Australia Coal Sector Update to the 22nd Session of the Global Methane Initiative (GMI) Coal Subcommittee

Department of Industry and Science
27 October, 2015
Geneva, Switzerland

Presented by Dr Hua Guo, Research Director
Coal Mining, Energy
Commonwealth Scientific and Industrial Research Organization (CSIRO)
Coal is one of Australia’s most significant energy resources

In 2014-15 Australia:

- Produced 442 million tonnes of coal:
- Exported 392 million tonnes of black coal worth around $38 billion or around 12% of Australia’s total goods and services export income that financial year;
- Coal also met over 61% of our electricity generation.
CMM Project Outlook

- The Australian Government is committed to reducing greenhouse gas emissions to 5% below 2000 levels by 2020. Further, it proposes an additional response of reductions between 26–28% below 2005 levels by 2030.

Coal Methane Abatement Projects

The Coal Mining Abatement Technology Support Package (CMATSP) provides assistance to the coal industry to facilitate the commercialisation of fugitive methane abatement technologies

Six Projects - Funded by Government and Industry ($36.6 million government funds / ~$82 million total value)

Projects support the development and demonstration of technologies to safely reduce fugitive methane emissions from coal mines

Knowledge sharing through the GMI
CMATSP Projects

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Aims</th>
<th>Total Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centennial Coal Company</td>
<td>Safety Duct and Ventilation Air Methane-Regenerative Air Burner (VAM-RAB) Scale Up
 To install a direct coupled regenerative thermal oxidiser (RTO) to a ventilation fan and to develop transparent methodology for future installations at Australian coal mines.</td>
<td>$30,923,000</td>
</tr>
<tr>
<td>University of Newcastle (UON)</td>
<td>Chemical Looping VAM Abatement
 To further development and pilot-scale demonstration of a novel ventilation air methane (VAM) abatement technology based on the chemical looping concept and is referred to as 'VAM chemical looping oxidiser (VAMCO)'.</td>
<td>$8,506,000</td>
</tr>
<tr>
<td>University of Newcastle (UON)</td>
<td>VAM Abatement Safety
 To determine the critical science and engineering issues that underpin the safe operation of VAM capture ducts, an integral component of large-scale VAM abatement systems to address fugitive emissions at Australian coal mines.</td>
<td>$26,931,212</td>
</tr>
<tr>
<td>Commonwealth Scientific Industrial Research Organisation (CSIRO)</td>
<td>Novel VAM Technologies
 To test and demonstrate three different prototype technologies designed to mitigate and utilise fugitive methane emissions from the ventilation air of coal mines.</td>
<td>$7,087,619</td>
</tr>
<tr>
<td>Bulga Underground Operations and Commonwealth Scientific Industrial Research Organisation (CSIRO)</td>
<td>Methane Capture and Abatement Optimisation
 To develop an advanced approach and technologies to optimise the design and operation of mine gas drainage and ventilation systems and improve the longwall post drainage efficiency.</td>
<td>$6,900,000</td>
</tr>
<tr>
<td>Commonwealth Scientific Industrial Research Organisation (CSIRO)</td>
<td>Open Cut Emissions
 To investigate the potential uses and likely uncertainties associated with inverse and traverse based atmospheric methods for estimating fugitive gas emissions in open cut coal mines, and design an appropriate monitoring network and modelling approach that would maximise the accuracy and precision of the results obtained from any subsequent field trial.</td>
<td>$1,477,042</td>
</tr>
</tbody>
</table>
Centennial VAM-RAB Scale Up Project Progress

- **Stage 1** – Design assurance framework
 Complete
- **Stage 2** – Detailed design
 Commenced, Due May 2016
- **Stage 3** – Testing, modelling & final design
 Due August 2016
- **Stage 4** – Construction
 Due June 2018
- **Stage 5** – Monitoring and reporting
 Due November 2018
VAM-RAB Scale Up (Early) Conceptual Design
UON Chemical Looping VAM Abatement Project Progress

Year 1
- Bench scale studies
- Pilot scale studies

Year 2
- Design, fabrication and installation of a 1 m3/s (VAM flow rate) prototype*

Year 3
- Scale-up and design of a 10 m3/s demonstration unit
- Build 10 m3/s unit

Year 4
- Field trials of the 10 m3/s demonstration unit

*Construction and commissioning of the 1 m3/s unit is currently underway.
1 m³/s VAMCO Prototype

Design of the Unit

1 m³/s Unit under Construction
UON VAM Abatement Safety Project Progress

- Theoretical & Simulation
- Lab-Scale Experimental Study
- Detonation Examination Static Condition Investigations
- Pilot-Scale VAM Capture Duct Dynamic Condition Investigations
- Demonstration VAM Capture Duct Field Trial

• Year 1
• Year 2
• Year 3
• Year 4

Completed
In progress
Planning

Large-Scale Demonstration Capture Duct
CSIRO Novel VAM Technologies
Project Progress

With the support of our funding partners, in collaboration with Illawarra Coal, CSIRO is undertaking the field trials at West Cliff mine (a split stream of VA of 0.6 – 1 Nm³/s) to test three different novel VAM prototype units (VAMCAT, VAMMIT, VAMCAP) first time under real-world conditions in Australia.

- **Duration:** 48 months from 1 July 2014
- **Science:** three patented VAM technologies
 - **VAMCAT** – novel catalytic gas turbine system operated with 0.8% CH₄ in air for power generation
 - **VAMMIT** – newly structured regenerative bed to destroy ≥0.3% CH₄ in air with lower energy consumption and no dust deposition issue
 - **VAMCAP** – novel carbon composite adsorbents and associated process for enriching VAM

![VAMCAT unit](image1.png)
![VAMMIT unit](image2.png)
![VAMCAP unit](image3.png)
Glencore and CSIRO Methane Capture & Abatement Optimisation – Project Progress

Milestone 1 (3 mths)
- Site characterisation
 - Site characterisation of:
 - Geology & hydrogeology
 - Strata properties
 - Gas reservoir parameters
 - Mining and drainage experience
 - Project detailed planning and monitoring design

Milestone 2 (10 mths)
- Monitoring and measurement
 - Drilling
 - Instrumentation installation
 - Monitoring
 - Measurements
 - Tests
 - Data analysis

Milestone 3 (10 mths)
- Fundamental modelling study
 - Coupled strata, gas and water responses to mining
 - Goaf gas flow dynamics
 - Gas drainage mechanisms
 - Key factors affecting drainage performance

Milestone 4 (11 mths)
- Approach development
 - Identification of:
 - Gas emission sources
 - Drainage targets
 - Key factors
 - Drainage approach development
 - Site trial design

Milestone 5 (18 mths)
- Site trial
 - Site trial implementation
 - Performance monitoring and tests

Milestone 6 (27 mths)
- Approach refinement
 - Site trial evaluation
 - Integrated analysis of all project data
 - Drainage design approach refinement

Milestone 7 (30 mths)
- Summary and dissemination
 - Preparation of project final report
 - Knowledge sharing

Completed milestones

Ongoing milestones
Optimal Horizontal Post Capture Systems

Horizontal (lateral) gas drainage boreholes provide pressure sinks that control goaf gas flow directions.
Design and Trial at LW4 Panel in 2014

- 5 roof holes and 5 floor holes were designed to replace surface goaf wells,
- the trial was at the first 500 m section of LW4 in 2014.

- Roof lateral drainage was successfully implemented for the full length of LW5 in 2015
- Both roof and floor drainage boreholes will be implemented at the next panel, LW7
Project Outcomes to Date

- Improved gas capture efficiency
- Reduced gas related coal production delays and increased coal production
- Reduced fugitive emissions
CSIRO Quantifying Open-Cut Emissions Project Progress

- Project aimed at developing new methods to measure fugitive emissions from open-cut coal mines
- Conducted in two stages
 Stage 1 (June 2015 – June 2016)
 - 12-month study to investigate practicality of atmospheric methods
 - Assess methods
 - Design for field trial (Stage 2)
 Stage 2
 - Subject to outcome of Stage 1. Would involve long term (2-year) trial at a selected mine
Atmospheric methods to measure fugitive emissions

Several approaches

- Ground level surveys – use local meteorological data and plume dispersion characteristics to estimate emission rate
- Tracer gas released in mine at known rate: ratio of tracer to methane concentration yields flux
- Inverse methods
Contact Information

Mr Josh Cosgrave
Manager
Low Emissions Section
Resources Division
Department of Industry and Science
Email: Josh.cosgrave@industry.gov.au