Integrating Anthropogenic Resources into UNFC-2009: Update on Case Studies

Andrea Winterstetter, David Laner, Helmut Rechberger, Johann Fellner
Christian Doppler Laboratory for Anthropogenic Resources
Institute for Water Quality, Resource and Waste Management

1. The Bigger Picture
2. Goal & Motivation
3. Application of Primary Resources Concepts to Anthropogenic Resources
4. The Case of Old Landfills, Obsolete PCs and In-Use Wind Turbines
5. Conclusion & Outlook
1. The Bigger Picture

Need for final sinks **GROWING!!**

- In-use stocks
- Waste flows
- Obsolete Stocks **GROWING!!**

Use & disposal of materials & goods **GROWING!!**

- Energy input
- Emissions
- Local environmental pollution
 - … **GROWING!!**

Raw materials extracted **GROWING!!**

Low grade ores
The Bigger Picture 2

- Raw materials extracted
- Waste reduced
- Emissions saved
- Supply security
- ... GROWING!!

Need for final sinks

UBERN MINING & RECYCLING

GROWING!!

Use & disposal of materials & goods
GROWING!!

• Energy input
• Emissions
• Local environmental pollution
• ...

Raw materials extracted

Low grade ores
2. Goal & Motivation

Goal: Fit anthropogenic resources into UNFC-2009

Why?

- **Holistic view** of resource availability
- Information for decisions makers in **waste management**
- Feedback for **design for recycling**

→ **Systematic & transparent** method necessary
3. Application of a Primary Resource Classification Framework to Anthropogenic Resources
Human Activity

(1) Human influence
(2) Diverse & scattered sources
(3) Many diverse recoverable fractions
(4) Time of genesis shorter
(5) High uncertainties
(6) Anticipating future obsolete stocks & waste flows by investigating in-use stocks
(7) Often positive externalities

Winterstetter et al. Submitted a.
Availability

- "Push" vs. "Pull" situation:
 - "Pull": Landfill can be mined for resource recovery
 - "Push": Due to imminent pollution threat some landfills must be mined, e-waste flows must be treated in any case (EU law)
4. Three show cases

In-Use Stock: NdFeB magnets in wind turbines

Waste Flow: Obsolete PCs

Obsolete Stock: Old landfill
Case Studies: Results

<table>
<thead>
<tr>
<th></th>
<th>Old landfill</th>
<th>Obsolete PCs (EU)</th>
<th>Permanent magnets in wind turbines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>Potential future</td>
<td>Scenario 1 (High income & collection rate)</td>
</tr>
<tr>
<td>NPV total</td>
<td>-277 Mio.</td>
<td>46 Mio.</td>
<td>96,000</td>
</tr>
<tr>
<td>NPV in € / t</td>
<td>-17</td>
<td>2.9</td>
<td>120</td>
</tr>
<tr>
<td>excavated waste materials / t collected PCs / t magnetic scrap</td>
<td>98</td>
<td>120</td>
<td>340</td>
</tr>
</tbody>
</table>
Classification under UNFC-2009
5. Conclusion & Outlook

- Classification of different types of anthropogenic resources under UNFC-2009 possible
- Operative evaluation procedure & guidelines developed
- Criteria in line with the classes of UNFC-2009 defined, e.g. in-use stock = F4

Challenges:
- How to deal with the inclusion (monetization) of non-monetary effects: E-axis?
- System boundaries of “project” for dynamic waste flows?

Common platform for evaluating
a) Different types of anthropogenic resources
b) Geogenic & anthropogenic resources
Thank you for your attention! 😊

Contact: Andrea Winterstetter
PhD Researcher
Tel: +43 1 58801 22659
andrea.winterstetter@tuwien.ac.at

Many thanks to the contributors:

David Laner
Johann Fellner
Literature

<table>
<thead>
<tr>
<th></th>
<th>Obsolete Stocks</th>
<th>Waste Flows</th>
<th>In-Use Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Old Landfill)</td>
<td>(Obsolete PCs)</td>
<td>(NdFeB Magnets)</td>
</tr>
<tr>
<td>E1</td>
<td>Project yields positive NPV</td>
<td>KMF: Labor costs, avoided disposal costs, secondary raw material prices</td>
<td>KMF: Secondary raw material prices, REE separation costs in hydrometallurgical scenario</td>
</tr>
<tr>
<td>E2</td>
<td>Project yields negative NPV, but due to future expected changes in key modifying factors (KMF), cut-off values might be reached</td>
<td>KMF: Treatment costs, secondary raw material prices, gate fees for energy recovery</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>Project yields negative NPV</td>
<td></td>
<td>or evaluation is at too early stage to determine economic viability</td>
</tr>
<tr>
<td>F1</td>
<td>Feasibility of extraction by a defined development project or mining operation has been confirmed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Existing legal framework</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Existing societal, institutional & organizational structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Mature technologies applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Project status: Ongoing activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scenario 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing infrastructure & public awareness for PC collection via EPR (in line with WEEE directive).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Feasibility of extraction by a defined development project or mining operation is subject to further evaluation, at least one of the F1 criteria is not fulfilled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ No legal framework for landfill mining</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Positive public perception</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Mainly design & planning activities ongoing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Operations only on a pilot scale.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scenario 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weakly enforced laws</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor collection infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low awareness about source separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application of established recycling methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interference with informal recycling sector (high uncertainties about collection rates).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>Feasibility of extraction by a defined development project or mining operation cannot be evaluated due to limited technical data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extraction, processing & valorization technologies exist and are planned to be applied, but the project is not sufficiently advanced to determine the quantity & quality of potentially recoverable material, F1 criteria are widely not fulfilled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Winterstetter et al. Submitted a
| F4 | In situ (in-place) quantities that will not be extracted by any currently defined development project or mining operation.
• F1 criteria are not fulfilled, also not (yet) existing technologies
• F4.1 – F4.3 describe the current state of technological development:
 o F4.1: Technology under development, but no type-specific applications (yet)
 o F4.2: Technology is researched, but pilot studies are not yet available
 o F4.3: Technology for recovery is not currently under research or development
| | In-use stocks are classified as F4 as they are currently not available for mining.
| | No legal framework for treating obsolete wind turbines
| Scenario 1 (re-use) |
| F4.1: Existing research project on the re-use of NdFeB-magnets from hybrid cars & e-vehicles
| Scenario 2 (hydrometallurgy) |
| F 4.2: Technology currently being researched \(\text{e.g. } Ellis \text{ et al., 1994; Itakura et al., 2006; Itoh et al., 2009}\), but no successful pilot studies have yet been completed / no published data |
| G1 | The stock’s / flow’s volume, composition & the applied technologies’ recovery efficiencies can be estimated with a high level of confidence to assess the share of potentially extractable & usable materials*
Alternative: P90 => Low estimate** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>Scenario 2</td>
</tr>
</tbody>
</table>
| • Volume & composition of PC waste flow is well known
• Recovery efficiencies are well known | • Volume & composition of waste flow is well known, however significant uncertainties about collection rate due to informal sector
• Recovery efficiencies can be estimated with sufficient detail |
| G2 | The stock’s / flow’s volume, composition & the applied technologies’ recovery efficiencies can be estimated with a medium level of confidence to assess the share of potentially extractable & usable materials*
Alternative: P50 => G1+G2 = Best estimate** |
| **Scenario 2** |
| • Medium level of confidence about quantity & composition of landfilled material (based on sample excavations & the landfill’s logbook data).
• Recovery efficiencies sufficiently known |
| G3 | The stock’s / flow’s volume, composition & the applied technologies’ recovery efficiencies can be estimated with a low level of confidence to assess the share of potentially extractable & usable materials*
Alternative: P10 => G1+G2+G3 = High estimate** |
<p>| G4 | Quantities estimated during the exploration phase, subject to a substantial range of uncertainty & major risk that no mining operation will be implemented to extract these quantities |</p>
<table>
<thead>
<tr>
<th>Phases & UNFC axes</th>
<th>Goal</th>
<th>Influencing factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prospection</td>
<td>Selection of a deposit to be mined (preconditions)</td>
<td>Availability: In-use stock, Obsolete stock, Waste flows
 Mining / handling condition: Push, Pull
 System Variables: Type, Location, Volume, Composition</td>
</tr>
<tr>
<td>G Axis</td>
<td>First estimates on resource potential</td>
<td></td>
</tr>
<tr>
<td>2. Exploration</td>
<td>Knowledge on the deposit’s share of extractable & potentially usable materials</td>
<td>Technical feasibility & Project status: Legal, institutional, organizational & societal structures, Different options for technologies & project set-ups for extraction & processing with specific efficiencies & maturity, Project status</td>
</tr>
<tr>
<td>G Axis, F-Axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Evaluation</td>
<td>Socioeconomic viability of extraction & utilization</td>
<td>Modifying factors: Prices for secondary products, Costs, Avoided costs, Indirect financial effects & monetized external effects</td>
</tr>
<tr>
<td>E-Axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Classification</td>
<td>Combination of all criteria & classification under UNFC-2009</td>
<td></td>
</tr>
</tbody>
</table>
Investigated Scenarios

Old landfill Belgium

Obsolete PCs (EU)

Permanent magnets in wind turbines in Austria

Resource potential: Extractable & potentially usable materials

Legal, institutional, organizational & societal structures

Different technological options

Modifying Factors: Prices & (Avoided) Costs

Landfill Mining (LFM) present

LFM Future: Metal prices x2, Sorting Cost –20%, Incineration RDF: Revenues instead of costs

PCS1: City 1: High income & collection rate, Mech.-manual dismantling

PC S2: City 2: Low income & collection rate, manual dismantling

WT S1: Re-use of magnets

WT S2: Hydrometallurg. Extraction of Nd, Dy, Pr, Fe, B

Evaluation

Prospection & Exploration