

ENERGY POLICY OF POLAND UNTIL 2030

ENERGY EFFICIENCY IMPROVEMENT PROGRAMME

LEON KURCZABINSKI, PhD

POWER INDUSTRY IN POLAND (1/5)

 Poland has one of the biggest ressources of coal in Europe - 70% of Europe's known coal reserves

Coal warrants to Poland:

- High level of energy safety (possibility of 100 % production of electrical energy and of heat for central heating sector and for industrial needs)
- The lowest costs of electrical energy and heat production
- Low level of energy poverty
- Competitiveness of economy

Poland has not possibility of importation of other fuels in reasonable prices

POWER INDUSTRY IN POLAND (2/5)

ELECTRICITY GENERATION

CAPACITY INSTALLED IN POWER PLANTS
 38 490 MW
 CAPACITY OF THE BIGGEST THERMAL P.P. (4440) 5 035 MW

• ELECTRICITY PRODUCTION 162 502 GWh / y

• ELECTRICITY GENERATION EFFICIENCY (THERMAL PLANTS) av. 36,6 % net

• ELECTICITY PRODUCTION IN COGENERATION approx 20 %

• ELECTRICITY CONSUMPTION PER CAPITA 4 140 kWh

STRUCTURE OF ELECTRICITY GENERATION BY SOURCES

SOURCE	GWh / Y	%
HARD COAL	84 566	52,1
LIGNITE	56 959	35,0
NATURAL GAS	3 149	1,9
HYDRO	2 762	1,7
WIND	5 823	3,6
OTHERS	9 243	5,7

POWER INDUSTRY IN POLAND (3/5)

80 % net

HEAT GENERATION - CENTRAL HEATING SYSTEM

• CAPACITY INSTALLED IN CHP 59 265 MWt

• HEAT PRODUCTION 434 700 TJ

• CENTRAL HEATING SYSTEM (HEATING BUILDINGS AND HOT WATER) 260 000 TJ

HEAT GENERATION EFFICIENCY
 av.

STRUCTURE OF HEAT GENERATION BY SOURCES

%
76,0
10,0
9,5
4,5
1,0

POWER INDUSTRY IN POLAND (4/5)

IMPORT DEPENDANCE

NATURAL GAS 69,3 %
 CRUDE OIL 99,5 %
 NUCLEAR 100 %

TOTAL IMPORT DEPENDANCE (2012)

POLAND
GERMANY
FRANCE
SPAIN
UK
EU - 27
31,6 %
61,6 %
50,4 %
83,7 %
9,0 %
52,6 %

POWER INDUSTRY IN POLAND (5/5)

TOTAL CONSUMPTION OF COAL

TOTAL HARD COAL 74 - 76 MT /Y

PROFESSIONAL (PUBLIC) THERMAL POWER PLANTS **ELECTRICITY GENERATION AND CHP**

HARD COAL 38 - 44 MT / Y

LIGNITE 60 - 64 M

> INDUSTRIAL AND NON-PROFESSIONAL CHP PLANTS HEAT AND HOT WATER PRODUCTION FOR INDUSTRY AND CENTRAL HEATING SECTOR

HARD COAL 13,5 - 16,5 MT/Y

> HOUSEHOLDS SECTOR AN SMALL CONSUMERS - HEAT AND HOT WATER (WITHOUT PUBLIC CHS)

> > 11,5 - 12,5 MT /Y

FUTURE OF THE POWER INDUSTRY IN POLAND (1/6)

LEGAL CONDITIONS

ENERGY - CLIMATIC PACKAGE 3 X 20 % (+ 10 % BIOFUELS)

- **DIRECTIVE 2010/75/EU** (**IED**) ON INDUSTRIAL EMISSIONS (integrated polution, prevention and control)
- DIRECTIVE 2009/29/EC (ETS) GREENHOUSE GAS EMISION ALLOWANCE TRADING
- DIRECTIVE 2009/31/EC ON THE GEOLOGICAL STORAGE OF CO2
- DIRECTIVE 2009/28/EC PROMOTION OF ENERGY FROM RENEWABLE SOURCES
- DIRECTIVE 2003/96/WE TAXATION OF ENERGY PRODUCTS AND ELECTRICITY

ENERGY ROADMAP 2050 - LOW CARBON EUROPE (80%)

ELIMINATION OF FOSSIL FUELS !!!!

FUTURE OF THE POWER INDUSTRY IN POLAND (2/6)

NATURAL AND POLITICAL CIRCUMSTANCES

- LIMITED POSSIBILITIES OF IMPORTATION OF THE NATURAL GAS (IN RATIONAL PRICES) ... SHALE GAS ?
- FULL IMPORT DEPENDACE OF THE CRUDE OIL AND NUCLEAR FUEL
- LIMITED POSSIBILITIES OF IMPORTATION OF THE ELECTRICAL ENERGY (MAX. 10 000 GWh LACK OF THE TRANSBORDER CONNECTIONS)
- NATURAL POSSIBILITIES OF THE RENEWABLE ENERGY PRODUCTION 12 14 % (WIND + BIOMASSE)

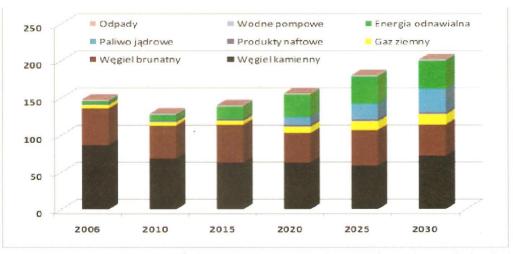
FUTURE OF THE POWER INDUSTRY IN POLAND (3/6)

ENERGY POLICY OF POLAND UNTIL 2030 (Ministry of Economy)

PRIMARY DIRECTIONS

- IMPROVEMENT OF THE ENERGY EFFICIENCY
- ENHANCEMENT OF THE SECURITY OF FUELS AND ENERGY SUPPLIES
- DIVERSIFICATION OF THE ELECTRICITY GENERATION STRUCTURE BY INTRODUCING NUCLEAR ENERGY
- DEVELOPMENT OF RENEWABLE ENERGY SOURCES, INCLUDING BIOFUELS
 - DEVELOPMENT OF COMPETITIVE FUEL AND ENERGY MARKETS
 - •REUCTION OF THE ENVIRONMENTAL IMPACT OF THE POWER INDUSTRY

FUTURE OF THE POWER INDUSTRY IN POLAND (4/6)



FORECAST OF THE ELECTRICITY CONSUMPTION

2010 2020 2030

TWh 156,3 182,3 209,5

FUTURE NEEDS = eqivalent of 20(30) MT / y of coal

Źrodło: Prognoza zapotrzebowania na paliwa i energię do 2030 roku. Załącznik 2 do "Polityki energetycznej. Polski do 2030 roku", przyjętej przez RM 10-11-2009 r.

FUTURE OF THE POWER INDUSTRY IN POLAND (5/6)

ENERGY EFFICIENCY = PRIORITY OF THE ENERGY POLICY

MAIN OBJECTIVES

- ENHACEMENT OF THE EFFICIENCY OF POWER GENERATION HIGHLY EFFICIENT GENERATION UNITS: from 36% to 44% (RETROFIT and BAT)
- TWOFOLD INCREASE (AS COMP. TO 2006) OF HIGHLY EFFICIENT COGENERATION TECHNOLOGY BY 2025 - from 20% to 50%
- LIMITATION OF THE GRID LOSS DURING TRANSMISSION AND DISTRIBUTION (MODERNISATION EXISTING AND BUILDING OF NEW GRIDS INCL. SMART GRIDS)
- INCREASE OF THE EFFICIENCY OF END USE OF ENERGY (INDUSTRY AND HOUSEHOLDS SECTOR) REDUCTION OF ENERGY CONSUMPTION: 25-40%
- IMPROVEMENT OF ENERGY MANAGEMENT

FUTURE OF THE POWER INDUSTRY IN POLAND

MAIN INVESTMENTS IN THE POWER SECTOR

NEEDS FOR ENERGY SECURITY - 1000 MW/ year OF NEW CAPACITY INSTALLED IN THE POWER PLANTS ...?

HARD COAL AND LIGNITE (TO 2020):

- MODERNIZATION OF THE OLD (6556 MW) AND BUILDING OF THE NEW HIGH EFFICIENCY GENERATION UNITS (5358) -...CCS READY?
- ELECTRICITY AND HEAT PRODUCTION IN COGENERATION

NATURAL GAS

GAS - STEAM CHP UNITS (2200 MW)

NUCLEAR

PWR REACTOR? (4800 MW)

RENEWABLE

WIND - ca. 8300 WIND POWER UNITS (2 MW)

PLANNED CAPITAL COSTS ca 100 BLN EURO

RECENT INVESTMENTS "TAURON - LAGISZA" POWER PLANT - 2009

CAPACITY OF UNIT

460 MWe

ELECTRICITY GENERATION EFFICIENCY

45 %

HARD COAL - SUPERCRITICAL CIRCULATING FBC, with additional system of energy recovery from exhaust gases

RECENT INVESTMENTS "PGE - BELCHATOW" POWER PLANT - 2011

CAPACITY OF UNIT

ELECTRICITY GENERATION EFFICIENCY

44,4 %

LIGNITE - SUPERCRITICAL PC - NEXT STAGE CCS READY ? (29,95 MPa/564 oC)

REMARKS:

Capital costs of unit	1,5	bln Euro
Capital costs of CCS READY	0,625	bln Euro
Net efficiency with CCS	~ 30	%

PLANNED ENERGY-INVESTMENTS BASING ON HARD COAL AND LIGNITE 2015 - 2019

INVESTMEN P.P./CAPAC		INVESTOR	CAPACITY OF NEW ENERGY-BLOC MW	COSTS OF INVESTMENT BLN EURO
OPOLE 1492 MW	(2018)	PGE (RAFAKO, POLIMEX, MOSTOSTAL)	2 x 900 (45,5%)	2,3
KOZIENICE 2750 MW	(2017)	ENEA (HITACHI-POWER POLIMEX-MOSTOSTAL)	1075 (45,6%)	1,18
RYBNIK 1775 MW	(2018?)	EDF (ALSTOM)	900	1,22
JAWORZNO 1345 MW	3(2019)	TAURON PE	910 (46%)	1,22
TURÓW 1498,8 MW	(2019)	PGE	460	0,61
POLNOC	(2018?)	KULCZYK INVESTMENT	2 x 780-1050	2,93
ZABRZE 475 MW	(2016?)	FORTUM POWER AND HEAT	135	0,25
TYCHY 290 MW	(2016)	TAURON PE	50-60	0,13

FUTURE OF THE POWER INDUSTRY IN POLAND

OPOLE P.P. $1492 \text{ MW} + 2 \times 900 \text{ MW} \text{ (} n = 45,5\%\text{)}$

NEW EFFICIENT TECHNOLOGIES

HARD COAL AND LIGNITE - ANALYSED TECHNOLOGIES according to unitary discounted electricity generation costs Euro / MWh - without CO2 emission payment

•	SUPERCRITICAL*) STEAM PC UNIT - LIGNITE	46,4	
•	SUPERCRITICAL STEAM CFBC - HARD COAL	47,6**	
•	SUPERCRITICAL STEAM PC UNIT - HARD COAL	53,6	
•	GAS-STEAM CHP - 3 PRSSURE HEAT RECOVERY STA	AM GENERATOR ((HRSG)
	- NATURAL GAS	62,2	
•	GAS-STEAM CHP - 2 PRESSURE HRSG - NATURAL GA	AS 67,1	
•	GAS-STEAM UNIT - NATURAL GAS	70,7	
•	STEAM CHP - BIOMASS (medium scale)	80,5	
•	NUCLEAR POWER UNIT - PWR - REACTOR	85,4***	

With 40 Euro / t CO2 payment**

UNITARY ELECTRICITY GENERATION COSTS 73,2 - 86

With 60 Euro / t CO2 payment***

UNITARY ELECTRICITY GENERATION COSTS 85,4 - 101,3

*) P>25 MPa, t > 600 oC, n=44-46% / (Heat Recovery Steam Generator)

EFFICIENT TECHNOLOGIES VS CCS

ACCORDING TO THE ANALYSIS MADE FOR 3 PROJECTS:

1 POWER PLANT PRODUCES ELECTRICAL ENERGY FOR NEEDS OF 3 P.P WITH CCS

	WITHOUT CCS	WITH CCS
CAPITAL COSTS, \$/kW (%)	100	166
UNIT COST OF ELECTICAL ENERGY, \$/MWh (%)	100	146
NET EFFICIENCY %	40,5 - 44,5	28,7 - 30,5
EMISSION OF CO2, kg/MWh (%)	100	0,14
RELATIVE DECREASE OF EFFICIENCY, %	29,14 - 31,46	

THANK YOU

