

IIASA's Integrated Assessment Framework: Modelling approach

Behnam Zakeri, H-Holger Rogner

IIASA, International Institute for Applied Systems Analysis

Key (energy) challenges

Energy Access

Climate Change

Energy Security

Water Scarcity

Land & Food

Local Air Pollution

Image sources: NASA, http://www.powernewsnetwork.com/white-house-releases-plan-to-cut-oil-imports-by-13-by-2025/1798/, http://wheresmyamerica.wordpress.com/2007/08/26/i-cant-see-my-america/, http://www.americanprogress.org/issues/green/report/2009/05/14/6142/energy-poverty-101/, http://today.uconn.edu/blog/2010/12/reclaiming-water-a-green-leap-forward/, http://te.wikipedia.org/wiki/%E0%B0%A6%E0%B0%B8%E0%B1%8D%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%82:Forest_Osaka_Japan.jpg

Integrated Assessment Modelling (IAM)

How to address the challenges?

- Single sector analysis vs. systems analysis
- A coherent framework for assessing the impact of climate change requires multi-disciplinary approach
- Understanding sources of uncertainty in complex systems: interrelationships between natural and social systems
- Evaluating different policy options

IAM → Integrated planning and policy formulation with full appreciation of nexus issues

The 2030 Agenda for Sustainable Development

New field for IAM research and applications

IAM and SDGs

- SDGs are not independent of each other
- Synergies (win-win configurations)
- Trade offs implementation of one SDG at the detriment of other SDG(s)

Integrated policy-making:

 Accounting for interdependences between dimensions and sectors

IAM: integrated approaches for promoting most of the dimensions of sustainable development (SDGs) in a balanced manner: <u>one of the key principles</u> of the 2030 agenda

Integrated Assessment Models (IAM): Nutshell

- Cross-sectoral and interdisciplinary
- A coherent framework for different type of information- climate, economics, ecology, health, technology, etc.
- Geographical coverage is global– temporal scope is long-term
- Highly data and assumption intensive
- IAMs provide insights not answers
- IAMs are instrumental in facilitating the science-policy interface

IIASA's Integrated Assessment Model:

MESSAGEix

MESSAGEix

- MESSAGE developed at IIASA (Austria) since 1982
- International Atomic Energy Agency (IAEA) has adapted and distributed the model for capacity building and energy planning
- Policy analysis, electricity sector expansion, optimal supply mix, scenario development, energy-environment-economy analyses, NDCs, etc.
- Geographical scope: User defined
- Sectors: All energy relevant economic sectors (supply & demand)
- Methodology/solution structure: Usually dynamic linear programming (LP) energy-engineering model
- Level of foresight: Perfect foresight; myopic mode possible
- Complexity: Flexible depending on problem formulation

IIASA Integrated Assessment Framework

IIASA Integrated Assessment Framework

IIASA Integrated Assessment Framework

Input Data and Cost Estimations

- Historical energy balances: mainly IEA Statistics
- Vintage capacity of power plants, cooling technologies, planned capacities
- **Renewable energy resource potentials (hydro, biomass, wind and solar)**
- Fossil energy resources
- IIASA's Global Energy Assessment (GEA) model
- Cost estimation of technologies over time (extraction, conversion, transfer, etc.)

Model adjustments for the Pathways Project

- Regional resolution
- SSP2 trends/philosophy introduced for the new regions (MESSAGE and MACRO)
- Base year updated to 2015
- Introduction of 5 year time steps
- Update of energy resources of UNECE regions (remaining regions to follow)
- Energy trade adjustments
- Introduction of nationally determined contributions (NDCs)
- MACRO regions revised now consistent with new MESSAGE regions
- Note: New regional resolution only implemented for MESSAGE
 and MACRO not the full suite if IAM models

MESSAGE

Regions modelled

RA

MESSAGE_{ix} Inter-regional trade

MESSAGE_{ix} Energy System

A more discernable view

MESSAGE: Model for Energy Supply System Alternatives and their General Environmental Impacts

INPUT

- Energy system structure (including vintage of plant and equipment)
- Base year energy flows and prices
- Energy demand via link to MACRO
- Technology and resource options & their technoeconomic performance profiles
- Technical and policy constraints

5

ILASA

OUTPUT

- Primary and final energy mix
- Electricity generating mix, capacity expansion/retirement, investments
- GHG missions, air pollution, wastes
- Health and environmental impacts via link to GAINS and LCA module
- Resource use energy, water, land (via link to GLOBIOM), materials
- Trade & import dependence
- Prices

Summary

- Some methodological adjustments may become necessary along the way with adequate mathematical representation of signposts or adaptive policy pathways (low probability)
- Following scenario activities provide the point of departure
 - No policy (climate or SDG related)
 - Implementation of NDCs
 - A global carbon budget consistent with a max 2°C limit
 - Assessing different policy pathways for reaching climate and SDG targets
 - Analysis of the agreed metrics and performance targets
 - Iteration
- Based on the plausibility of the results obtained from these three scenarios, additional scenarios may be designs pending on available resources

Shared Socioeconomic Pathways (SSPs)

Narrative

Qualitative description of broad patterns of development Logic relating elements of narrative to each other

Quantitative elements

National: Population Education Urbanization GDP Technology

SSP narratives, quantitative elements: **2017 special issue of** *Global Environmental Change*. SSP Database, hosted by IIASA.

Reference SSP Scenarios

- Well established in the IAM and climate change communities
- Consistent with the Representative Concentration Pathways (RCPs) – SSPs substitute for the key driving forces of future GHG emissions used by RCPs
- No need to add yet another set of scenarios
- Five SSPs cover a wide range of futures
- Six IA modeling teams different methodologies, geographical resolutions, energy system representation, IAM linkages and features
- One representative Marker Scenario for each SSP
- For each SSP multiple IAM runs exploring uncertainty ranges

Illustration of SSP development

Source: Riahi et al., 2016

The Scenario Matrix Architecture

Ň:++:

1

SSP5: Fossil fueled development

- Rapid economic growth, free trade fueled by carbon-intensive fuels
- High technology development
- Low regard for gobal environment and first SDGs
- Technology fixes Low population and high mobility

SSP1: Sustainability

- Global cooperation
- Rapid technology dev.
- Strong env. policy
- Low population growth
- Declining inequity
- Focus on renewables & efficiency
- Dietary shifts
- Forest protection

 →√√
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

UN world

Markets

SSP2:

Clash of

Middle of the Road

civilisations

Have's and have not's

- Competition among regions
- Low technology development
- Environment and social goals not a priority
- Focus on domestic resources
- High population growth
- Slow economic growth dev. countries

SSP4: Inequality

- Inequality across and within regions
- Social cohesion degrades
- Low technology development
- Environment priority for the few affluent
- Limited trade

Challenge to adaptation

SSP2: Middle of the road

Social, economic, and technological trends proceed along historical patterns

- Development and income growth proceed unevenly
- Slow progress on reaching sustainable development goals
- Technological developments proceed without breakthrough
- Environmental systems experience degradation
- Fossil fuel dependency decreases slowly
 - no reluctance to use unconventional fossil resources
- Moderate population
- Income inequality persists or improves slowly

Illustrative SSP ranges

The SSP-RCP scenario Matrix

Riahi et al, 2017

Why integrated assessment?

- Single sector analysis, planning and decision making/policy formulation
- Systems analysis, planning and decision making/policy formulation
- Starting in the early 1970s it became obvious that sector (silo) policy making only is dated:
 - Energy security
 - Local and regional air pollution
 - Climate change (IPCC assessments)
- Coherent framework for organizing and assessing knowledge about climate chai

