ENGINEERING TOMORROW



## Energy savings in Danfoss - focus on **Nordborg campus**

October 2017



#### About Danfoss

Danfoss engineers technologies that enable the world of tomorrow to **do more with less**. We meet the growing need for **infrastructure**, **food** supply, **energy** efficiency and **climate**friendly solutions



ENGINEERING TOMORROW

# Energy efficiency in our buildings

#### **Technical building systems – our solutions for improvements**



- Global energy saving project in the 27 largest factories worldwide
- Target is to cut energy consumption >30% with payback <3 years
- Purpose is to increase resilience and competitiveness and to free resources that can be invested elsewhere
- Special focus on Nordborg campus CO<sub>2</sub> neutral before 2029



# Global program for energy savings





- Consume 84% of the total energy consumption in Danfoss
- Total yearly spent on energy in Danfoss > EUR 40m
- 50% is used in buildings and utilities
- 50% in production and processes
- 68% of consumption is electricity, 32% is heating

- >170 energy saving projects identified in buildings and supply installations
- Buildings: 30% savings in terms of consumption. 44% savings in terms of money
- Estimated annual savings in energy costs EUR 9m
- Overall net investment EUR
  24m after receiving energy subsidies of EUR 4m
- Overall payback time of 2.75 years

Where is the saving potentials?

| Ventilation      | -39%        |
|------------------|-------------|
| Process cooling  | -35%        |
| Air-conditioning | -30%        |
| Heating          | -22%        |
| Lighting         | <b>-20%</b> |
| Compressed air   | -10%        |

The project is **56%** implemented in terms of investment and **49%** of the savings are realized.



### Energy consumption at Nordborg campus



ENGINEERING TOMORROW

### Examples of technical solutions



The energy savings varies from area to area – but range between -30% to -75%.

This application uses variable speed drives, motorized valves, actuators and pressure transmitter. Large industrial ventilation systems with heat-recovery by connecting exhaust from production processes into the main ventilation system.







### Examples of technical solutions

Four 500 kW **industrial heat pumps** recovering excess heat from process cooling water(previously removed in cooling towers).

Capacity of 15.000 MWh / year

This application uses variable speed drives, motorized valves, actuators, pressure transmitters and level sensors.

#### The business case

| Investment         |  |
|--------------------|--|
| Energy recovery    |  |
| Electricity for HP |  |
| Heat recovery tax  |  |
| Annual savings     |  |
| Simple payback     |  |

€ 1,250,000 9,900 MWh / € 775,000 2,475 MWh / € 185,000 € 120,000 € 470,000 2.6 years





# Examples of technical solutions



- We have optimized TBS continuously
- Most recent renovations include:
  - New central control of radiators
  - Efficient lighting systems (LED)
  - Optimized heat recovery units
  - Optimizing chiller using Turbocor cooling compressor
- Optimizing TBS is a low investment with short payback and high energy savings
- It makes sense to optimize TBS as a first step of a renovation, then use the saved resources for further improvements



### Conclusions on the Nordborg campus

- We have in just four years reduced the energy consumption for heating by >30% and the cost by >50%
- 18% of the heat demand in Nordborg is now covered by surplus heat
- Step-by-step renovation, starting with technical buildings systems

Why have we done this?

- Economic rationale: energy savings, freed resources, increased resilience and competitiveness
- Political context and regulatory framework: COP 21, EU targets

- Energy efficiency makes a great business case for industry and business, but regulatory push is needed
- The solutions are easily transferable to other countries or industries, e.g. using the ESCO model





#### ENGINEERING TOMORROW