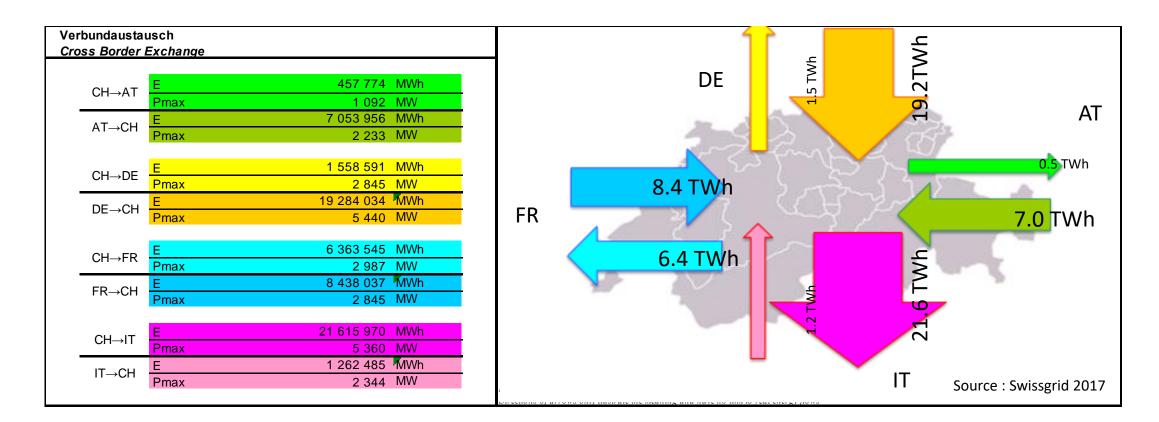
Hourly emission due to electricity consumption -Providing new information on electricity footprint in real-time

Elliot Romano

Institute for Environnemental Science - DEFSE

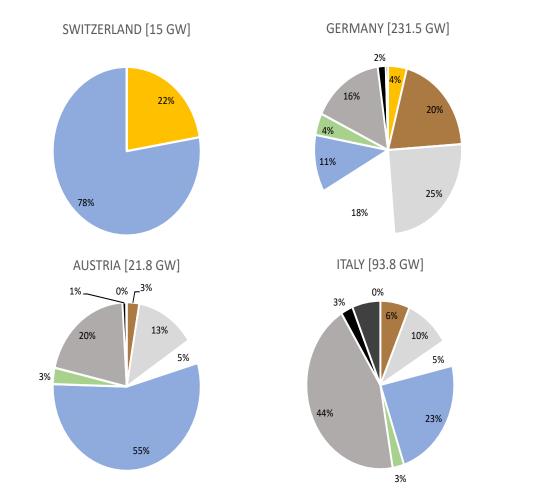
Université de Genève

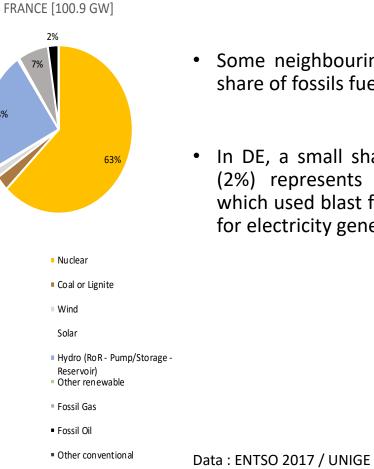
6 November 2019


Group of Experts on Cleaner Electricity Systems

15th session

Switzerland : a country at the heart of the European grid





- Electricity consumption (2017) : 58.5 TWh
- Electricity generation (2017) : 61. 5TWh
- Total of exchanges (Imports 36.5 TWh / Exports : 30.9 TWh)

Neibourghing countries : Installed capacity

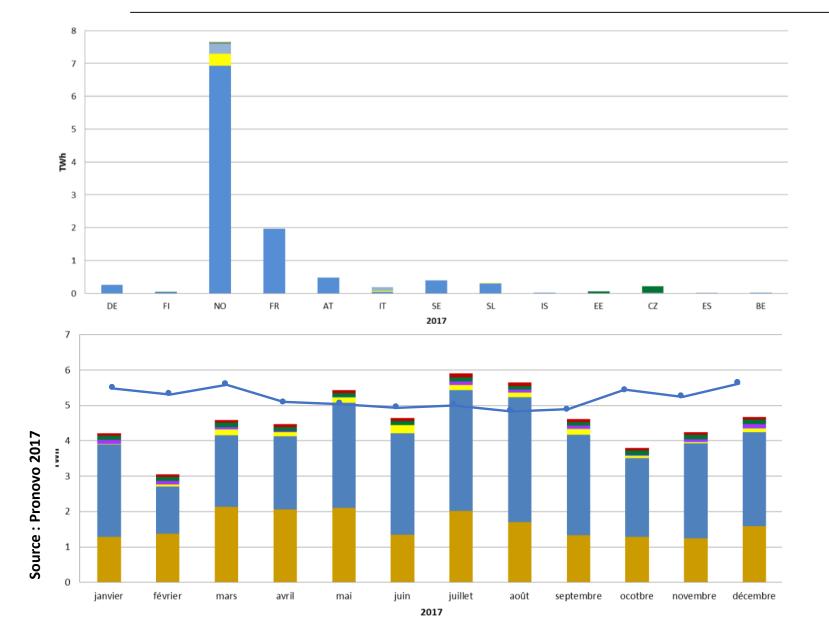
23%

2%

3%

- Some neighbouring countries rely on a highshare of fossils fuels technologies.
- In DE, a small share of the installed capacity (2%) represents other conventional plants, which used blast furnace gases and coke gases for electricity generation.

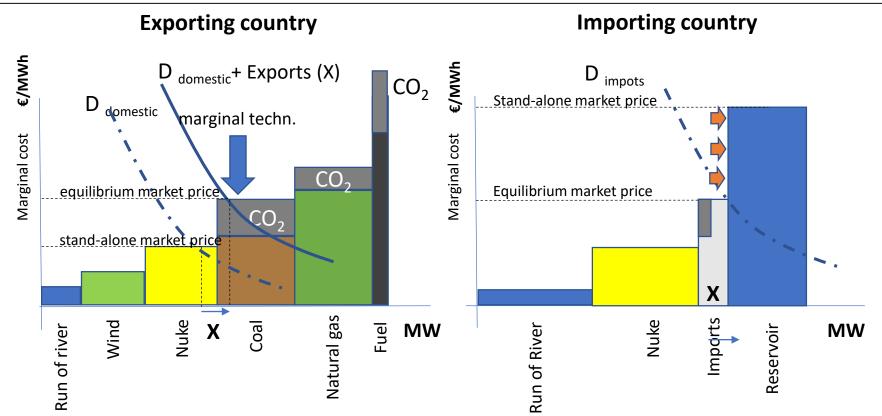
Existing approaches for accounting CO₂ emissions


		Emissions	Domestic	Imports	Computational	
		responsibility	generation mix	generation mix	period	
ſ	Approach A	Production	Average Mix	-	Yearly	
	Approach B	Consumer	Certified Mix	Certified or	Yearly	
				European Residual		
				mix		
ſ	Approach C	Consumer	Average Mix	Average Mix for	Yearly – daily - hourly	
				Direct or Indirect		
				flows		
	Approach D	Approach D Consumer Marginal		Assumptions on	Hourly	
				imports mix		
	UNGE Approach:	<u>Consumer</u>	<u>Marginal</u>	<u>Marginal</u>	<u>Hourly</u>	

Accounting for CO2 emissions is complex

Existing approaches tackle only a specific problem

Limits of the certified mix approach



• Some certificates are imported from Norway, or ENTSO-E countries which have no interconnections with CH.

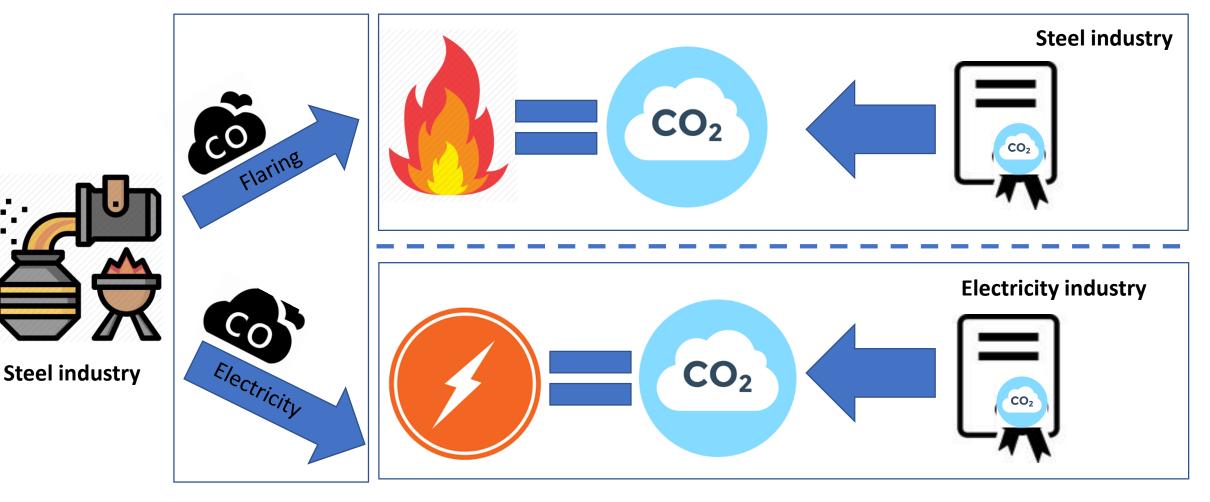
• Guarantees of origin in CH are generated over the summer when consumption (blue line) profile is at the lowest.

Method : Marginal impact of imports on CO₂ emissions

- Electricity is dispatched according to merit order based on the marginal cost of each technology (including CO₂ price)
- Prices and exchanges between countries are defined according to supply and demand for each hour.
- Generation costs in a country are minimized, to satisfy demand, thanks to the optimisation of the power plant program (vs. market prices) and through power exchanges over transmission capacities.
- When imports occurs, the marginal impact of imports on the merit order of neighbouring countries could be estimated.

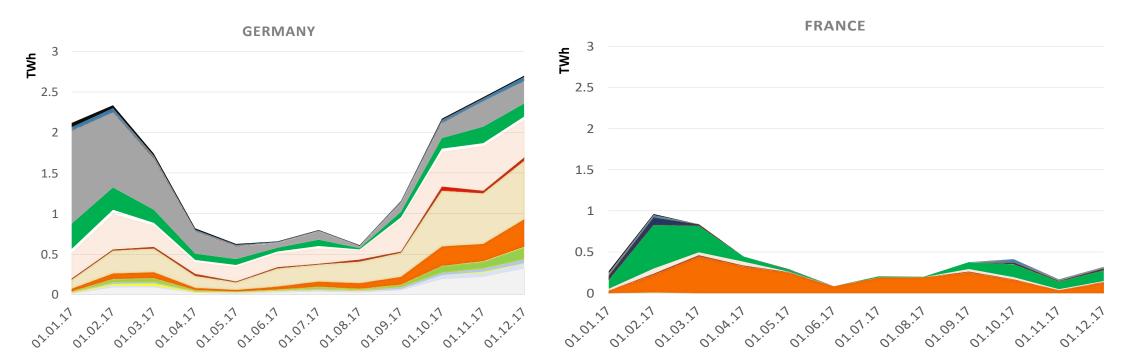
- EU Regulation EU N° 1227/2011 & EU N°2013/543, the following data are made available :
 - Load data
 - Network and congestion management data
 - Transmission data
 - Installed aggregated capacity
 - Generation data (dispatch data)
 - Market price
- The data granularity is hourly.

- Values are issued from *ecoivent* database per country
- Life-cycle assesment (kg CO2-eq/kWh) for each technology (including dismantling)


Technology	Life cycle emissions kg CO ₂ -eq/kWh	Technology	Life cycle emissions kg $\rm CO_2$ -eq/kWh
Wind-on-Shore	0.02-0.04	Municipal waste	0.347 - 0.568
Wind-off-Shore	0.02 - 0.03	Coke	0.94- 0.96
Solar	0.09-0.12	Combined coal and gas	0.90
Run-of-River	0.005	Gas	0.368 - 0.701
Geothermal	0.08 - 0.09	Other conventional	0 (1) -2.9 (2)
Biomass	0.06	Storage hydroelectricity	0.01
Other renew.	0.04	Pumped-storage hydro.	0.42
Nuclear	0.01	Oil	0.864- 0.932
Lignite	1.21		

- To deal with the issue from blast furnaces gases, two scenarios are considered.
 - Scenario 1 : Emissions from the blast furnace gases are considered as waste thus zero emissions level
 - Scenario 2 : Emissions from the blast furnace gases s are accounted on behalf of the electricity sector.

The specific case of furnace German furnace blast



- CO is a waste gas from the steel industry. Not direct emissions is allowed (flaring or electricity generation is required)
- Flaring or generation decisions depend on the comparison of the electricity spot prices and the opportunity cost of the CO2 certificates (i.e resell on market).
- Carbon emission are accounted on behalf of the sector who surrender the certificate

Inflows (imports & transits) by border

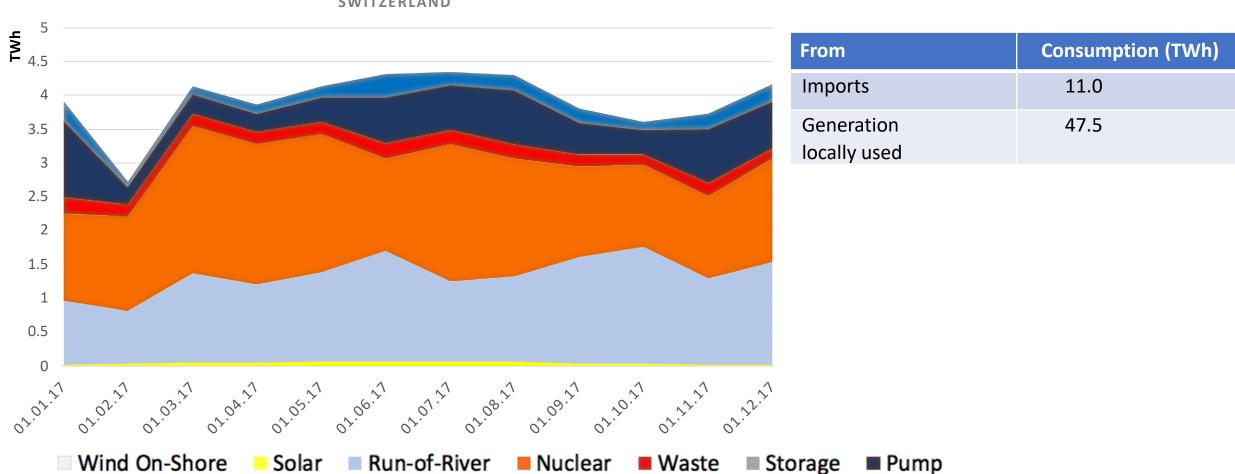
Hourly values aggregated by months

Wind On-Shore	Wind Off-Shore	Solar
Légende enew.	Nuclear	Lignite
Gaz	Other convent.	Storage

Run-of-River	Geothermal	Biomass
Waste	Coke	Coal-Gas
Pump	■ Oil	

From	Inflows (TWh)		
Austria	6.6		
France	4.6		
Germany	18.2		
Italy	0.6		

• Emissions tied to the inflows are computed at each border, at an hourly granularity.


Border	Net inflows	Life cycle	Emissions factor	Life cycle	Emissions factor,
	$E_{in,L}$	emissions		emissions	
		(Scenario 1)	(Scenario $1)$	(Scenario $2)$	(Scenario 2)
		$M_{in,L}$	W _{in,L}	$M_{in,L}$	W _{in,L}
	TWh	$M tCO_2$ -eq	kg CO ₂ -eq / kWh	$M tCO_2$ -eq	kg CO ₂ -eq / kWh
Austria	6.6	1.1	0.17	1.3	0.19
France	4.6	1.2	0.26	1.4	0.30
Germany	18.2	9.9	0.54	20.4	1.12
Italy	0.6	0.1	1.20	0.3	1.21
Total / Average	30	12.3	0.41*	23.4	0.78^{*}

(*)annual average values

Table 5: GHG emissions from surrounding countries in inflows - Year 2017

Generation in Switzerland

SWITZERLAND

GHG emissions : imported and domestic

	Domestic Consumption	Life cycle emissions MtCO ₂ -eq		$\begin{array}{c} {\rm Emission\ factor} \\ {\rm kg\ CO_2\text{-}eq\ /\ kWh} \end{array}$	
	TWh	Approach 1	Approach 2	Approach 1	Approach 2
Imports	11.0	4.5	9.9	0.409	0.845
Local gen. for domestic use	51.9	2.3	2.3	0.056	0.056
Total / Average	62.9	6.8	12.2	0.108 *	0.196 *

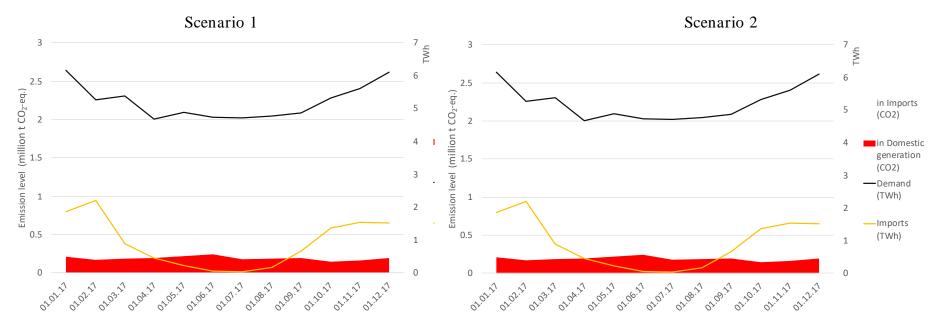
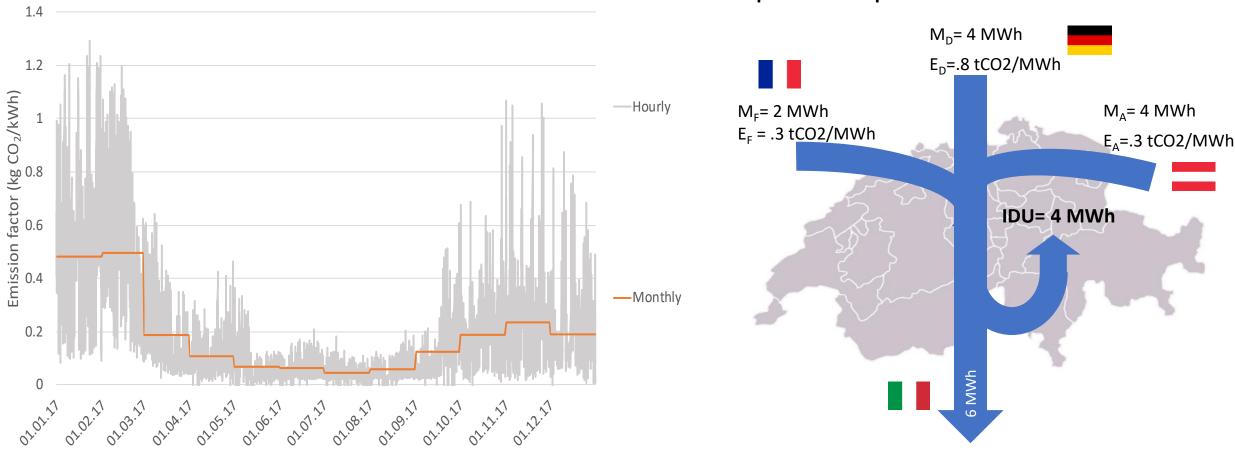



Figure 8: Electricity & CO₂ emissions in Switzerland from netted imports and locally used domestic generation - Year 2017

The GHG emissions differs for both scenarios as furnaces gases played a major role during winter (2016-2017) when European generation capacity were affected by outages (French nuclear), demand was high, and spikes prices were observed on markets.

Footprint from imports for domestic use at hour h :

Emission factor : 197 g eq CO_2/kWh Total emissions : 11.5 Mt eq CO_2

- Methodology is based on the real time imports and marginal impact of the imports on the generation mix from neighbouring countries
 - the information could be provided to consumers in real time
- Methodology offers a profile of CO_2 emissions over the year (not only an average value)
 - → Useful for climate policy and energy policy to asses the footprint impact of different electricity process (Heat pumps, Electrical vehicules,...)
 - → useful information to have generation investments in period of time where low-carbon technologies are required

Thank you for your attention