What Do We Need for Cost-effective CCS

Kunlei Liu and Rodney Andrews

University of Kentucky Center for Applied Energy Research 2540 Research Drive, Lexington, KY

Our Expertise and Projects on CCS

Post Combustion Scrubbing in Fossil Power Plants

•Challenges:

- Low CO₂ partial pressure (~0.14 atm)
- Large volume
- Poisoning

•Consequences:

- Capital Costs \$700-1000/kW
- Absorbers three or four times diameter as FGD with packing
- Strippers and BOP
- 25-35% of plant output reduction

Minimum Energy Needed for Stripping and Compression for a Selected Solvent

 $Q_{stripper} = Q_{sensible} + Q_{desorp} + Q_{water\ vapor}$

For 1 mole/s CO₂ at one condition of a selected solvent

$$Q_{sensible} = \frac{1}{\Delta \alpha} \cdot C_p \cdot \Delta T$$

Cooling Water

A typical practical $\Delta T = 10-15$ °F

$$Q_{water\,vapor} = E_{60C} - E_{40C}$$

$$Where E_T = E_{CO2}(T, P_{co2}) + E_{H2O}$$

$$Q_{compression} = Q_{stage 1} + Q_{stage 2} + ...$$

$$Where Q_{stage i} = E_{i,60C} - E_{i,40C}$$

Minimum Energy Needed for Stripping and Compression for a Selected Solvent

What Does it Translate to CO₂ Flux?

•
$$flux = A \cdot k_G \cdot (P_{CO_2}^g - P_{CO_2}^*)$$

Where
$$k_G \propto \frac{\sqrt{D_{CO_2} \cdot k_2 \cdot [aime]}}{H_{CO_2}}$$

	(1
	MEA	PZ	MDEA
Rate Constant	5.94	69.21	0.004
Self-concentrated amine	1.0	3.5	~1
Calculated Kg' impact from [M]	1	1.87	~1
Calculated Kg' impact from k ₂	1	3.41	0.03
Calculated Kg' Overal	1	6.39	0.03
Measured Mass Flux (WCC@0.1)	1	2.20	0.18

Turbulence Enhancement by Particles

➤ Turbulence Enhancement by Particles

Entrained particles

Enhanced physical mass transfer

Mass Transfer Enhancement Experiment

Experiment Setup - Stirring Reactor with Stable Gas-Liquid Interface

Turbulence Enhancement by Particles

➤ Preliminary Results of Effect of Different Particles on CO₂ Absorption Enhancement

Thanks and Question?