Overview of Abandoned Mine Methane Activities: Project Development and Policy Issues

Workshop on Coal Mine Methane and Abandoned Mine Methane in the context of Sustainable Energy

Geneva, Switzerland

23 October 2017

Michael Coté, President of Ruby Canyon Engineering, Inc.
Presentation Outline

- AMM is an important emissions source
- Including AMM in national GHG emissions inventories
- Forecasting peak coal and AMM opportunity
- Preparing coal mines for AMM projects
- AMM policy and legal issues
AMM as an Emissions Source

- An abandoned coal mine can be a very large reservoir of methane and source of fugitive emissions
 - Gas is stored in the void volume of the workings
 - Gas is also stored in the coal remaining in contact with the void

- Abandoned mine gas has favorable characteristics
 - Generally contains between 50% and 90% methane, nitrogen, and with small amounts carbon dioxide
 - Just a few wells can drain large underground areas

- Abandoned mines are often nearby active underground mines and CMM projects
 - Combined AMM and CMM projects
AMM as an Emissions Source

Using decline curve method to estimate emission rates for AMM inventory or project

- IPCC Guidance includes AMM decline curve tables

![Graph showing emission decline over time](chart.png)

- 2 Years After Closing = 25% of Initial Emission Rate
- 10 Years After Closing = 11% of Initial Emission Rate
- 30 Years After Closing = 7% of Initial Emission Rate
- 50 Years After Closing = 5% of Initial Emission Rate
AMM as an Emissions Source

Decline curve not just theoretical!

Source: US EPA Inventory of Sources and Sinks 1990-2015
INCLUDING AMM IN NATIONAL GHG INVENTORIES
AMM Emissions Included in U.S. GHG Inventory

Source: US EPA Inventory of Sources and Sinks 1990-2015
Historical AMM Emissions and Recovery in the U.S.

Source: US EPA Inventory of Sources and Sinks 1990-2015
CMM and AMM Emissions Reported to UNFCCC

Emissions from Reporting Years 2005 and 2010

Source: UNFCCC National Inventory Report 2017
AMM Emissions and Utilization Reported in GMI Country Profiles

AMM Emissions and Utilization from 2005 and 2010

Source: UNFCCC National Inventory Reports & GMI CMM Country Profiles
Where are the Current AMM Projects Located?

Top AMM Producing Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of AMM Projects</th>
<th>Methane Emissions Avoided (million M³)</th>
<th>Primary Utilization Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>40</td>
<td>400</td>
<td>Electric Power</td>
</tr>
<tr>
<td>United States</td>
<td>20</td>
<td>185</td>
<td>Pipeline Sales</td>
</tr>
<tr>
<td>France</td>
<td>5</td>
<td>70</td>
<td>Industrial Use</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>20</td>
<td>45</td>
<td>Electric Power</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>10</td>
<td>25</td>
<td>Electric Power</td>
</tr>
</tbody>
</table>

Source: GMI CMM Country Profiles, 2015
Forecasting Peak Coal and AMM Opportunities
Forecasting Peak Coal and AMM Opportunities

What is Peak Coal?

– Generally defined as:
 • The point in time when production and/or consumption reaches its highest level prior to terminal decline (Hubbert’s peak theory)
– Forecasts for worldwide peak coal consumption range between 2010 to 2048
– 5 Largest coal producing countries in 2016 (million tons):
 • China – 3,411
 • India - 692
 • United States - 661
 • Indonesia - 434
 • Russian Federation - 385
Forecasting Peak Coal and AMM Opportunities

World Coal Production - 1981-2016

Source Data: BP Energy Outlook 2017
Forecasting Peak Coal and AMM Opportunities

Peak Coal Forecast Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Outlook 2017, BP</td>
<td>Coal consumption expected to peak in the mid-2020s</td>
</tr>
<tr>
<td>International Energy Outlook 2017, U.S. DOE EIA</td>
<td>Peak consumption by 2025, then levels out through 2040</td>
</tr>
<tr>
<td>Coal Information: Overview 2017, IEA</td>
<td>World coal production declined in 2014 for the first time this century, likely peak 2020</td>
</tr>
<tr>
<td>New Energy Outlook 2017, Bloomberg</td>
<td>Global coal-fired power generation peaks in 2026</td>
</tr>
<tr>
<td>Global coal production outlooks based on logistic model, 2010, Höök, Zittel, Schindler, & Aleklett</td>
<td>A plateau will be reached around 2025 and global production will decline after 2030</td>
</tr>
<tr>
<td>Forecasting coal production until 2100, 2009, Mohr & Evans</td>
<td>Worldwide coal production will peak between 2010 and 2048</td>
</tr>
<tr>
<td>Energy Transition Outlook 2017, DNV GL</td>
<td>By 2022, if coal use has not already peaked</td>
</tr>
</tbody>
</table>
Forecasting Peak Coal and AMM Opportunities

Source: Höök et. al. 2010
Forecasting Peak Coal and AMM Opportunities

Source: EIA Coal Information: Overview 2017

World coal consumption
quadrillion Btu

Source: EIA Coal Information: Overview 2017
Forecasting Peak Coal and AMM Opportunities

Source: Mohr and Evans 2009
PREPARING COAL MINES FOR AMM PROJECTS
Preparing Coal Mines for AMM Projects

Things to Consider:
- Accessing sealed mining districts
- Installing gas piping underground
- Using the mine roadways as conduit for gas flow
- Verifying integrity of surface seals to prevent atmospheric air intrusion

Project considerations:
- Methane resource assessment, field testing
- Lead times for financing, gas leasing, project permitting, and equipment manufacture
Preparing Coal Mines for AMM Projects

AMM Recovery - Sooner is Better!
• AMM Emissions Forecast Using Decline Curve Estimate

![Graph showing AMM emissions forecast over different time periods.](image)

- **First 5 years**
- **Next 13 years**
- **First 10 years**
- **Next 27 years**
- **First 20 years**
- **Next 58 years**

Active Mine Emissions = 100,000 M³ / Day
Preparing Coal Mines for AMM Projects

- Access methane via underground workings to avoid the need for surface gas gathering systems
 - Methods are used in both in European and some U.S. AMM projects
 - Minimizes project footprint
 - Reduces operational costs and permitting needs
 - Minimizes surface land disturbance
Accessing Sealed Areas Underground via Roadways
Installing Underground Pipes to Access Sealed Areas
Colorado AMM Project Example

Elk Creek AMM Project –
- 3 MWe and enclosed flare
- 5 coal mines

Source: Vessels Coal Gas
Similarities and Differences Compared to CMM Projects

- **Size and Scale of Projects**
 - AMM projects tend to be 10-25% the size of CMM projects at the same mine, but abandoned mines can be aggregated into a single larger project.

- **Utilization Technologies**
 - AMM projects are able to use medium-quality gas technologies such as boilers, heaters, reciprocating engines for electric power, and flares/combustors.

- **Coal Mine Involvement**
 - AMM projects are simplified by not having the mine control all methane extraction activities based on safety considerations.

- **Permits**
 - AMM projects are complicated somewhat by the need to apply for new (or separate the existing) permits.
AMM POLICY AND LEGAL ISSUES
AMM Legal Issues

AMM Ownership
- Coal mine operators are often allowed to vent (and use) CMM with just the coal mineral rights, and not necessarily the rights to the methane gas.
- Some coal mine operators may have the rights to all minerals (and gas) in the lease agreement.
- AMM projects typically need the rights to the methane gas.

Project Permitting
- Typically, large-scale coal mining operations include a number of permits under the umbrella of an approved mine plan.
- AMM projects may need to acquire or reapply for all the necessary permits to operate an AMM recovery and use project.
Policy Issues to Consider

- **Greenhouse Gas Markets – Carbon Offsets**
 - Three AMM projects currently registered in the California Air Resources Board Compliance Offset Program
 - Current value of credit = $12.00/metric tonne CO$_2$e
 - Equates to approximately $150/mM$ methane, which can exceed the value of the gas as an energy source

- **Renewable Energy Credits – Green Tariffs**
 - CMM/AMM included as a renewable energy resource in German Renewable Energy Act, five U.S. States Renewable Portfolio Standards, and formerly the UK
 - Value can range widely from 1-7cents/kW-hr
AMM Projects as Sustainable Energy Project Opportunities

- AMM Projects recover fugitive methane emissions similar to landfill, livestock, and wastewater biogas projects.
- Financial incentives for sustainable development such as carbon offset credits and renewable energy credits.
- Overall GHG emission reduction benefits enhanced due to the high global warming potential of methane.

Environmental Health & Safety Benefits – AMM recovery & flare system installed in Ostrava, Czech Republic neighborhood to prevent methane build-up in basements of buildings.

Source: RCE
AMM Best Practices Guide

- GMI and UNECE plan to prepare draft AMM Best Practices Guide (or guidelines)

- Covers the following areas:
 - Modeling the methane resource
 - Controlling factors of methane releases during active underground mining
 - Estimating potential methane recovery rates
 - Mitigating areas of risk
 - Atmospheric contamination
 - Water flooding
 - Compartmentalization
 - Preparing mines for closure
 - Sustainable development & management of AMM Projects
Conclusions

- Important to include AMM in national GHG inventories and UNFCCC reporting
- Set goals to reduce CMM/AMM emissions under policy frameworks
- Prepare closed mines for AMM recovery based on mine-specific conditions
- Need for incentives and policies that make AMM projects more financially attractive
- AMM as sustainable energy
- Need for AMM BPG
For More Information:

Mr. Michael Coté
Ruby Canyon Engineering
Tel: +1 (970) 241-9298
Email: mcote@rubycanyoneng.com
Website: www.rubycanyoneng.com