<tr>
<td>5.1.</td>
<td>Temporary closure ("preservation")</td>
</tr>
<tr>
<td>5.2.</td>
<td>Decommissioning</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Principles of Design for Decommissioning</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Obligations of the OT Operator prior to decommissioning</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Obligations of the OT Operator during decommissioning</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Obligations of the OT Operator after decommissioning</td>
</tr>
</tbody>
</table>

PART 3: SOURCES & FURTHER READING
List of abbreviations

<table>
<thead>
<tr>
<th>CA(s)</th>
<th>Competent Authority(ies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>GIP</td>
<td>Good Industry Practices</td>
</tr>
<tr>
<td>OT(s)</td>
<td>Oil Terminal(s)</td>
</tr>
<tr>
<td>OTMS</td>
<td>Oil Terminal Management System</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>OT Operator</td>
<td>Oil Terminal Manager with final responsibility of the industrial facility.</td>
</tr>
</tbody>
</table>
Introduction

Failures and incidents at oil terminal (OT) facilities may have far-reaching consequences for the environment and human health. Since the 1970s, 40 per cent of small- and medium-sized oil spills and 29 per cent of the large oil spills occurred during loading or discharging – which are typical operations at ports and OTs¹ – and they have caused severe environmental damage to fisheries, social and economic activities and the marine environment.

In many cases, an incident at OT facilities leads to much higher costs for a company (in terms of repairs, loss of share value, cost of closure, remediation and claims) than the company would have incurred to ensure a proper level of safety and to have prevented the incident from happening. Proper design, construction, operation and closure of an OT should therefore be of high priority for both the operator and the authorities.

In order to assist operators and authorities in the ECE region to ensure an adequate safety level at OT facilities, the secretariat to the Convention on the Transboundary Effects of Industrial Accidents established in March 2012 an international expert group to elaborate safety guidelines for OTs. The expert group was established as part of the project on hazard and crisis management in the Danube Delta, involving the Republic of Moldova, Romania and Ukraine. The project, to be implemented in 2010–2014, aims at improving the cooperation between the three countries in the Danube Delta region through enhancing and, where possible, harmonizing the mechanisms and approaches for efficient and effective hazard and crisis management, in particular at oil storing and processing facilities. These Safety Guidelines and Good Industry Practices apply to all OTs in the ECE region.

Although a number of guiding materials in this area are already available internationally, they are often too complex for effective use by many operators and authorities or too focused on particular technical elements. The ECE safety guidelines and good industry practices (GIP) for OTs aim at overcoming these and other drawbacks by providing a practical overview of the safety precautions needed for those running such a facility.

The international expert group, drawing upon its substantial expertise in OT safety, prepared the present guidelines. It took into account input provided by the authorities, operators of OT facilities, financing institutions and non–governmental organizations. In addition, the draft was discussed with representatives and experts from ECE member countries during a workshop on the safety of OTs, held in September 2013.

The guidelines in this document address issues related to the ship–port interface, as well as the interface with other transport modes which carry cargoes that may be hazardous or dangerous, with possible transboundary effects or not. The guidelines also address other aspects of the handling and storage of such cargoes in these areas (see “definitions and scope” for further information).

Scope and Definitions

These safety guidelines apply to OTs in which one or more hazardous substances are present or may be present in quantities at or in excess of the threshold quantities listed in annex I to the Convention.

These safety guidelines and good industry practices (GIP) are to be applied at all land-based OTs. Off-shore terminals are not under the scope of the Convention, but the safety culture should not differ.

OTs within the meaning of the present principles and recommendations are facilities for storing oil and their derivatives (i.e. and not limited to: naphta, flammable liquids etc.), including loading, unloading and transfer activities.

The safety guidelines & GIP described hereafter are derived from industry experience, further to major accidents happened and best available technology developed in the aftermath of the incidents to avoid recurrence.

Ports in particular are part of the transportation chain where different modes of transport meet. Each mode may be subject to various legislative or regulatory requirements, safety practices and supervisory bodies. Thus, in a port there may be overlapping jurisdictions and standards as well as the potential for gaps in jurisdictions and standards.

OTs at ports are large, complex entities involving sea-going traffic and inland (river, rail and highway) transport of hazardous substances. They may contain a number of fixed installations including storages, warehouses, and repair/maintenance facilities where hazardous substances are transferred, used, handled or stored.

These guidelines recognize that different safety standards exist worldwide and that different levels of safety exist with regard to cargo, the modes of transport and transport interfaces.

This document focuses primarily on safety guidelines for OTs. Security concerns are not within the scope of these guidelines but they should be taken into account at all stages of the life-cycle of the OT.
PART 1: PRINCIPLES AND GENERAL RECOMMENDATIONS

1. Principles

1. Proper design, construction, operation and closure of an OT should be a high priority both for the operator and for the Competent Authorities:

 (a) The OT operator and/or owner has primary responsibility throughout the whole lifecycle of its systems both for ensuring safety and taking measures to prevent accidents and limit their consequences for human health and the environment. Furthermore, in case of accidents, all possible measures should be taken to limit the consequences.

 (b) Competent Authorities should introduce and enforce adequate measures to ensure that the operators are committed to safety (e.g. with respect to the adoption of Best Available Techniques, BAT). The Competent Authorities play an important role in the approval of post-closure plans, as specified further in chapter 5.2.4).

 (c) New industrial facilities (in case Oil Terminals) should incorporate the principles of "design for decommissioning" (see further sub 5.3.1)

2. Governments should provide leadership and create minimum administrative frameworks to facilitate the development and safe design/planning, construction, operation/management and closure/decommissioning of OTs.

3. The operators of OTs have the primary responsibility for ensuring operational and process safety of OTs and the personal health of the operating staff. The operators are therefore committed to adopt sound principles and arrangements and to develop a system to ensure that major hazards are effectively managed; reference is made to the principles defined by the Process Safety Leadership Group (PSLG, 2009).

4. The OT Operator will ensure that an appropriate level of competence is available throughout the lifecycle phases of an OT (design / planning – construction / commissioning – operation / lifetime extension – closure/decommissioning) and only competent personnel should be allowed to perform high-risk tasks.

5. Appropriate measures should be taken in case of accidents. Emergency plans should be established by OT operators (internal emergency plans) and by authorities (external emergency plans) and should be tested and regularly updated. These plans should include descriptions of the measures necessary to control accidents and limit their consequences for human health and the environment.

6. Land-use planning considerations should be taken into account in view of OT siting and intended post-operational use.

7. For OTs which pose a potential risk to neighbouring countries, communities and land-users due to their size or presence of hazardous substances, information to and involvement of these countries, communities and individuals should be ensured for the purpose of drawing up an off-site emergency plan.
8. For proposed new major storage facilities for petroleum, petrochemical and chemical products, and for large-diameter oil and gas pipelines and modifications of existing ones that are likely to cause a significant adverse transboundary impact during normal operation and occurrence of major accidents, the provisions of the ECE Convention on Environmental Impact Assessment (EIA) in a Transboundary Context (Espoo, 1991) should be followed, considering also the update of the EU Directive on EIA (Directive 2011/92/EU).

9. The Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus, 1998) applies with respect to access to environmental information, public participation and access to justice. Public authorities, as defined under the Aarhus Convention, should make environmental information available to the public upon request. Public authorities have to maintain and regularly update a list, register or file, with environmental information about OTs and ensure that the information is available for the public, within the premises of the authority and on-line. The public concerned should have the opportunity to participate in the environmental decision-making procedure for an OT and also for a plan, programme, policy or normative instrument, as appropriate, concerning OTs, in accordance with the provisions of the Aarhus Convention. Finally, arrangements for access to review procedures before a court of law or another independent and impartial body established by law, as required by the Aarhus Convention, should be made, to address complaints of breach of access to information and public participation with respect to OTs.

1.1. General recommendations

10. The following are the recommendations and the key elements of the ECE guidelines and good practices for OTs. They are designed to prevent incidents at OT facilities from happening and to limit the accidental consequences for human health and the environment. They are based extensively on accepted and published best practice procedures to ensure conformity with international standards.

11. These guidelines should be read also in the context of existing international guidelines, recommendations and standards concerning OTs.

12. These guidelines constitute a minimum set of Good Industry Practices (GIP) to ensure a basic level of safety for OTs. They highlight all the aspects to be considered at the governmental level to achieve an acceptable level of safety by applying different policies, measures and methodologies.

13. National standards must be applied where they are stricter than the recommendations in this document.

14. Below are recommendations to the UNECE member countries, Competent Authorities (CAs) and OT operators.
15. The Annex to Part 1 – Matrix of Life Cycle- and the technical and organizational aspects, listed in part 2, are an integral part of these guidelines and good industry practices.

1.1.1. For ECE member States

16. Member countries should ensure that proof that adequate provisions can be established, by way of financial security or any other equivalent, on the basis of arrangements to be decided by the Member States, is presented by the potential operator as part of the application for an OT permit. This is in order to ensure that all obligations arising under any permit issued, including closure and post-closure requirements, as well as any other obligations, can be met. This financial security should be valid and effective before commencement of the operation.

17. ECE member countries should adopt policies for the Safety of OTs, including safe transport, transhipment and storage of hazardous substances, aimed at limiting accidental consequences for human health and the environment. They should raise awareness and share experience and good practices through educational programmes and other means.

18. National legislation should be clear, enforceable and consistent between different countries in order to facilitate international cooperation in, for example, the development and implementation of external emergency plans.

19. ECE member countries should aim to set up policies on insurance, civil liability and compensation for damage caused by the local and / or transboundary effects of industrial accidents on transboundary watercourses.

20. ECE member countries should establish a system of controls and land-use planning procedures with involvement of the public. The safety of OTs should be ensured during all stages of the life cycle, in such a way that “ageing” of the equipment is considered at all times. The term “ageing” is defined by the Petroleum Safety Authority as follows: “ageing is not about how old your equipment is; it’s about its condition and how it’s changing over time” (PSA, 2008).

21. National laws, regulations, policies and practices should take into account the number of parties involved and should be consistent with international agreements and recommendations (i.e. Industrial Emissions Directive 2010/75/EU).

22. CAs should be designated at the national, regional or local level that, alone or together with other authorities, have the necessary competences to ensure adequate monitoring and control of OTs.

1.1.2. For Competent Authorities

23. CAs should maintain within their organisations expertise relating to:

(a) Safe handling of hazardous substances;
(b) Inspection and audit;
(c) Permitting requirements.

24. CAs should ensure that the objectives of preventing and limiting the effects of accidents are taken into account in their land-use policies, with particular regard to safety distances and use of discharge flow modelling and/or other relevant methodologies.

25. CAs should set up appropriate consultation procedures to facilitate implementation of the policies established. The procedures should be designed to ensure that technical information about human health & safety and protection of the environment is available, on a case-by-case or generic basis, when decisions are taken. CAs should also ensure that the public and other stakeholders are given the opportunity to give their opinion.

26. CAs should implement the permitting process, by enforcing the future OT Operator to prepare the environmental impact assessment and the Safety Report, in a transboundary context when applicable.

27. CAs should set up a system of inspections or other control measures in order to ensure that OT Operators meet the legal requirements.

28. CAs are entitled to conduct legal inspections. However, they should establish provisions that give the responsibility to set up a system for certified, independent experts to undertake the inspections of facilities.

29. When CAs use independent experts for inspections, they remain responsible for assessing the competence and accountability of experts and for the effectiveness of the inspection process.

30. The inspection regime of OTs as defined by the CAs should reflect the:
(a) Hazard Potential of the OT;
(b) Proximity to sensitive environments or communities;
(c) Age of the installation;
(d) “Ageing” of the equipment.

31. CAs should ensure that OT operators:
(a) Draw up internal emergency plans and put them into effect without delay when an accident occurs; and
(b) Supply the authorities designated for that purpose with the necessary information to enable them to draw up external emergency plans.

32. CAs should draw up and implement external emergency plans with measures to be taken in the vicinity of the OT where the effects of accidents might be noticeable.

33. CAs should ensure that internal emergency plans are drawn up in consultation with the personnel working inside the establishment, including long-term relevant
subcontracted personnel, and that the public is consulted on external emergency plans when they are established or updated.

34. CAs may require the OT operator to provide any additional information necessary to enable them to fully assess potential accidents.

35. CAs should ensure that external and internal emergency plans are reviewed, tested and, where necessary, revised and updated at suitable intervals.

36. CAs should ensure that proper consideration is given to the prevention of third-party interference. They should provide the appropriate regulatory framework needed to control activities carried out by third parties, including clear awareness of responsibilities.

37. CAs should consult with other authorities, as well as other stakeholders (local communities, NGOs, other operators), in the surrounding of OTs in order to establish safety objectives and a control framework in the whole area. CAs are responsible for establishing permit conditions based on international accepted safety standards (i.e. Industrial Emissions Directive IED 2010/75/EU).

38. CAs should establish internal guidelines for key areas that need to be verified at OTs, and should train their own inspectors on an on-going basis.

39. CAs should encourage and engage in a “train the trainers” programme the existing educational institutions so that they reach the necessary capacities for training the company and government staff.

1.1.3. For OT Operators

The general recommendations for OT Operators are presented hereafter as they apply in the sequence of their lifecycle:

40. OTs should be designed, constructed, operated, and maintained to ensure a high level of protection for human health and the environment. Adequate consideration should therefore be given to various aspects which could affect the safety of an OT, such as inherent safe design and stress factors, quality of material, ageing phenomena, external impact protection, corrosion, and monitoring.

41. OTs should be designed, constructed and operated at least in accordance with recognized national and international codes, standards and guidelines and, where appropriate, internationally accepted industry specifications.

42. When considering hazard controls, or changes to existing controls, consideration shall be given to reducing the associated risks according to the following hierarchy of controls:

(a) Elimination of the hazard;
(b) Substitution of the hazard;
(c) Engineering controls;
(d) Administrative controls (e.g. procedures / work instructions) and / or signage / warnings;

(e) Personal protective equipment.

43. The OT Operator should ensure at an early stage of the OT lifecycle (design stage) that all equipment is purchased to ensure a high level of protection of man and the environment. During construction, the OT Operator is responsible for purchasing all equipment and materials as specified in the design phase. The OT Operator is accountable for ensuring the as-built situation in accordance with design specifications. To this purpose, the OT Operator will implement controls on purchased goods and organizes the follow-up of inspections and contractor works.

44. The OT operator should establish and maintain an OT Management System (OTMS) that is adequate to manage the OT risks and to comply with legal and regulatory requirements and other commitments to which the OT Operator subscribes. To this purpose, it is required that the OT Operator establishes a Major-Accident Prevention Policy, MAPP, which would be the foundation of the OTMS.

45. Hazard identification and risk assessments should be undertaken during all stages of the lifecycle, as appropriate, in order to choose among different options and to assess unusual circumstances. The OT operator should adopt a methodology for the on-going hazards identification, risk assessment and determination of necessary control measures for routine and non-routine activities, and for management of change.

46. The OT operator informs the CA:

(a) On planned arrangements to prevent major accidents (including the associated performance indicators and safety measures) by conducting risk assessments and adopting appropriate risk controls for identified scenarios (see also further, chapters 1, 2 and 3 of Part 2), and

(b) On planned arrangements to limit the consequences when an incident occurs, as defined in the Emergency Planning and Response chapter (see further chapter 4 of Part 2).

47. To enable a safe operation, the OT Operator should establish and communicate clear management performance standards for all management levels and define roles, responsibilities and accountabilities for all employees. Lines of control and responsibility should be clearly defined and communicated to all parties.

48. The OT Operator should establish a list of key stakeholders (all parties involved in the safe operation of an OT) and identify their requirements.

49. The OT Operator should ensure that any person under its control performing high-risk tasks is competent on the basis of appropriate education, training or experience.

50. The OT Operator should establish competence requirements and identify training needs associated with the OT risks and risk controls as described in the OTMS. Consequently, OT Operators should train their personnel and reinforce and revise personnel’s knowledge on safety as appropriate.
51. The OT Operator should determine those operations and activities that are associated with the identified hazards where the implementation of controls is necessary to manage the OT risks. For those operations and activities, the OT Operator will need to implement and maintain operational procedures and other controls.

52. OT should have an Operating Manual that is available to all personnel and to government inspectors. All documents relating to planning, design and construction should be maintained in an accessible way, with records kept permanently for reference at the future time.

53. OT operators should implement safety audits for their facilities and promote the use of management systems audits based on international standards.

54. OT operators are responsible for managing their contractors regarding the implementation of the major accident prevention, preparedness and response policy; this involves at least the following controls:

 (a) Defining selection criteria to ensure proper mapping with the competence requirements for specific activities;

 (b) Monitoring performance while working onsite the OT premises, including informing them on OT risks and their potential impact on the OT safety performance, communication and consultation where relevant when changes occur etc.)

 (c) Evaluating their overall performance.

55. The integrity and functionality of tanks and all mechanical equipment, instrumentation and safeguards of the OT should be maintained to good industry practice.

56. When applicable, OTs should be decommissioned in accordance with applicable national and international legislation, and where appropriate in line with agreed GIP.
2. Key topics to be addressed during the lifecycle of an OT

PHASE 1: Strategy – Feasibility - Engineering Design Stages – Planning

| **ECE Member States** | ➢ Inform and raise awareness towards Competent Authorities and OT Operators on applicable policies, national legislation & international agreements on facility siting, insurance issues, civil liability and compensation for damage caused by transboundary effects (para 17, 19, 20).
 ➢ To develop a framework for Notification of the Competent Authorities in case of leakages or significant irregularities endangering the environment.
 ➢ Facilitate international cooperation in the set-up and implementation of external emergency plans (para 18 & 33).
 ➢ In case of possible transboundary effects, the Member State in whose country the permit is granted shall inform the other Member adjacent Member State of the potential impact. |
| **Competent Authorities** | ➢ Apply criteria for land-use planning and facility siting (para24&26) (1.2.2).
 ➢ Check whether legal (national) requirements are met by the OT Operator.
 ➢ Evaluate whether the OT Operator is able to provide a high level protection of health & safety to people and the environment.
 ➢ Ensure on behalf of the Member States that the public hearing consultation arrangements are carried out prior to granting a permit to construct / operate an OT (para 26).
 ➢ Public Authorities to ensure compliance with the Aarhus Convention (para 9).
 ➢ Evaluate the Environmental Baseline (1.1) and the Environmental Impact Assessment as part of the permitting process (para 26).
 ➢ Set permit conditions based on the Environmental Baseline (IPPC-IED/2010/75/EU).
 ➢ Include Best Available Techniques in the permit conditions.
 ➢ To establish a framework for dealing with Notifications of the OT Operator in case of significant irregularities or leakages (loss of containment) endangering the environment. |
| **OT Operators** | ➢ Stakeholder mapping and analysis of stakeholder needs to enable effective communications (para 48).
 ➢ Licensing requirements and applicable procedures (1.1 to 1.5).
 ➢ Establish the Environmental Baseline report (1.1)
 ➢ Environmental Impact Assessment in a transboundary context (para 28) (1.1).
 ➢ Land-use planning considerations in view of OT facility siting (para 26) (1.2).
 ➢ Feasibility Study (financial aspects & decision criteria): to provide in the construction budget the costs of measures to reduce risks (e.g., |
outsourcing experts, nondestructive testing, training & coaching, etc.).
- Inherent Safe Design and operation of OT installations according to GIP, while making maximum use of the most secure and certified equipment (1.3.3).
- Apply GIP for design of tanks, piping, valves, alarms, overfill protection and other control systems and instrumentation (1.3).
- Hazard and Risk Assessment addressing the risks for operating personnel and risks that go beyond the OT boundaries, e.g. by Process Hazards Analysis (1.5).
- Safety Report (incl. loss of containment scenarios and related preventive / mitigation measures such as overfill protection systems) (1.5.1).
- Apply the principles of “design for decommissioning”

<table>
<thead>
<tr>
<th>PHASE 2: Construction & Installation – Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Member States</td>
</tr>
<tr>
<td>➢ To provide a framework for Notification of the Competent Authorities in case of leakages or significant irregularities endangering the environment.</td>
</tr>
<tr>
<td>Competent Authorities</td>
</tr>
</tbody>
</table>
| ➢ Establish and communicate to the OT Operator the applicable inspection regime and controls that will be executed during the construction, commissioning and operational phases (para 30).
 ➢ Evaluate the OT Operator’s capability to effectively implement the Internal Emergency Plan (para 31 & 35).
 ➢ Draw up and implement an External Emergency Plan, aligned with the OT Operator’s capabilities in emergency planning & response (para 34 & 35).
 ➢ Adopt a system for acting on Notifications of leakages or significant irregularities endangering the environment. |
| **OT Operators** |
| ➢ Stakeholder mapping and analysis of stakeholder needs to enable effective communications (para 48).
 ➢ Prior to construction to obtain permits, approvals, licenses and other documents in state and local authorities.
 ➢ Internal Emergency Plan (para 46) (4.1.1).
 ➢ Hazard and Risk Assessment during construction and commissioning, including Pre-start up safety reviews (para 45) (1.5 & 2.5.1).
 ➢ Purchasing of equipment & materials according to GIP (para 43) (1.4).
 ➢ Ensure an adequate level of quality control of purchased equipment and related construction work (incl. nondestructive testing of piping according to planned arrangements) (1.4).
 ➢ Ensure inspections are carried out as required / planned in accordance with legal requirements, including material certificates testing. (para 41, 44, 55).
 ➢ Proof-testing overfill protection systems to ensure a reliable operation (1.3.3 & 2.3). |
- Ensure adequate involvement of specialized construction and commissioning companies where needed
- Ensure that contractors work only with trained, qualified personnel (para 4&5).
- Monitor the conditions of temporary storage of equipment at construction site and follow-up the level of pollution, while respecting the ALARP principle.
- Monitor performance and compliance with all contractor work.
- Performance monitoring making use of leading & lagging indicators (2.10).
- Internal audits of the OTMS (para 53) (2.12).
- Lessons learned and feedback mechanism (2.13).
- Notification of the CA when leakages or significant irregularities occur during construction or commissioning of the OT.

PHASE 3: Operation & Lifetime Extension

ECE Member States
- To provide a framework for Notification of the Competent Authorities in case of leakages (loss of containment) or significant irregularities endangering the environment.
- Ensure that Competent Authorities organize a system of routine and non-routine inspections for the monitoring the effects on the environment and on human health.

Competent Authorities
- Apply a control framework on asset integrity by periodical inspections (para 28, 29, 30).
- Adopt a system for acting on Notifications of leakages or significant irregularities
- Conduct audits to verify implementation of OTMS (para 31).
- Assess periodically emergency preparedness of OT Operators (para 27, 31, 35).
- Assess the justification of a request for life extension considering compliance to applicable new legal requirements.

OT Operators
- Stakeholder mapping and analysis of stakeholder needs to enable effective communications (para 48).
- Hazard and Risk Assessment: Structured-What-If-Analysis or checklist methods (para 45) (1.5).
- Implement a system for inspection & maintenance of mechanical integrity (3.2).
- Maintain an updated inventory of stored hazardous materials (2.7.2).
- Implement an OT Management system (OTMS) to manage HSE aspects and major accident hazards (para 44) (2).
- Management of Operations / Process Safety leadership & culture (para 3) (2.2).
- Operating Manual available (para 52) (2.4).
- Process Safety Management: adopt Safe Work Practices and Management of Change (2.5).
- Organizational issues: roles & responsibilities of key stakeholders
(internal and external) (para 47) (2.3.1).
- Competence assurance of all personnel working for the OT, ensuring training is provided to operate the OT in normal and emergency situations (para 50) (2.3.4).
- Management of technical and organizational change (para 45) (2.6).
- Management of contractors by enforcing to adopt Safe Work Practices (2.8.2).
- Key principles & procedures for fuel transfer and storage (2.7).
- Operational Controls (2.7.3).
- Maintain a reliable overfill protection system by periodic testing of functionality according to agreed arrangements / standards (e.g. IEC 61511) (1.3).
- Maintenance of emergency response equipment to defined GIP (4.2.2).
- Learning from experience: investigation of incidents and near-misses (2.9 & 2.13).
- Performance monitoring: leading & lagging indicators (2.10).
- Internal audits and review of the OTMS (para 53) (2.12).
- Lessons learned and feedback mechanism (2.13).
- Consider the remaining lifetime of the terminal upon ageing and consider lifetime extension (5)
- Notification of the Competent Authorities when leakages or significant irregularities of the safe operation of the OT or leakages occur.

PHASE 4: Closure – Mothballing - Decommissioning

| ECE Member States | ➢ Ensure that the Competent Authorities organize a system of routine and non-routine inspections of OT’s for the purposes of monitoring the effects on the environment and on human health.
➢ To provide a framework for Notification of the Competent Authorities in case of leakages or significant irregularities endangering the environment.
➢ To provide a framework for closure and post-closure obligations and for transfer of responsibility to be adopted by the Competent Authorities |
| Competent Authorities | ➢ Adopt a system for conducting routine and non-routine inspections of OT’s for the purposes of monitoring the effects on the environment and on human health.
➢ Apply legal considerations pertaining to liability for closure and post-closure activities, such as monitoring the abandoned site: this should cover all legal obligations relating to monitoring and corrective / remedial measures further to observed leakages.
➢ Adopt a system for acting on Notifications of leakages or significant irregularities.
➢ Notify the OT Operator on remaining degree of monitoring & liability during decommissioning, based on environmental state of pollution of soil & groundwater, compared with the baseline report. |
<table>
<thead>
<tr>
<th>OT Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt the final decision on transfer of responsibility via an approved post-closure plan.</td>
</tr>
</tbody>
</table>

- Stakeholder mapping and analysis of stakeholder needs to enable effective communications during the inactive state and during decommissioning (para 48).
- Staff responsible for the control of the state of the inactive facility must be trained on the safe control (GIP for mothballing to apply).
- Performance monitoring: leading indicators to monitor the safety status of the inactive facility.
- Apply the best available technology for ensuring a safe state during the entire duration of conservation of the inactive facility.
- Establish project documents for the preservation of the OT on the basis of best available technologies.
- Competence assurance of all personnel working for the OT, including hired experts in closure, post-closure and decommissioning activities (para 4, 42, 51 & 56).
- Internal Emergency Plan for decommissioning and abandonment (para 56) (5.2).
- Consider temporary closure when poor market conditions exist and apply BAT in those cases.
- Establish a Decommissioning Plan and implement when relevant (Closure Plan) (5.2.2).

Due Diligence Considerations

- Apply equipment for demolition of the OT should to ensure trouble-free work to avoid harm to the environment and injury to people.
- Apply the best available techniques for waste management and for bringing the area into a safe state for the environment
- Consider after-care issues in line with closure and post-closure plans (e.g. monitoring ground water pollution at long term) and liability issues (5.2.1&4).
- Notification of the Competent Authorities when leakages or significant irregularities occur during mothballing or decommissioning of the OT.
- Establish a document of transfer of responsibility, based on a condition assessment and post-closure plan.
PART 2 - TECHNICAL AND ORGANIZATIONAL SAFETY ASPECTS

Technical and organizational aspects of safety should be taken into account throughout the whole life cycle of OTs. Such an integrated view can be reflected by elements of the so-called safety chain, which comprises safety elements from the design and feasibility stage to the construction and operation till the decommissioning phase. Experiences from past industrial accidents are integrated in all elements through an efficient feedback mechanism.

The obligations for CAs are more general and are reflected already in the previous recommendations of part 1. The primary responsibility for safe operation of an OT is with the operator. The following safety guidelines concentrate on the operator’s duties.

1. Design and Construction

1.1. Environmental Baseline and Impact Assessment

Environmental Baseline
An Environmental Baseline shall be established by the OT Operator and submitted to the CA, as part of the permit application. The Baseline Report shall contain the information necessary to determine the state of soil and groundwater contamination so as to make a quantified comparison with the state upon definitive cessation of activities (decommissioning).

As indicated in the Industrial Emissions Directive (IPPC) IED/2010/75/EU, the Baseline Report shall contain at least the following information:
(a) Information on the present use and, where available, on past uses of the site;
(b) Where available, existing information on soil and groundwater measurements that reflect the state at the time the report is drawn up
(c) Where relevant, existing information on nearby rivers or water courses that may be adversely impacted by the OT operations.

This requirement applies to Oil Terminals involving the use, production or release of relevant hazardous substances and having regard to the possibility of soil and groundwater contamination, or having a potential adverse impact on other vulnerable parts of the receiving environment at the site of the industrial facility.

Environmental Impact Assessment (EIA)
An EIA should be a precondition for construction and operation of an OT, or to major changes to the facilities at or operation of an existing OT. The EIA should address the potential physical impact of the OT on the physical and social environment and should be open for the general public and interested or affected persons to comment and provide
input to the assessment and to comment on or object to the construction and operation of the terminal.

The Espoo (EIA) Convention sets out the obligations of Parties to assess the environmental impact of certain proposed activities at an early stage of planning. It also lays down the general obligation of Member States to notify and consult each other on all major projects under consideration that are likely to have a significant adverse environmental impact across boundaries. Among the proposed activities with a mandatory EIA are crude oil refineries and major storage facilities for petroleum, petrochemical and chemical products.

The OT Operator is responsible to prepare the EIA conform to applicable legal and regulatory requirements. The information to be included in the environmental impact assessment documentation shall, as a minimum contain:

(a) A description of the proposed activity and its purpose;
(b) A description, where appropriate, of reasonable alternatives (e.g. locational or technological) to the proposed activity and also the no-action alternative;
(c) A description of the environment likely to be significantly affected by the proposed activity and its alternatives;
(d) A description of the potential environmental impact of the proposed activity and its alternatives and an estimation of its significance;
(e) A description of mitigation measures to keep adverse environmental impact to a minimum;
(f) An explicit indication of predictive methods and underlying assumptions as well as the relevant environmental data used;
(g) An identification of gaps in knowledge and uncertainties encountered in compiling the required information;
(h) Where appropriate, an outline for monitoring and management programmes and any plans for post-project analysis; and
(i) A non-technical summary including a visual presentation as appropriate (maps, graphs, etc.).

1.2. Facility Siting and Land Use Planning

Facility Siting and Land Use Planning can have significant effects on the hazards of the OTs. A thorough understanding of the risks posed by an OT will allow these to be minimized without adversely affecting commercial viability. New facilities offer an opportunity for adoption of safety distances as appropriate, new technology, inherently safer designs and best practices.

Existing facilities may pose different problems demanding innovative approaches, more stringent operational controls and enhanced emergency procedures. In the case of existing facilities, new developments such as replacements and expansions need to reflect current
best practices in facility siting. It is worth noting that facility siting with respect to existing plants does not refer to the location of the plant in relation to the surrounding community, but rather to the location of various components within the plant (such as, flare, relief devices and blow-down systems, emergency access, fire pumps etc.).

1.2.1. Facility Siting

In the OT planning phase, site-selection decisions should take into account the risk of exposing human populations and environmental sensitive habitats to the hazards of toxic and flammable materials. The consequences of “credible worst case scenarios” need to be considered during the conceptual or basic engineering phase, before a large commitment has been made to a specific site location. The following parameters have to be taken into account by the investor / future OT Operator:

(a) General layout of the facility: is there an adequate buffer zone (safety distance) between the OT and vulnerable populations / and public facilities;
(b) Domino effects: Are there nearby sources (equipment / installations) that could threaten the entire site by potential “domino effects”;
(c) Secondary and tertiary Containment considerations;
(d) Emergency access and response support Access for Emergency Response teams (Fire Brigade, Police, Ambulance Services);
(e) Power supplies: The need for emergency equipment such as lighting, fire pumps, sprinkler system to operate when the main power source is impaired;
(f) ‘Safe Refuges’: Are there safe refuges considered in case of fire and toxic releases;
(g) Occupied Buildings (e.g. Control Rooms, meeting rooms and offices);
(h) The consideration of location of occupied buildings to minimise risk for the occupants in an emergency situation such as fire or explosion
 i. Location (e.g. remote from the source of hazard, consideration of prevailing wind direction);
 ii. Construction (e.g. resistance to effects of fire (thermal radiation) and or explosion (overpressure));
 iii. In the case of Control rooms – provided with uninterruptible power supplies to control systems in the event of power failure.
(i) Provision of Fire water and Fire Protection: this may be provided via specific storage or local city supply or from harbour. Capacity should be related to the fire water requirements (flow and total available volume) to fight the fire event. Vulnerability to disruption during an emergency needs to be considered e.g. damage from fire or explosion causing the fire protection to fail.
(j) Security systems and access controls:
 i. Provision of a secure perimeter fence (land side) and measures to prevent unauthorised access from water side;
 ii. Provision of access controls at land side gates and from ships in harbour;
 iii. Equipment for 24 hour surveillance of hazardous areas and perimeter fence.
We also refer to the Industrial Emissions Directive 2010/75/EU which incorporates the principles of Integrated Pollution Prevention and Control (IPPC), prescribing that Best Available Techniques are to be used, as available for the Oil Sector. These BAT conclusions / requirements are normally incorporated in the operating permit and include prevention and control methods in various stages of the Oil Terminal’s lifecycle.

1.2.2. Land Use Planning

For new OTs, the CAs have to take into account appropriate safety distances from transport routes, locations of public use and residential areas and areas of natural sensitivity or interest (vulnerable areas). These distances should limit the consequences of possible accidents for human health and the environment to an acceptable level.

For existing establishments, on the other hand, the CAs have to consider relevant technical and/or management measures for those establishments in / close to vulnerable areas.

1.3. Safe Design

National standards for equipment design and operation where they exist should be implemented and be the subject of inspection by the OT operator and the CA. Wherever possible, the design of equipment within an OT should be to industry best practice and incorporate learning from relevant incidents (e.g. Buncefield Fire and Explosion).

The following key aspects for the design and operation of equipment related to hazard / detection / control and response have to be taken into account at three levels of protection:

1.3.1. Primary safety level considerations:

(a) Tank design;
(b) Piping, valve, pumps and fitting design according to requirements for piping design to meet appropriate local legal codes, industry standards (such as DIN,ASA);
(c) Choosing of the construction material according to the mechanical, thermal, chemical and biological stress;
(d) Isolating Valves should be “firesafe” to a typical industry standard;
(e) Outdoor over ground plant units must be protected against the force of buoyancy and from mechanical damages due floating substances;
(f) Underground containers and pipelines should be secured against the force of buoyancy;
(g) Level measurements devices should be installed, which include Low and High level alarm;
(h) Overfill prevention devices – Level detection linked through a “logic solver” (hardware or software) to interrupt flow in the event of a hazardous level occurring in a tank;

(i) Provision of equipment designed and managed (i.e. in accordance with ATEX 99/92/EC):
 i. Electrical Systems (motors, instrument);
 ii. Hot surfaces (pumps, gearboxes etc.);
 iii. Electrostatic charge;
 iv. Control of hot work.

1.3.2. Secondary safety level considerations:

(a) Storage tanks are normally located inside a retaining wall on a solid foundation (i.e. full tank base coverage, not “ring” foundation, flat-bottom tanks should have a double-walled and monitored bottom);

(b) Transhipment sites must have collecting facilities capable of accommodating the volumes of liquid that can escape until suitable measures or automatic safety systems take effect;

(c) Underground pipelines should be double-walled or any detachable installed connections and valves should be installed in a monitored leak proof inspection shafts;

(d) Construction of the containment should be impermeable: the tightness of sealed systems must be in accordance to the physic-chemical properties of the substances handled and this must be demonstrated by generally accepted and recognized testing method;

(e) The containment should have total volume appropriate to the total volume of the storage tank(s) located within the retaining wall. 25% of all the Tank volumes, plus an allowance for maximum daily rainfall (50 l/m²);

(f) Additional volume for fire water retention, which must be tight and resistant to the fire fighting water. The size of the fire water retention depend on following parameters:
 i. Hazardousness of the stored substances;
 ii. Readiness of the fire brigade;
 iii. Fire protection infrastructure (fire detection systems, fire extinguishing system);
 iv. Total area of storage section;
 v. Height of goods stored etc.

(g) Loading and Off-Loading inland waterway vessels special care must be taken to observe the process (ADNR 151412);

(h) Overflow detection devices, which act when a release has started. These could be situated inside the secondary containment or in a piped overflow from a tank;

(i) Gas and Flammable Vapour Detection:
 i. These act to detect flammable vapour in (e.g.) secondary containment. They are usually located close to tanks and equipment such as pumps and
overflow piping. They do not act to prevent a loss of containment, but mitigate the potential scale of the event in the sense that they alert process operators or in some cases initiate the fire protection system. There are several suitable technologies used for detection including Infra-Red, Catalytic Oxidation etc.

(j) CCTV surveillance;
 i. This is frequently provided for security purposes, but has value in observing the presence of flammable vapour.

1.3.3. Tertiary safety level considerations:

(a) Meeting the hazardous area classification and management (e.g. electrical area classification and zoning (for example, as described in the requirements of the EU ATEX Directive 1999/92/EC)
(b) Operators should review and amend if needed, the management system for the maintenance of equipment to ensure their reliability in operation. This includes:
 i. Periodic proof testing of equipment to minimise the likelihood of equipment failure.
 ii. Management of change (hardware, software, mode of operation, service (material stored) personnel and frequency.
(c) All elements of an overfill prevention system should be proof tested in accordance with the validated arrangements and procedures sufficiently frequently to ensure the required reliability (e.g. probability of failure on demand, Safety Integrity Level of protective systems; in the case of Safety Instrumented Systems the Safety Integrity Levels (SIL) is maintained in practice in accordance with the requirements of Part 1 of IEC 61511)
(d) Periodical test by (external) experts of the safety-systems. This test should be documented in special reports. The operator should save these reports.

OT Operators should protect against loss of containment of highly flammable liquids by providing a reliable automatic overfill prevention system (or a number of such systems, as appropriate) that is physically and electrically separate and independent from the system which is used to manage and adjust the levels in tanks (i.e. the high-high level device) provides an independent means of determining the level in the tank and is part of the overfilling protection system. It provides a warning that the tank rated capacity has been (or is about to be) reached/exceeded and triggers a response:

Overfill protection systems including instrumentation, alarms and automated shutdown systems should be assessed using IEC 61511, to include the following:

(a) Design, installation, operation, maintenance and testing;
(b) Management systems;
(c) Redundancy level, diversity of measuring methods. (Avoiding common cause failures);
(d) Fail safe principles, proof testing coverage and frequency;
(e) Consideration of common cause failures.

1.3.4. Information and system interfaces for front-line staff

Control room design and ergonomics, as well as effective alarm systems, are vital to allow front line staff, particularly control room operators, to reliably detect, diagnose, and respond to potential incidents.

1.4. Quality Assurance during procurement, fabrication, installation and commissioning

A QA/QC (Quality Assurance / Quality Control) programme ensures that equipment is purchased and built according to the design requirements, while meeting all applicable legal and technical standards and codes.

The OT Operator is recommended to have a QA/QC programme in place to prevent equipment failures that could result from:

(a) Use of faulty parts / materials due to improper controls at material/ parts delivery stage;
(b) Improper fabrication, installation or repair methods.

The Operator’s OT Management System should provide guidance and mechanisms to assure that appropriately qualified and trained craftsmen (such as certified welders) are used for specified vessel and piping fabrication and for installing safety critical equipment and instrumentation.

A material tracking programme should be in place as control function to ensure that materials and equipment are purchased as specified in the OT Requirements Database.

1.5. Hazards Management

The term Hazards Management refers to the process of Hazard Identification and Risk Assessment (HIRA), risk ranking and further controlling / reducing the risks to acceptable levels. Hazards Management should be taken into account by the OT Operator and all other key stakeholders in all phases of the life cycle of the OT.

In this Safety Guideline we have assumed that the majority of the OTs is classified as upper-tier Seveso sites, with the potential for causing a major accident.
1.5.1. Hazards Management in the Design & Planning phase

Design and planning phase as considered here includes all the project initiatives in what can be considered as first phase, such as:

(a) Technical & Economic Feasibility study phase;
(b) Basic Engineering;
(c) Detailed Engineering.

Safety Report

After having conducted a high-level Technical & Economic Feasibility study, the permit application process can start as soon as the investment decision is being made. The EIA can be done in parallel with the Safety Report.

The Safety Report and the EIA are the key documents in this permit application phase. The Safety Report has 3 dimensions:

(a) To establish a MAPP (Major-Accident Prevention Policy);
(b) To implement a SMS (Safety Management System) aiming at prevention of major accidents happening;
(c) To institutionalize a damage control system by the preparation and implementation of effective internal emergency plans to limit the consequences on man and the environment.

The Safety Report should address the following essential parts (chapters):

(a) General information on the OT;
(b) Description of the OTMS;
(c) Description of the OT location, indicating the existence of possibly nearby vulnerable environmental sensitive areas or populations;
(d) Description of the installation and its operations, including the storage and related transport modes for the hazardous materials (e.g. ship transfers, pipeline transfers, road and rail transfers);
(e) Identification of the major-accident hazards, incorporating preventive action measures to prevent such scenarios from happening, and in addition risk control measures to limit the consequences on man and the environment in case such scenarios (e.g. loss of containment) would happen. This part constitutes the core of the Safety Report;
(f) The Internal Emergency Plan (IEP), describing the organisational aspects related to emergency preparedness and internal measures to respond to undesired events and mitigate to avoid further escalation (damage control). Testing of the effectiveness of the IEP is part of the emergency preparedness.

The Hazard Identification & Risk Assessment part constitutes the core of the Safety Report: the Operator describes the hazards and relevant scenarios with the potential to cause a major accident. This risk assessment leads to a ranking of the most credible
major accident scenarios. Subsequently, the OT Operator examines the Safety Critical Elements for each classified major accident scenario (Safety Case). The Safety Critical Elements can also be formulated as the “Critical Barriers” or “Layers of Protection” that prevent the MA scenario from happening.

To be effective, “technical performance standards” should be defined for these critical barriers. The following criteria are considered as good industry practice for these barriers:

(a) Functionality - what the barriers should achieve;
(b) Availability - how often it will be required to operate satisfactorily;
(c) Reliability - how often it will be required to operate on demand;
(d) Survivability - the conditions under which it will be required to operate (from the effects of Major Accident Hazards);
(e) Interaction / dependency – how the critical barrier interacts with or is dependent on other barriers.

OT Operators should ensure (e.g. by testing) that they have suitable techniques to demonstrate and assess their barriers for effectiveness.

Domino effects:
The OT Operator should evaluate to what extent a small accident at the OT may escalate to a major accident and take adequate measures for these scenarios. The CAs shall identify possible domino effects by actively requesting additional information from the OT Operators. The CAs ensure communication to other Member States in case of potential transboundary effects. Large scale domino effects should be considered in External Emergency Plans by the CA’s.

Design for decommissioning

The “design for decommissioning” proactive approach is recommended as GIP and specifies the application of general design requirements such as:
- Using materials that are easy to recycle or reuse.
- Using a modular design to make it easier to assemble, disassemble and transport parts of the industrial facilities
- Minimizing the use of hazardous materials.
- Minimizing the amount of contaminated material or hazardous waste that will be generated upon decommissioning.
- Using pollution prevention measures such as concrete areas, interceptors, containment, and liners to prevent or mitigate pollution from ongoing operations.
- Avoiding the installation of underground storage tanks containing hazardous substances, if possible.
- Considering the installation of double contained piping systems for extremely hazardous and toxic chemical piping systems.

Additional topics on “design for decommissioning” are described in section 5.2.1.
1.5.2. Hazards Management in the other phases of the OT lifecycle

The OT operator should have a procedure in place indicating which type of HIRA will be used in all further lifecycle phases once the terminal is built.

Typically, Quantified Risk Assessments (QRA’s), full Hazards & Operability studies (HAZOPs), Process Hazards Analyses (PHA’s), Layer of Protection Analysis, structured What-If methods and checklists are used during the Operations Phase. Task-based risk assessments are often used for all routine tasks while Job Safety Analyses and Pre Start-up Safety Reviews are being used for more complex and non-routine tasks such as safe start-ups after shutdown and specific maintenance activities.

Expert safety reviews, PHA’s, legal compliance checks and due diligence reviews are being used for life extension considerations, closure and decommissioning activities.
2. Operations and Management

The following sections from this Chapter are considered as good industry practices for implementing an OT Management System oriented towards process safety.

2.1. Process safety focus

Personal or occupational safety hazards may provide damage to health by short or long-term exposure to hazardous materials or by accidental damage to individual workers as a result of slips, falls or other contacts with machinery or moving objects.

Process safety hazards, on the other hand, can give rise to more severe consequences or major accidents involving the release of potentially hazardous materials, the release of energy (fires and explosions) or both; they can have catastrophic consequences and may result in multiple fatalities, economic loss, substantial loss to property or may lead to severe environmental damage.

It is therefore key to the OT Operator to focus primarily on process safety and process safety management, which means to orient his resources more towards issues such as safe design, adoption of engineering best practices, process hazards assessments, management of change, inspection, testing and maintenance of safety critical equipment, effective alarms, effective process controls and training his workforce accordingly, to enable them to better understand and manage process safety hazards.

Process safety management therefore involves a particular type of hazards management, identifying and controlling the hazards arising from process activities, such as the prevention of leaks, spills, equipment malfunctions, over-pressures, excessive temperatures, corrosion, metal fatigue, and other similar conditions.

OT operators should ensure implementing an integrated and comprehensive management system that systematically and continuously identifies process safety hazards, reduces and manages process safety risks, including risk of human failure, to finally achieve acceptable levels of risks.

2.2. Process Safety Leadership and Safety Culture

Poor safety culture has been found to be a significant causal factor in major accidents. The leadership of senior managers, and the commitment of the chief executive, is therefore vital to the development of a positive safety culture.
The following six elements are considered as essential features for establishing and maintaining a sound process safety culture:

(a) Establish process safety as core value:
The OT Operator and the workforce are highly committed to process safety and accept full responsibility for their performance. A strong operational discipline is adopted; as such, there is a strong individual and group intolerance for violations of performance norms.

(b) Enforce high standards of performance:
Management performance standards and workforce expectations are fully understood, while adopting a zero tolerance policy for wilful violations of process safety standards, procedures and rules.

(c) Provide strong leadership:
OT Leaders act as role model and walk the talk by visible and consistent support for selected process safety programs and established targets. Adequate resources are provided to support a high performance level, without creating initiative overloads for leaders and the workforce.

(d) Document the cultural values:
The key principles and practices that characterize the foundation of the company values and beliefs are documented in clear statements and periodically challenged.

(e) Empower employees at all levels:
A positive and trusting work environment is aimed for, while avoiding a blame culture and allowing maximum learning from incidents. The OT Operator should encourage effective communication lines and a mutual understanding between management and workforce.

(f) Incorporate process safety in senior management decision-making:
Process safety programs tend to have a long-term focus and may require higher investments in resources, in comparison with personal safety initiatives. This long-term timespan often needed to achieve results in process safety performance should be well considered when allocating accountabilities and expectations to the OT Operator, line managers and supervisors.

2.3. Organisation and Personnel

2.3.1. Roles and Responsibilities

Safe operation and maintenance of the OT requires reliable human performance at all levels, from managers and engineers to operators and craftsmen.

Clear understanding and definition of roles and responsibilities, and assurance of competence in those roles, are essential to achieve a high reliability of task execution for the control of major accident hazards.
OT operators should ensure that they have:
(a) Clearly identified the roles and responsibilities of all those involved in managing, performing, or verifying work in the management of major hazards, including contractors and ship operators/crews;
(b) In particular, defined the roles and responsibilities of control room operators (including in automated systems) in ensuring safe fuel transfer operations;
(c) Defined the roles and responsibilities of managers and supervisors in monitoring safety-critical aspects of fuel transfer operations.

OT operators should ensure that they have implemented a competence management system, linked to major accident risk assessment, to ensure that anyone whose work impacts on the control of major accident hazards is competent to do so.

2.3.2. Staffing and work organisation

Staffing, shift work arrangements and working conditions are critical to the prevention, control and mitigation of major accident hazards.

OT operators should ensure they can demonstrate that staffing arrangements are adequate to detect, diagnose and recover any reasonably credible hazardous scenario.

OT operators should develop a fatigue management plan, to ensure that shift work is adequately managed to control risks arising from fatigue.

OT operators should review working conditions, in particular for control room staff, and develop a plan.

OT operators should provide guidance to ensure safe operations by adopting criteria for minimum staffing of the OT at all times.

2.3.3. Process Safety Knowledge & Competence Assurance

Poor process safety knowledge & competence has often resulted in major accidents, due to the fact that it often reflects poor understanding of hazards, failure to properly identify and analyse hazards during the PHA, inadequate operator training, inadequate guidance in emergency response decisions and ultimately in poor management decision-making.

The OT Operator shall ensure that any person under its control performing tasks that can impact the OT’s safety performance are competent on the basis of appropriate education, training or experience, and shall retain associated records.

The OT Operator shall identify the knowledge & competence requirements of all individuals working at the OT; subsequently, a competence gap analysis shall be made based on the actual competence availabilities. A risk assessment and prioritisation of
training needs is the next step to develop a process safety competence assurance programme.

The OT Operator shall develop the competence assurance programme based on insights in safety critical functions, safety critical task inventories and minimum knowledge, skills and abilities for specified functions, such as control room operators, process operators, design engineers etc.

The OT Operator shall provide general risk awareness training and specific process safety training as defined in the training plan to ensure an adequate level of risk competence as addressed in the needs analysis.

The OT Operator shall define refresher training frequencies and updates of training needs based upon experience feedback and changes in legislation, to be able to bridge the gap between reality and expectations.

2.3.4. Education and training

The life-cycle approach to OT requires that personnel in a variety of different professions and institutions have a common understanding and knowledge of the technical and managerial aspects, and use complementary professional procedures in their work. This requires a certain level of training (and re-training) of various persons associated with OT, including contractors.

The personnel concerned should be identified along the “planning-design-construction-operation-decommissioning-rehabilitation” chain.

Personnel working at and responsible for safety of OT should be educated and trained in technology, standards and regulations as well as acting in emergency cases.

The inherent uncertainties surrounding all potentially hazardous OTs require special skills in risk assessment and management but also in risk communication and reporting.

Training of relevant personnel should include apart from the technical aspects of OT also the “context” subjects that concern related disciplines such as environment, social and financial areas, and the risks for the OT operating staff.

2.4. Operating Manual

The OT shall be operated and managed on the basis of an Operating Manual, which is developed in the planning phase and progressively modified. Its aim is to effectively manage the hazards / risks at the OT.
The Operating Manual should contain as a minimum:

(a) Description of the OT and its environment;
(b) Description of normal operations;
(c) The methodology for hazards identification and risk assessment;
(d) Description of all monitoring procedures (sampling locations, sampling frequency, checklists and compliance parameters;
(e) Procedures for reporting on non-compliance and failures;
(f) Procedures describing how corrective actions are to be applied in case of non-compliance situations;
(g) Emergency preparedness and response;
(h) Performance measurement and compliance assessment, including key performance indicators (leading and lagging indicators);
(i) An overview of applicable legal requirements and other requirements to which the OT subscribes (key stakeholder requirements);
 i. Internal auditing and follow-up;
 ii. Management review and continual improvement.

The OT Operating Manual should include or refer to internal inspection programmes.

2.5. Operating Procedures and Safe Work Practices

Operating procedures are those that govern planned activities in a normal sequence of converting raw materials to finished products. Unloading a ship is a typical routine task, described in a procedure and is often associated with a checklist describing the steps to follow.

Safe Work Practices typically control hot work, stored energy (lockout / tag out), opening process vessels or lines, confined space entry and similar non-routine operations. Non-routine work such as the simple removal of a pressure safety valve increases the risk level significantly and can directly lead to conditions that make a catastrophic accident more likely. Safe Work Practices are therefore critical in managing major accident hazards.

2.5.1. Operating procedures

The OT Operator should establish a task list for all routine tasks with the intent to screen those with a high risk potential. Consequently, a task-based risk assessment is recommended for each of the high risk tasks. Controls must be defined to reduce the risk to an acceptable level. The need for an operating procedure as control measure for a specified high risk task is decided by the assessment team.

The OT Operator should consider all operating modes in the task list, including normal and off-normal working conditions such as temporary shutdown, shutdown for annual
maintenance, emergency shutdowns, initial start-up, preparing equipment for maintenance, decommissioning of a unit etc.

The OT Operator is due to put high attention on pre-start-up safety reviews (PSSR) as these reviews may provide a high level of safety when conducted in a comprehensive and professional manner.

The OT Operator must ensure an adequate level of detail in the operating procedures, and therefore address concise instructions where relevant: including Safe Operating Limits and consequences of deviation from these safe limits (also referred to as “operating windows”) are considered good industry practice.

The OT Operator should consider developing written procedures to control temporary or non-routine operations.

The OT Operator should hold their workforce accountable for consistently following the operating procedures and ensure that they are periodically reviewed.

2.5.2. Safe Work Practices for non-routine tasks

The OT Operator should define when and where safe work procedures apply. Typical applications are these non-routine tasks which involve several parties, usually the owner of the equipment and the crew assigned to do a certain job, either by own maintenance staff or by subcontractors. A short non-limitative list is given hereafter to clarify the type of work that usually requires safe work practices:

(a) Lockout/tag-out for control of energy hazards;
(b) Line breaking/opening of process equipment;
(c) Confined space entry;
(d) Lifting over process equipment;
(e) Excavation in or around process areas;
(f) Temporary bypassing of interlocks.

The OT Operator is responsible for providing adequate training to all OT employees and contractors involved, respectively the party responsible for issuing work permits and those who execute the work.

The OT Operator ensures that access controls to particularly hazardous areas are in place.

2.5.3. Shift Handover

Transfer of volatile fuels into storage frequently continues across shift changes, and there is little doubt that unreliable communications about plant or transfer status at
shift change could potentially contribute to a tank overfill. It has been a contributory factor in several previous major accidents.

OT Operators should set and implement arrangements for effective and safe (recorded) communication at shift and crew change handover OT sites should include a summary of the arrangements for effective and safe communication at shift and crew change handover in the safety report.

2.6. Management of Change

Effective management of change (MOC), including organisational change as well as changes to plant and processes (further denoted as technical change), is vital to the control of major accident hazards.

OT Operators should establish a MOC system which allows for properly reviewed and authorized change requests, including risk assessments and risk controls appropriate to the proposed change.

2.6.1. Management of technical change

OT Operators should adopt and implement management procedures for planning and controlling of all changes in plant, processes and process variables, materials, equipment, procedures, software changes, design or external circumstances which are capable of affecting the control of major accident hazards.

OT Operators should ensure they have suitable guidance for their staff about what constitutes a plant or process change, and that they have suitable arrangements in place for management of the range of permanent, temporary, and urgent operational changes.

2.6.2. Management of organisational change

OT Operators should ensure that there is a suitable policy and procedure for managing organisational changes, including a risk assessment to evaluate the likely consequences of the change.

OT Operators should take appropriate measures for retention of corporate memory.

OT Operators should ensure that they retain adequate technical competence and ‘intelligent customer’ capability when work impacting on the control of major accident hazards is outsourced or contracted.
2.7. Good Industry Practice for transport and storage of hazardous materials

Due to the specific activities in OTs a set of Principles and Good Industry Practices is compiled together for transport and storage of hazardous materials:

2.7.1. Principles for safe transfer management

OT operators involved in the transfer and storage of hazardous material should adopt good practice principles for a safe transfer management.

OT operators involved in the transfer and storage of fuel should review ‘job factors’ to facilitate safe fuel transfer. This would normally be via written (and periodically trained) operating instructions for all OT operations.

2.7.2. Operational planning

Human factors issues are important at various safety-critical stages in transfer operations including operational planning.

OT operators that are receivers or senders of hazardous material should develop procedures for successful planning and review them with their senders/receivers and all appropriate intermediates.

2.7.3. Operational controls

The following operational controls apply for areas where hazardous substances are used / stored:

(a) OT operators should ensure the ready availability of a list of all hazardous substances in their facilities, with safety-related information. This includes an updated inventory of actual storage amounts in the tanks.

(b) Areas are clearly marked, properly supervised, and regularly inspected

(c) Stakeholders in the vicinity of OT should share information and experience related to chemical safety. OT operators should coordinate with ship’s masters and the individuals responsible for other transport modes (e.g. pipelines) to ensure that all relevant regulations and codes are followed for the proper transfer and storage of hazardous substances.

Operators have to take care of the following basic safety requirements:

(a) All functional units of an OT have to be closed, stable and sufficiently resistant against mechanical, thermal and chemical influence (primary safety);
(b) Principally a leakage proof and a durable secondary containment have to be put in place;

c) Leakages of water-endangering substances must be detected in time with reliable devices, retained and properly treated or disposed of. This practice is also relevant for any resulting waste.

OT Operators should regularly monitor the OT (e.g. capacity, groundwater level, functioning of the drainage system, surface water diversion).

2.7.4. Principles for consignment of transfer agreements

The sender is primary responsible for the safe transfer of the agreed consignment quantity to the receiving storage.

The following principles apply to all modes of transfers where separate parties control: the supply of material to a tank or tanks; and the tank or tanks. This includes, for example, transfers between sites belonging to one business. It does not apply to transfers where a single person or team controls both ‘ends’ of the transfer, although an equivalent standard of control is necessary.

For transfers from ships into tanks, internationally recognized safety guides should be the appropriate standard.

OT operators involved in inter-business transfer should agree on the nomenclature to be used for their product types.

OT operators receiving transfers should, for each relevant terminal, carry out a review to ensure compliance.

2.7.5. Procedures for control and monitoring of transfer of hazardous materials

Procedural problems are frequently cited as the cause of major accidents. In the major hazard industries, fit-for-purpose procedures are essential to minimize errors and to protect against loss of operating knowledge (e.g. when experienced personnel leave).

OT operators should ensure that written procedures are in place, and consistent with current good practice, for safety-critical operating activities in the transfer and storage of fuel.
2.7.6. Communications during transfer activities

When transferring from e.g. a pipeline or ship, the OT Operator should have arrangements in place to ensure the receiving installation (e.g. storage tank) has ultimate control of tank filling.

The receiving installation control should be able to safely terminate or divert a transfer (to prevent loss of containment or other dangerous conditions) without depending on the actions of a remote third party, or on the availability of communications to a remote location. These arrangements will need to consider upstream implications for the pipeline network or ship.

Events such as level alarm activation should be communicated rapidly to the receiving and sending facility control to avoid the loss of containment and potential problems upstream.

2.8. Management of abnormal situations

Management of abnormal situations often depends on the effectiveness of dealing with large number of alarms centralised in a control room environment when equipment failures are observed. A different type of abnormal situation which is relevant to OTs is dealing with large numbers of contractors on-site during a large turnaround (large stop of activities for maintenance, repair and inspection work).

2.8.1. Alarm Management

Increased automation provides a relatively calm operating scenario when the plant is in a steady state. However, given the importance of alarms in times of upset, the display of alarm information has to be given high priority. Even if there are relatively few alarms on the system and the system is not a distributed control system (DCS) the same principles apply, to ensure a reliable response to alarms.

OT operators should proactively monitor control systems, such as the tank gauge system, so that designated level alarms sound only in situations requiring a response from OT staff.

OT operators should ensure that their control room information displays, including human-computer interfaces and alarm systems, are reviewed in relation to recognised good industry practice.

Where reasonably practicable, OT operators should put plans in place to upgrade control room information displays, including human–computer interfaces (HCI) and alarm systems, to recognized good industry practice.
OT operators should ensure that modifications or development of new control rooms or HCIs comply with recognised industry good practice both in their design, and their development and testing.

2.8.2. Turnaround Management

OT Operators must ensure to implement specific controls when preparing for a large turnaround (activity stop) which usually involves large number of contractors working on-site the facility, e.g. for tank inspections and repairs. Turnaround Management should therefore be done according to standards and GIP as applicable in the refining industry.

In addition to the basic requirements on selection and evaluation of contractor performance (ref. para 54 of Part 1), the following additional requirements are considered as GIP for managing contractors:

(a) Classify the selected contractors as High / Medium / Low Risk Contractors based on well-defined criteria and define controls appropriately;
(b) Designate OT contractor coordinators for the High & Medium Risk Contractors;
(c) Organise pre-job meetings with High & Medium Risk Contractors;
(d) Ensure that competence requirements are met at all times for the High & Medium Risk Contractors; conduct periodical compliance checks and involve them as much as possible in the OT training programmes.

2.9. Investigation of incidents and aftercare

2.9.1. Incident investigation

As technical systems have become more reliable, the focus has turned to human causes of accidents. The reasons for the failure of individuals are usually rooted deeper in the organisation’s design, decision-making, and management functions.

OT operators should ensure they have suitable procedures for:

(a) Reporting of incidents and near-misses;
(b) Identifying incident/near miss potential;
(c) Investigating according to the identified potential;
(d) Identifying and addressing both immediate and underlying causes;
(e) Sharing of lessons learned;
(f) Tracking of remedial actions;
(g) Evaluating the effectiveness of corrective / preventive actions.
OT operators should make periodically statistical evaluations of trends in root causes and other system errors and take adequate measures to avoid recurring incidents.

2.9.2. Damage review and aftercare

The aftercare as a result of an accident event means all measures subsequent to the immediate repair action. Here, the areas of „damage review“ and „follow-up measures“ are to distinguish. The evaluation of an event that occurred at all stakeholder levels is as much a focus as the long-term elimination of the damage, the targeted monitoring of this process and the revision of the general concept regarding the identified weaknesses and failures („lessons learned“). This approach may also get importance with regard to „accidents that were not reasonably foreseeable“. Following the occurrence and management of such an event is to examine whether the classification of the „unpredictability“ of future events of the same type can be maintained.

The damage review follows the course of an event to the immediate activities of crisis management. Having been fighting for the causes of the incident and brought under control and the spread of the acute release of pollutants has been interrupted; the factors and circumstances must be analysed, which led to the development. It is to find out how severe the impact and the damage to be assessed effectively.

The analytical damage review is:
(a) To prevent future incidents of the same kind or at least mitigate the consequences; and
(b) To estimate and to assess the damage extent.

In this case, both the authorities and the operator of defective plants are to be taken in to obligation.

The aim of the official damage review ultimately is the profit of knowledge regarding the secure handling of sources of risks in the field of safety-relevant plants. Of prime importance for the authorities are such events whose impacts cause negative consequences for human beings and the environment, beyond the sphere of influence of the operator. For this, the operational safety management is to analyse and evaluate. The authority registers in cooperation with the operator of the plant the circumstances of the event, the operational safety management regarding the lack of actions, malfunctions or failures that have contributed to the initiation and propagation of the incident.

Even the official crisis management is to be analysed with regard to the proposed allocation of tasks and the effectiveness of the various instruments and bodies for crisis management. Based on the findings from the evaluation consequences can be
drawn for the improvement of emergency planning or for a change of use of crisis management instruments.

The recording of the damage extent is ultimately the completion of damage review. This concerns relevant damages to the environment with regard to the protection of waters as an integral part of the event analysis in addition to damages to persons and belongings.

2.10. **Performance monitoring and compliance assurance**

Measuring performance to assess how effectively risks are being controlled is an essential part of the OTMS.

Proactive monitoring provides feedback on performance before an accident or incident (e.g. leading key performance indicators), whereas **reactive monitoring** involves identifying and reporting on incidents to check the controls in place, identify weaknesses and learn from mistakes (lagging performance indicators) (API 754).

OT Operators should ensure that a suitable active monitoring programme is in place for key systems and procedures for the control of major accident hazards.

OT Operators should develop an integrated set of leading and lagging performance indicators for effective monitoring of process safety performance (API 754 Process Safety Performance Measurement for the Refining and Petrochemical Industries.).

OT Operators should establish and maintain procedures for testing and calibrating instruments and equipment which is considered safety-critical for a safe operation, and shall maintain records of calibration and maintenance activities thereof.

OT Operators shall establish and maintain procedures for periodically evaluating compliance with applicable legal requirements and other commitments to which it adheres.

OT Operators shall keep records of the results of the periodic compliance evaluations.

2.11. **Records management**

The OT Operator should define which records are necessary to demonstrate legal compliance and compliance to other commitments to which the OT subscribes, in addition to conform to the requirements of its OTMS.

The OT Operator should maintain the abovementioned records and establish the duration and location of storage for reasons of traceability and easy retrieval.
Retention of relevant records is also necessary for the periodic review of the effectiveness of control measures, and the root cause analysis of those incidents and near misses that could potentially have developed into a major incident.

OT operators should identify those records needed for the periodic review of the effectiveness of control measures, and for the root cause analysis of those incidents and near misses that could potentially develop into a major incident.

OT operators should use the periodic review results in the training of OT staff.

2.12. Audit and management review

2.12.1. Audits

Audits and reviews should be performed at all stages of the lifecycle of the OT, i.e. to the routine monitoring of performance (i.e. active monitoring).

The OT Operator should carry out periodic audits of the OTMS as a normal part of its business activities.

An audit is a structured process of collecting independent information on the efficiency, effectiveness, and reliability of the total OTMS. It should lead to a plan for corrective action. Intervals between audits should not exceed 3 years.

2.12.2. Management Reviews

Reviews are a management responsibility. They need to take account of information generated by the measuring (active and reactive monitoring) and auditing activities, and how to initiate remedial actions.

The requirements for audit and review are well established. The main issue is to ensure that process safety is adequately included in audit and review programmes.

OT operators should adopt and implement audit plans defining:

(a) The areas and activities to be audited, with a particular focus on process; safety/control of major accident hazards;
(b) The frequency of audits for each area covered;
(c) The responsibility for each audit;
(d) The resources and personnel required for each audit;
(e) The audit protocols to be used;
(f) The procedures for reporting audit findings; and
(g) The follow-up procedures, including responsibilities for implementation.
OT operators should ensure that they have implemented suitable arrangements for a formal review of the suitability of the OTMS and effectiveness of controls of major accident hazards, including:

(a) The areas and activities to be reviewed, with a particular focus on process safety/control of major accident hazards;
(b) The frequency of review (at various levels of the organisation);
(c) Responsibility for the reviews;
(d) The resources and personnel required for each review;
(e) Procedures for reporting the review findings; and
(f) Arrangements for developing and progressing improvement plans.

Feedback of audit findings should be within 2 weeks of the audit to all parties including management and staff at the OT. Corrective actions need to be covered in follow-up reviews scheduled within 1 year of the audit.

2.13. Learning from experience

The management review should form the basis for providing an effective feedback mechanism.

The OT Operator shall consider the past performance to learn from observed deviations, near-misses and accidents occurred as part of its commitment to continual improvement.

A policy statement should be established by the OT Operator which sets a framework to demonstrate its commitment towards management of the major accident hazards to acceptable levels and towards performance improvement and legal compliance.
3. Asset Integrity & Reliability

3.1. Asset Integrity – General Considerations

Asset Integrity is a key element of process safety, including the systematic implementation of activities ensuring that equipment is designed, procured, fabricated, installed, tested and inspected in accordance with agreed specifications, and that it remains fit for purpose throughout its lifetime until it is decommissioned. Asset integrity activities range from equipment design to plant operators conducting routine rounds spotting leaks, unusual noise or detecting other abnormal conditions.

Reliability engineering is the process of evaluating how long a system and its components can be operated safely before they must be taken out of service for maintenance or replacement. Reliability engineering enables the planning of inspection and maintenance intervals, and is therefore of paramount importance for safety critical equipment and instrumentation.

The safe design standards as specified in section 1.3 shall be integrated in a comprehensive OT Requirements Database for further reference throughout all other phases of the OT lifecycle. A selected set of good industry practices are given hereafter:

3.2. Inspection, Testing and Preventive Maintenance (ITPM)

ITPM practices must be in place to help ensure that equipment is fit for service at commissioning and remains fit for service throughout its lifetime.

3.2.1. ITPM during plant commissioning:

The OT Operator should conduct initial inspections and tests during fabrication and installation as part of plant commissioning. Eventually, this can be done partially at the fabricator’s shop for special-order items (when judged to be highly critical that equipment is fabricated according to design specifications).

3.2.2. ITPM during operations:

An ITPM plan shall be established by the OT Operator, and ITPM tasks clearly defined:

(a) Storage tanks and the mechanical equipment attached should be maintained to good industry practice (e.g. API 65328), represent relevant good practice and should form the basis of minimum industry standards for tank integrity management and repair to prevent loss of primary containment
(b) Inspection and Testing:

i. OT Operators should have a process for determining the scope of the asset integrity program and frequency of inspection and testing. This includes the storage and transfer hardware facilities, measurement and control systems, emergency response equipment, communications, security controls.

ii. Inspection and testing should include the operator training programmes, emergency response procedures and liaison with emergency services and the local community during emergencies.

iii. Inspection and testing shall be done regularly: The methods will typically be Non Destructive such as Ultrasonic, X ray, Magnetic Particle, etc. and should be carried out to methods and frequency set out by industry standards organisation.

iv. OT Operators should establish and implement procedures for inspecting and calibrating safety critical equipment and instruments, and keep records thereof. Inspection and testing should apply to all equipment such as piping, valves, pumps, and emergency equipment such as fire pumps and fixed and mobile fire fighting equipment.

v. Control and safety instrumentation (level, pressure, temperature) should be comprehensively tested (whole loop – field sensor, logic solver and final element) in accordance with normal industry practice and standards (such as IEC standard 61511). Where the system is protected by alarms, testing should include the operator response, recognising the need to understand an alarm and the time need to respond and correct the hazardous state.

vi. Condition monitoring is done according to the planned schedule and deviations or overdue ITPM tasks are monitored and followed up.

vii. ITPM tasks are conducted by trained and qualified individuals using approved methods/procedures.

viii. Repair work should be done in conformance with design codes, agreed engineering standards and considering manufacturer’s recommendations, as applicable.

ix. A spare parts management plan should be applied to ensure timely availability of critical spare parts.

x. A mechanism must be in place to correct deficiencies and to apply the lessons learned from deviations or near miss incidents to other equipment / systems.
4. Emergency Planning and Response

4.1. Emergency Plans - General

Emergency plans are the most important part of crisis management. Therefore emergency plans should be established for each OT for phases of construction, operation and closure. The appropriate emergency plan needs to be established prior to accepting construction, operation or closure by authorities. Hence, they shall be drawn up within the periods set by local or international rules.

Emergency plans should be established, tested and revised by OT operator (internal plans) and by authorities (external plans), in particular after occurrence of accident or emergency situation at the site or other similar sites. The revision should be made also when the emergency service organization was changed or new technical knowledge was developed. Updates should be carried out on a frequency not exceeding 5 years.

The plan should i.e. evaluate downstream inundation hazard resulting from i.e. floods and upstream conditions that might result from major land displacements or increased flood flows. If applicable, the plan should include inundation maps for the flows resulting from design floods.

The emergency plans should include:

- The scope and objective of the emergency plan;
- Evaluation of emergency scenarios, hazards, potentially affected areas etc.;
- Responsibilities of each member of the organization (chain of responsibility and authority for actions to be taken);
- Organization of communication and notification procedures;
- Available equipment for interventions;
- Procedures for emergency response for each of the determined emergency scenarios;
- Involvement of ship crews (communication and action);
- Procedures for remediation;
- Requirements for annual emergency drills and practices with external agencies involvement (Fire, Police, Ambulance, Local Hospitals).

4.1.1. Internal Emergency Plans

The internal emergency plans should be part of the operating manual. The internal emergency plan, specific for each site and situation, must be developed and continuously revised. The revision should be always done when:
(a) New risks are identified that are associated with the OT;
(b) Design values are approached or exceeded as a result of changes, mismanagement, structural problems, equipment modification or natural events.

The internal emergency plans should contain estimation on amounts and types of construction materials and equipment needed for emergency repairs based on the structural, foundation, and other characteristics of the OT; design and construction history; and history of prior problems.

Plans for notification of key personnel and the public must be an integral part of the emergency plan and should be prepared for slowly developing, rapidly developing, and instantaneous failure conditions.

Internal emergency plans should at least include:

(a) Names and/or positions and contact data of persons authorized to set emergency procedures in motion and of the person in charge of and coordinating the onsite mitigation action;
(b) Name and/or position and contact data of the person responsible for liaising with the CA in charge of the external emergency plan;
(c) Arrangements for initiating and activating the alert and call-out procedures continuously;
(d) Arrangements and devices for receiving warnings of incidents;
(e) For foreseeable conditions or events which could trigger an accident, a description of the actions which should be taken to control those conditions or events and to limit their consequences e.g. fire protection and fire water retention, including a description of the safety equipment and the resources available;
(f) Arrangements for limiting the risks to persons on site, including the way in which warnings are to be given and the actions which persons are expected to take upon receiving a warning;
(g) Arrangements for providing early warning of the accident to the CA responsible for setting in motion the external emergency plan; the type of information which should be contained in an initial warning; and arrangements for the provision of more detailed information as it becomes available;
(h) Arrangements for training staff in the duties they will be expected to perform and, where necessary, coordinating this with emergency services.

4.1.2. External Emergency Plans

External emergency plans are prepared and implemented by the CA, however OT operators are obliged to provide the local authorities with all necessary information with the type and degree of occupancy of the potentially affected area.
Public should be given the opportunity to participate in the preparation and revision of the external emergency plans.

It should be also ensured that in border areas the contingency plans of two regions of neighbouring countries are compatible with each other and include contact details to allow proper notification. The Public of neighbouring countries should be given the same rights as public of the concerned country to participate in preparation and revision of external emergency plans.

External emergency plans should at least include:

(a) Names and/or positions and contact data of persons authorized to set emergency procedures in motion and of persons authorized to take charge of and coordinate action;
(b) Arrangements for receiving early warning of accidents and for alert and call-out procedures;
(c) Arrangements for coordinating the resources necessary to implement the external emergency plan;
(d) Arrangements for providing assistance with mitigation action;
(e) Arrangements for off-site mitigation action;
(f) Lists/maps of sensitive areas and objects with their specifications;
(g) List of the agencies and organizations that can assist with the management of the incident;
(h) Arrangements for providing the public with specific information on the accident and the actions it should take;
(i) Arrangements for notifying the emergency services of neighbouring countries in the event of an accident with possible transboundary consequences, in accordance with internationally accepted and established warning- and alert-systems.

4.2. Emergency Response

4.2.1. Warning and alert Systems

Leakages into receiving waters can cause far-reaching and often transboundary damages.

Essential instruments of disaster preparedness are early warning- and alert-systems. Integral part are Early Warning Systems which need first, a suitable organization (distribution of the measuring devices, networks of stations with each other, etc.) and the other a technical equipment for event detection and assessment of warning and alert relevance. These Early Warning Systems are often integrated in International Warning- and Alarm Plans established by International River Commissions.
Early warning systems are to be set up by the operator at the OT and the state bodies for the whole river catchment.

At OT a continuous „online monitoring“ has to be set up and adjusted to different alarm levels. These alarm levels have to be agreed with the CA and should be in line with the respective threshold levels of International Alarm plans (i.e. Rhine, Maas, Danube). For scenario-calculations regarding a discharge, established flow time-modelling should be used (i.e. Rhine-model, ALAMO).

4.2.2. Emergency Response Equipment

The OT Operator should identify the emergency needs based on risk assessments of major accident scenarios; the safety report should be used as guidance document.

For preparedness to potential accidents the following emergency response equipment has to be in place and operational:

(a) Fire protection:
 Fire water sources (Storage tanks, City water supplies, harbour water), Fire pumps, Sprinkler Systems, Fire Fighting Foam systems, Deluge systems, Steerable Deck Monitor nozzles (with or without foam injection). Also portable equipment, like fire trucks/pumpers, Fire Hoses, Portable Monitors, Fire extinguishers
(b) Emergency Power;
(c) Hazard Detection systems: gas & fire detection equipment;
(d) Emergency & Rescue Equipment.

4.2.3 Emergency Teams

The OT Operator must ensure that an Emergency team is established which is capable to respond to the defined major accident scenarios. The Emergency Team should comply as a minimum to the applicable legal requirements.

The OT Operator must ensure that training programmes are organised and executed based on a needs assessment, and compliant to legal requirements.

The OT Operator must ensure that an adequate number of emergency drills are executed, which corresponds as a minimum to applicable legal requirements. The CAs may require specific scenarios to be tested jointly with other Emergency Teams located in the same region.

A system must be in place to evaluate the adequacy of the emergency team’s capability to deal with the major accident scenarios.
5. Managing Lifetime & Decommissioning

Offshore structures are typically designed and built for a pre-defined lifetime of typically 20 to 30 years, followed by a planned decommissioning. This approach of building with a design lifetime is not applied for onshore plants and structures, except for nuclear plants.

The applied methodology for lifetime extension for offshore facilities is subject to a regulatory scheme, starting with a condition assessment and gap analysis (against legal requirements and other regulatory issues), a criticality screening followed by risk assessment & risk mitigation to justify for life extension. An extension of lifetime can be considered after a thorough assessment of the asset integrity and compliance considerations pertaining to the new extended life.

Onshore process plants are usually not designed with a planned design life and a decommissioning time limit in mind. The average estimated design life of a typical process plant is about 25 years. Turnarounds are usually the triggering points to assess the integrity status of critical assets and those with the highest deterioration rate. As such, there is a continual “rejuvenation” that takes place during large turnarounds every x years. Onshore process plants are continuously maintained and repaired as soon as ageing of assets is observed.

OTs are in-between the above described cases: they may be considered as offshore structure in case the terminal is located near a marine coast/harbour, but they are often not built with a predefined design lifetime.

5.1. Temporary closure (“preservation”)

The industrial facility can be considered for temporary closure, partly or completely, when there is insufficient fuel demand / raw material supply, in case of poor market conditions or due to other economic reasons. The following considerations are recommended as GIP during this de-activation phase, also denoted as “mothballing” or “hibernation phase”. This hibernation phase is typically about 1 year and should not last longer than 3 years, after which re-activation or decommissioning should take place.

The OT Operator shall develop a Temporary Closure Plan, considering at least the following issues:

(a) The closure will not cause adverse environmental impacts or imminent threat to human health at the site;
(b) The closure will not cause significant harm or significant burden on public facilities and other plants or land areas adjacent to this industrial facility;
(c) Existing components and waste are properly disposed of and harmlessly utilized or destroyed without harm.

It should be clear that a temporary closure is not a site abandonment. Before undertaking any work on temporary closure, the OT Operator should agree with the Competent Authority on surveillance of the Temporary Closure Plan, which covers following recommendations:
(a) The parts of the industrial facility containing substances hazardous to water must be drained, decontaminated and if necessary inactivated with a substance not hazardous to water (e.g. water or nitrogen);
(b) All piping must be separated from storage tanks and cisterns and tightly flanged;
(c) All storage tanks and piping left in situ should be cleaned and inerted for mothballing with inert gas or hydrophobic foam, as applicable;
(d) Devices showing leakage must remain under control/supervision;
(e) All parts of the industrial facility that are temporarily closed must be protected against illegal use;
(f) It is considered unacceptable to store barrelware with substances hazardous to water. If this is impossible/not cost effective due to the temporary closure – it is necessary to comply with the relevant recommendations of international river commissions. These warehouses with barrelware should not be considered as a closed industrial facility;
(g) Those parts of the industrial facility that are temporarily closed and located at areas prone to floods, should be protected in accordance with international River Commissions’ recommendations for flood protection;
(h) Before re-activation of the mothballed facility or parts of the industrial facility, it should be inspected in accordance with the recommendations of River Commissions and other recommendations, as applicable. The conditions for re-activation should be reflected in the Temporary Closure Plan.

5.2. Decommissioning

Decommissioning means the permanently taking out of service of the plant or industrial facilities. Decommissioning includes dismantling, demolition & disposal of terminal buildings and infrastructure and last but not least dealing with the potential liabilities associated with the partial closure or complete cessation of the OT activities.

Oil Terminals shall be closed:
(a) If the relevant conditions stated in the permit have been met and continued operations through lifetime extension are not justifiable from an economic viewpoint;
(b) At the substantiated request of the operator, after authorization of the CA; or
(c) If the CA so decides for obvious and justified reasons.

When designing new industrial facilities it is important to anticipate on the decommissioning activities and to incorporate them in the design phase; the so-called “design for decommissioning” principles are recommended as GIP for new facilities/plants.

The features dominating the decommissioning activities are the pollution prevention and control requirements as defined by the IPPC Directive, recently recasted via the Industrial Emissions Directive (IED 2010/75/EU). This Directive requires establishing a Decommissioning Plan for both existing and new industrial facilities and to use Best
Available Techniques to prevent or minimise pollution to the environment. In addition, the Directive 2004/35/CE addressing the environmental liability of the Operator is applicable when environmental damage is caused by the OT Operator, or when an imminent threat of such damage is observed.

5.2.1. Principles of Design for Decommissioning

The following 4 key activities reflect the “design for decommissioning” proactive approach, recommended as GIP, to be considered during the OT design phase:

(a) Identifying and implementing current and future legislation, regulatory and contractual requirements, This implies by example:
- Applying the IED Directive 2010/75 (identification of specific site conditions and site closure plans aiming at reaching a “satisfactory state” and preventing on-going pollution).
- Applying relevant legislation on end-of-life equipment (e.g. waste electronic equipment).

(b) Establishing the contractual liabilities of the OT Operator, i.e. the company should only be responsible for pollution caused by their own operations (for properties that are bought or leased). This triggers the OT Operator:
- To consider any insurance requirements.
- To make possible provisions for future costs.
- To establish conditions and method statements for subcontractors.

(c) Establishing the environmental baseline for soil and groundwater, aiming at:
- Identifying any existing pollution, sources and possible pathways offsite;
- Providing a comparison point for future assessment so that it is easier to show the responsibility for existing pollution at the end of the life of the plant
- Considering the influence of neighbours and surrounding land use;
- Considering the possible impacts of natural phenomena, such as flooding, on the possible spread of pollution offsite;
- Considering the impacts of rainwater runoff.

(d) Specifying design requirements (see details sub section 1.5.1)

NB: The above information may be used as part of the permit preparation and should be generated at the design stage for new industrial facilities.
5.2.2. Obligations of the OT Operator prior to decommissioning

(a) Regulatory Framework:
It is vital to identify all the legal requirements at an early stage in the planning phase and to make contact with the appropriate authorities to understand their requirements. Besides the European Legislation (e.g. IPPC & IED Directive) one should identify the applicable regional & national legislation and compile an overall Regulatory Framework related to decommissioning issues.

(b) Notifications:
Appropriate notifications need to be made to different local and national authorities when decommissioning activities are planned. Additional pollution prevention measures or remediation can be required depending on the planned future uses of the land.

(c) Environmental Liability:
Upon definitive cessation of the activities, the OT Operator shall assess the state of soil & groundwater contamination by relevant hazardous substances used, produced or released as a result of the terminal operations and compare this with the “baseline conditions”.

The OT Operator should apply sound risk assessment procedures to establish the actual environmental situation and level of significance of the pollution of soil and groundwater at cessation of its activities.

In case of significant environmental damage resulting from the OT operations or in case of an imminent threat of such damage, the OT Operator shall adopt measures and develop practices for remediation of land damage and to minimise the risks of environmental damage, aiming at reaching the baseline condition (return the site to the state described in the baseline report).

This liability principle also applies to potential risks for human health as defined in the EU Directive 2004/35/ CE relating to environmental liability and the Industrial Emissions Directive 2010/75/EU pertaining to site closure.

It is worth noting that these EU Directives do not prevent Member States from maintaining or adopting more stringent provisions in relation to the prevention and remedying of environmental damage.

(d) Best Available Techniques (BAT):
The permit should include all the measures necessary to achieve a high level of protection of the environment as a whole and to ensure that the installation is operated in accordance with the general principles governing the basic obligations of the operator.
BAT’s, when applicable, should be incorporated by the CA in the permit. The permit should also include emission limit values for polluting substances, or equivalent parameters or technical measures, appropriate requirements to protect the soil and groundwater and monitoring requirements.

5.2.3. Obligations of the OT Operator during decommissioning

The OT Operator is bound to adopt general SHE guidelines for prevention and control of community health and safety impacts that may occur at the end of the project lifecycle, including decommissioning.

The key topics to address and for which procedures and best practices should be in place relate to mitigation of adverse impacts and prevention of safety incidents:

(a) Noise and vibration (e.g. during earth moving, use of excavation equipment, cranes and transportation of materials and people);
(b) Soil erosion (e.g. by exposure of soil surfaces to rain and wind during earth moving and excavation activities); this may mobilise and transport sediment /soil particles which in turn may impact the quality of natural water systems;
(c) Air quality (decommissioning activities may generate emission of fugitive dust, uncontrolled release of asbestos fibres and other hazardous materials);
(d) Hazardous materials (release of petroleum based products such as lubricants, hydraulic fluids, PCB’s, oil etc. during storage, transport or use in equipment, spill clean-up material etc.),
(e) Solid waste (release of non-hazardous materials such as scrap and cement building materials),
(f) Exposure to occupational health and safety hazards (e.g. ergonomic injuries during manual handling, slips and falls, work at height, struck by objects, moving machinery, confined spaces and excavation, traffic).

The OT Operator should adopt best practices to implement the EU Directive 92/57/EEC pertaining to the safety of temporary or mobile construction sites. This Directive is applicable to plant dismantling and demolition activities when these activities are over 30 man days in duration.

In addition, the OT Operator is responsible for maintaining 3 key activities up and running:

(a) The implementation of the Closure Plan
(b) Depending on outcome of the environmental risk assessment and degree of environmental damage caused, the OT shall take the necessary actions aimed at the removal, control, containment or reduction of relevant hazardous substances, so that the site, taking into account its current or approved future use.
(c) Environmental monitoring and reporting as defined in the permit and the outcome of the environmental risk assessment (e.g. storage tank emissions to air & water, effluent discharges, groundwater monitoring and waste disposal).

5.2.4. Obligations of the OT Operator after decommissioning

After an OT site has been closed, the operator remains responsible for monitoring, reporting and corrective measures until the site is returned to the satisfactory state as described in the environmental baseline report.

The OT Operator shall also be responsible for sealing the OT industrial facility and removing the facilities. The above obligations shall be fulfilled on the basis of a post-closure plan designed by the OT Operator based on Good Industry Practices. A provisional post-closure plan shall be submitted to the CA.

Prior to the final closure of the OT site, the provisional post-closure plan shall be:
(a) Updated as necessary, taking account of the risk analysis outcome, GIP and technological improvements;
(b) Submitted to the CA for its approval; and
(c) Approved by the CA as the definitive post-closure plan (final decommissioning).

The approved definitive post-closure plan is considered as the formal transfer of responsibility from the OT Operator to the CA. The CA shall then be responsible for further monitoring and corrective measures, considering the future destination of the OT site.
PART 3: SOURCES & FURTHER READING

151412 ADNR

DIN, ASA etc.

Safe Work Practices (SWP) for process operators

Safe Work Practices (SWP) for maintenance / facility operators