

Proudly Operated by Battelle Since 1965

UNECE Pathways to Sustainable Energy: **GCAM** Scenario Results

STEPHANIE WALDHOFF, RYNA YIYUN CUI, JAE EDMONDS, SONNY KIM

Pacific Northwest National Laboratory, Joint Global Change Research Institute

We explore Energy Sustainability using scenarios

We explore two dimensions

POLICY

Review of GCAM scenarios: The Policy Dimension

3 Alternative Policy Assumptions

- **Reference**: SSP2 assumptions
 - Reference technology
- NDCs continued ambition*
 - Regional GHG emissions caps based on national Paris pledges
 - Continued ambition post-2030
- Paris to 2C:
 - Regional GHG emissions caps based on national Paris pledges
 - Enhanced ambitions post-2030 to achieve 2°C goal

* Fawcett AA *et al.* (2015) Can Paris pledges avert severe climate change? *Science (80)*

Proudly Operated by Battelle Since 1965

Technology		Reference assumptions	Advanced assumptions		
Renewables	Solar	• Capital costs decline about 25% by 2050	• Capital costs decline more than 60% by 2050		
	Wind	• Capital costs decline about 20% by 2050	• Capital costs decline more than 60% by 2050		
	Geothermal	 Capital costs less than 10% by 2050 Only hydrothermal resources 	 Capital costs decline about 20% by 2050 New enhanced geothermal system (EGS) resources (regional specific supply curves) 		
Nuclear CCS		 2010 \$5,501/kw 2030 \$5,307/kw 2050 \$5094/kw 	 Lower capital costs that reflect the small module reactors (SMR) Advanced assumption is about 35% lower than the reference assumption 		
		 CO2 capture rate: 85% in 2020, increase to 95% by 2100 	 Higher CO2 capture rate: 99% Lower costs of carbon storage (region-specific) that are in line with SSP5 assumptions 		
8, 2018		1 SSP2			

Proudly Operated by Battelle Since 1965

Adv. Ren

Technology		Reference assumptions		Advanced assumptions	2
S	Solar	• Capital costs decline about 25% by 2050	•	Capital costs decline more than 60% by 2050	Π
Renewable	Wind	• Capital costs decline about 20% by 2050	•	Capital costs decline more than 60% by 2050	
	 Geothermal Capital costs less than 10% by 2050 Only hydrothermal resources 		•	Capital costs decline about 20% by 2050 New enhanced geothermal system (EGS) resources (regional specific supply curves)	J
Nuclear CCS		 2010 \$5,501/kw 2030 \$5,307/kw 2050 \$5094/kw 		Lower capital costs that reflect the small module reactors (SMR) Advanced assumption is about 35% lower than the reference assumption	
		• CO2 capture rate: 85% in 2020, increase to 95% by 2100	•	Higher CO2 capture rate: 99% Lower costs of carbon storage (region- specific) that are in line with SSP5 assumptions	

Proudly Operated by Battelle Since 1965

Adv. Nuc

Technology		Reference assumptions	Advanced assumptions
Renewables	Solar • Capital costs decline about 25% by 2050		• Capital costs decline more than 60% by 2050
	Wind	• Capital costs decline about 20% by 2050	• Capital costs decline more than 60% by 2050
	Geothermal	 Capital costs less than 10% by 2050 Only hydrothermal resources 	 Capital costs decline about 20% by 2050 New enhanced geothermal system (EGS) resources (regional specific supply curves)
Nuclear		 2010 \$5,501/kw 2030 \$5,307/kw 2050 \$5094/kw 	 Lower capital costs that reflect the small module reactors (SMR) Advanced assumption is about 35% lower than the reference assumption
CCS		 CO2 capture rate: 85% in 2020, increase to 95% by 2100 	 Higher CO2 capture rate: 99% Lower costs of carbon storage (region-specific) that are in line with SSP5 assumptions

Proudly Operated by Battelle Since 1965

Adv. CCS

Technology		Deference commeticue	Advanced assumptions	
S	Solar • Capital costs decline about 25% by 2050		• Capital costs decline more than 60% by 2050	
/able	Wind	• Capital costs decline about 20% by 2050	• Capital costs decline more than 60% by 2050	
Renew	Geothermal	 Capital costs less than 10% by 2050 Only hydrothermal resources 	 Capital costs decline about 20% by 2050 New enhanced geothermal system (EGS) resources (regional specific supply curves) 	
Nuclear		 2010 \$5,501/kw 2030 \$5,307/kw 2050 \$5094/kw 	 Lower capital costs that reflect the small module reactors (SMR) Advanced assumption is about 35% lower than the reference assumption 	
CCS		 CO2 capture rate: 85% in 2020, increase to 95% by 2100 	 Higher CO2 capture rate: 99% Lower costs of carbon storage (region-specific) that are in line with SSP5 assumptions 	

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

Review of GCAM scenarios—Policy and Technology Sensitivities

Scenario Technology	Reference	Paris NDC continued ambition*	Paris to 2C
Reference Technology	Ref-RefTech	NDC-RefTech	P2C-RefTech
Advanced Renewables	Ref-REAdv		P2C-REAdv
Low-cost Nuclear (SMR)	Ref-NucLowCost		P2C-NucLowCost
Advanced CCS	Ref-CCSAdv		P2C-CCSAdv

- Reference: SSP2 assumptions
- Paris NDC continued ambition: regional GHG emissions caps based on national Paris pledges plus continued actions post-2030
- Paris to 2C: regional GHG emissions caps based on national Paris pledges plus enhanced ambitions post-2030 to reach the 2C goal

Proudly Operated by Battelle Since 1965

ENERGY SUSTAINABILITY METRICS

Pillar	Metric	Measurement	
	Energy Self-Sufficiency	Import Dependence: net imports of energy as share of total consumption	M1
Energy Security	Energy Efficiency	Energy Intensity of Economy: final energy per unit of GDP	M2
	Renewable Energy	Share of RE in total final energy consumption	M3

	Pillar	Metric	Measurement	
		Access to Services	Energy services (i.e. electricity consumption, passenger transportation service) per capita	M1
Quality of Life	ality of Life	Energy Affordability	Energy expenditure as share of GDP	M2
		Food Security	Share of calories from non-staple food	M3

Pillar Metric Measu	irement
---------------------	---------

	Climate Change	Total (and per capita) global GHG emissions in MtCO2eq Change in average earth surface temperature	M1
Environmental	Local Air Pollutions	Total and per capita air pollutant emissions: Sulphur Dioxide (SO2), Nitrogen Oxides (NOx)	M2
Sustainability	Water Stress	Ratio of water withdrawal to renewable water availability	M3
	Natural Land Cover	Natural forest area	M3

Pillar	Metric	Measurement	
	Energy Self-Sufficiency	Import Dependence: net imports of energy as share of total consumption	M1
Energy Security	Energy Efficiency	Energy Intensity of Economy: final energy per unit of GDP	M2
	Renewable Energy	Share of RE in total final energy consumption	M3
	Access to Services	Energy services (i.e. electricity consumption, passenger transportation service) per capita	M1
Quality of Life	Energy Affordability	Energy expenditure as share of GDP	
	Food Security	Share of calories from non-staple food	M3
	Climate Change	Total (and per capita) global GHG emissions in MtCO2eq Change in average earth surface temperature	M1
Environmental	Local Air Pollutions	Total and per capita air pollutant emissions: Sulphur Dioxide (SO2), Nitrogen Oxides (NOx)	M2
Sustainability	Water Stress	Ratio of water withdrawal to renewable water availability	M3
	Natural Land Cover	Natural forest area	M3

Proudly Operated by Battelle Since 1965

MEASURING ENERGY SECURITY

Energy Security-M1: Energy Self-Sufficiency

Net Exports of Natural Gas

Overall UNECE net exports of natural gas increase through 2050, higher under policy scenarios.

Energy Security-M1: Energy Self-Sufficiency

Net Exports of Natural Gas

Advanced RE decreases gas imports in **UNECE** nonexporting regions, e.g. EU, making more gas available for export to non-**UNECE** regions

Energy Security-M1: Energy Self-Sufficiency

Net Energy Imports Share of Final Consumption

Mixed trends for net energy imports relative to final consumption over time and across policies

Net energy import share of energy consumption by region (percent, RefTech)

ES-M2: Decrease Energy Intensity of Economy

Energy-GDP Ratio

- Energy consumption per unit of GDP decreases, with higher rates under policy scenarios.
- Technology variations have marginal impact.

ES-M2: Decrease Energy Intensity of Economy

Energy-GDP Ratio

Several regions (i.e. Eastern Europe, Russia, Central Asia) may still be above the 2010 global average level by 2050.

Energy intensity by region (GJ per thous 2010USD, RefTech)

Renewable Energy Share of Final Energy Use

- Renewable energy use rises with mitigation ambition
- None of the scenarios meet the SE4all 2030 target (36%).
- Advanced RE has significant impact on SSP2, current policies.

Pacific Northwes

- Renewable Energy Share of Final Energy Use
- Advanced RE increases the RE share of final energy in the SSP2 and P2C scenarios
- Other technologies have minor impact on the RE share of final energy in the Reference (SSP2) scenario

- Renewable Energy Share of Final Energy Use
- Low-cost nuclear and advanced CCS technologies would lower RE share in the P2C scenario.

Renewable Energy Share of Final Energy Use

All regions surpass 2010 Global Average in 2050 in the P2C scenario

Share of RE in final energy consumption by region in 2050 (percent, RefTech)

Proudly Operated by Battelle Since 1965

MEASURING QUALITY OF LIFE

Quality of life-M1: Access to Services—Electricity per capita

Per capita electricity consumption

- Increases over time.
- Although it increases at lower rate under policy scenarios in the near-term, the longterm effect tends to be more positive.

October 8, 2018

Quality of life-M1: Access to Services—Electricity per capita

Per capita electricity consumption

Advanced technology scenarios raise the electrification rate per capita.

Quality of life-M1: Access to Services—Electricity per capita

Proudly Operated by Battelle Since 1965

Most regions surpass 2010 Global Average

Per capita electricity consumption by region (MWh per cap, RefTech)

Quality of life-M1: Access to Services—Pass Transport per capita Pacific Nort

- Passenger Transport per Capita
- Per capita passenger transport service increases over time, but at lower rates under policy scenarios.
- Little sensitivity to power sector technology assumptions

Quality of life-M1: Access to Services—Pass Transport per capita Pacific Nor

Proudly Operated by Battelle Since 1965

Per capita passenger transport service by region (thous

Passenger Transport per Capita

Several regions (i.e. Eastern Europe, Central Asia) may not achieve the 2010 global average level by 2050.

Energy Expenditure Relative to GDP

Energy expenditure share of GDP decreases through 2050.

Energy Expenditure Relative to GDP

Although energy intensity (ES-M2) is lower under policy scenarios, energy expenditure share of GDP is higher due to increasing prices.

Energy Expenditure **Relative to GDP**

Advanced technologies help reduce the policy impact.

Global energy expenditures as share of GDP (percent)

Energy expenditures as share of GDP by region (percent,

Energy Expenditure Relative to GDP

In 2050 energy expenditure share of GDP is higher than the 2010 Global Average for many regions.

Proudly Operated by Battelle Since 1965

MEASURING ENVIRONMENTAL QUALITY

Environment-M1: Climate Change

Global GHG emissions stay flat under continued NDC, but need to decrease sharply in post-2030 to achieve the 2°C goal.

Advanced technologies help lower GHG emissions, but they alone do not archive the climate goal.

Global total GHG emissions (GtCO2e) and Average Earth Surface Temp Change in 2100

Environment-M1: Climate Change

- Regional emissions tend to rise in the Reference (SSP2) Scenario
- Regional emissions decline as policy stringency increases

Per capita GHG emissions by region (tCO2e per cap, RefTech)

Total and per capita NOx emissions both decrease overtime.

 150

 125

 125

 125

 125

 100

Global total NOx emissions (thous kt)

Total and per capita NOx emissions both decrease overtime.

Larger reduction is achieved under policy scenarios.

Global total NOx emissions (thous kt)

Advanced RE and low-cost nuclear technologies help lower local air pollutants.

October 8, 2018

- Regional patterns are similar to global trends.
- Per capita emissions decline with time and policy stringency
- Most regions are below 2010 global average in 2050

year

Per capita NOx emissions by region (kg per cap)

Proudly Operated by Battelle Since 1965

DISCUSSION

Proudly Operated by Battelle Since 1965

BACKUP SLIDES

SSP Input Assumptions

p & GDP		SSP1 Sustainability	SSP2 Middle of the Road	SSP3 Fragmentation	SSP4 Inequality	SSP5 Development First
Po Po	2100 Population [billion] (IIASA)	6.9 (5 th)	9.0 (3 rd)	12.6 (1 st)	9.3 (2 nd)	7.4 (4 th)
N SS	2100 GDP [trillion 2005 USD, PPP] (OECD)	565 (2 nd)	537 (3 rd)	278 (5 th)	352 (4 th)	1,015 (1 st)
N	Energy Service Demands	Low	Medium	High	Medium	High
	End-Use Technology	High	Medium	Low	Low / High	Medium
Vgo	Nuclear / CCS	Low	Medium	Medium	Mixed	Medium
hno	Renewable Technology	High	Medium	Low	High	Medium
Tec	Fossil Fuel Extraction	Low	Medium	High	Medium	High
	Crop Yield Improvement	High	Medium	Low	Low / Medium	High

GCAM Technology Building Blocks

	High Tech		Med Tech		Low Tech	Lower Tech
Nuclear Power	Lower capital recovery factor wi capital and O&M costs declining 0.3% per year		Base capital recovery factor with capital and O&M costs declining at 0.1% per year		igher capital recovery factor with fixed capital and O&M costs	No new nuclear power plant
Carbon Capture & Storage (CCS)	Lower-cost non-tradable regional l based storage with larger capaci expensive global-access offshor storage	d-	Non-tradable regional land-based storage combined with expensive global-access offshore storage		tal available resource to 5% of the edium case. Cost scales up rapidly without offshore storage	No deployment
Fossil Fuel Extraction	Extraction costs of coal, oil, and g resource drop by 0.75% per yea		Extraction costs of coal, oil, and gas resource drop by 0.5% per year		traction costs of coal, oil, and gas resource drop by 0.25% per year	NA
Advanced Grid for Renewable Tech	1:1 backup required when renewa supply 50% of capacity	s	1:1 backup required when renewables (central PV, CSP, rooftop PV, wind) supply 25% of capacity	1	backup required when renewables supply 15% of capacity	NA
Solar Tech	Capital and O&M costs decline and faster rate (double)		Capital and O&M costs decline		apital and O&M costs decline at a slower rate (50%)	NA
Wind Tech	Capital and O&M costs drop at 0. per year	,	Capital and O&M costs drop at 0.25% per year		apital and O&M costs do not drop	NA
Geothermal Tech	Faster improvement in hydrothern EGS available with the improvem rate of 0.5% per year or more	/	Base improvement in hydrothermal / EGS available only after the exhaustion of hydrothermal resource / EGS improves at 0.25% per year or more	N	mprovement in hydrothermal / EGS not available	NA
Building Tech	Faster improvements in end-us efficiencies		Base improvements in end-use efficiencies		lower improvements in end-use efficiencies	NA
Transportation Tech	Faster declines in fuel intensities i modes	II	Base declines in fuel intensities in all modes	S	ver declines in fuel intensities in all modes	NA
Industry Tech	Faster improvements in end-us efficiencies		Base improvements in end-use efficiencies		lower improvements in end-use efficiencies	NA
Crop Production	Crop yield improvements convergin 0.5% per year by 2050	to	Crop yield improvements converging to 0.25% per year by 2050	c	o yield improvements converging to 0% per year by 2050	NA