Uranium and thorium resources: Evaluation and reporting issues

Harikrishnan Tulsidas

Division of Nuclear Fuel and Waste Technology

The "Atoms for Peace" Agency

- World centre of cooperation in the nuclear field
- Promotes safe, secure and peaceful nuclear technologies
- Three pillars (**3S**) of IAEA
 - Safety and Security
 - Science and Technology
 - Safeguards and Verification

Developed Vs Developing economies

Human Development Index

Nuclear share

- ✓ 2515 billion kWh annually
- ✓ 14 % share
- 433 NPPs 372 Gwe Installed Capacity
- ✓ 63 NPPs 62 GWe under construction
- ✓ 160 NPPs 178 GWe On order / Planned
- ✓ 329 NPPs 370 GWe
 Proposed

Stated nuclear energy policy

Delations				
Beigium	Slovenia	Turkey	Argentina	Tunisia
Bulgaria	Spain	Ukraine	Brazil	Uganda
Czech Rep	Sweden	Belarus	Bolivia	Cambodia
Finland	UK	India	Cuba	Indonesia
France	Canada	Iran	South Africa	Malaysia
Germany	Mexico	Pakistan	Algeria	Thailand
Hungary	USA	UAE	Egypt	Iraq
Italy	China	Bangladesh	Ghana	Kazakhstan
Lithuania	Japan	Jordan	Kenya	Oman
Netherlands	S Korea	Mongolia	Morocco	Nigeria
Poland	Armenia	Vietnam	Namibia	Phase-out
Romania	Russia	Qatar	Niger	Increase
Slovak Rep	Switzerland	Saudi Arabia	Syria	Maintain
Bahrain	Israel	Kuwait	Yemen	New

IAEA Scenario September 2011

		2010			2020 (a)			2030 (a)			2050 (a)(b)	
Country Group	Total Elect.	Nuc	lear	Total Elect.	Nuc	lear	Total Elect.	Nuc	lear	Total Elect.	Nuc	lear
	GW(e)	GW(e) GW(e) %	%	GW(e) (GW(e)	%	GW(e)	GW(e)	%	GW(e)	GW(e)	%
North America	1165	113.8	9.8	1273 1310	119 126	9.4 9.6	1346 1526	111 149	8.3 9.7	1475	120 200	8.1 13.6
Latin America	313	4.1	1.3	457 587	6.4 6.4	1.4 1.1	982 1403	9 18	0.9 1.3	1990	15 60	0.8 3.0
Western Europe	843	122.9	14.6	1007 1058	93 126	9.2 11.9	1132 1389	83 141	7.4 10.1	1586	60 170	3.8 10.7
Eastern Europe	465	47.4	10.2	661 661	66 80	10.0 12.1	723 914	82 108	11.3 11.8	1031	80 140	7.8 13.6
Africa	130	1.8	1.4	383 422	1.8 1.8	0.5 0.4	781 1093	5 16	0.6 1.5	2630	10 48	0.4 1.8
Middle East and South Asia	418	4.6	1.1	538 954	13 22	2.4 2.3	1414 1885	30 53	2.1 2.8	5223	50 140	1.0 2.7
South East Asia and the Pacific	173			293 312			473 526	0 6	0.0 1.1	1242	5 20	0.4 1.6
Far East	1564	80.6	5.2	2222 2407	130 164	5.8 6.8	2818 3381	180 255	6.4 7.5	5215	220 450	4.2 8.6
World Total Low Estimate High Estimate	5071	375.3	7.4	6835 7711	429 525	6.3 6.8	9669 12118	501 746	5.2 6.2	20391	560 1228	2.7 6.0

~ 215 000 tU/year by 2050 – high case ~98 000 tU/year by 2050 – low case

U 2060 study – supply reference case

8

IAEA activities

Assessment of uranium resources, production and demand

IAEA/NEA Red Book

Uranium 2060

Database of Uranium Deposits (http://infcis.iaea.org) Standardization of resource classification

Supporting good practices in the uranium production cycle

Uranium Production Site Assessment Team Optimization of mining technologies Development of low grade ores Unconventional resources – Phosphates Thorium resources (By-product of REE) Support training activities

Technical Cooperation18 national projects and 2 regional projects Inter-regional project – 2012-13

Mission

To collect and share knowledge of uranium resources and support the development of a sustainable uranium production cycle in Member States.

Uranium resources

Red Book 2011

statistics Country Report	List of	Uranium Deposits (*)		
9			Country		
eposit Type	Deposit Si	tatus 🗢	country		
	Lau			_	
ame contains:			Go Reset All Filters		
	Total 1	176 records found in 59 pag	es. @ 1 2 3 4 5 6 7 8 9 10 11	12 13 14 15 🕒 Export To Ex	
Country 🕏 🖲	Deposit Name 🕏 🕭		Deposit Type 🗟 🖲	Deposit Status 🕏	
abon	Mounana	Sandstone - Tecto	nic/Lithologic	Depleted	
ance	Vendée District	Vein		Depleted	
ger	Abakorum	Sandstone - Tabul	Sandstone - Tabular		
geria	Abankor	Vein	Vein		
nited States of America	Abbe	Sandstone - Tabul	Sandstone - Tabular		
anada	Abeta	Quartz-pebble Co	Quartz-pebble Conglomerate		
gypt	Abu Tartur	Phosphorite	Phosphorite		
nited States of America	Acadia Claim Group	Sandstone - Roll F	iront	Exploration	
anada	Ace-Fay-Verna	Vein		Depleted	
pain	Acehuche Ceclavin	Vein		Dormant	
kraine	Adamovskove	Other	Other		
ajikistan	Adrasman	Vein		Depleted	
azakhstan	Agashskoe	Vein		Dormant	
ussian Federation	Aqdinskove	Metasomatite		Dormant	
anada	Agnew Lake	Quartz-pebble Co	nglomerate	Depleted	
zbekistan	Data of 1 1	15 Sandstone - Roll F		Operating	
yrgyzstan	Jala 01 14	is urar	num	Dormant	
pe	Akashat	Phosphorite		Dormant	
azakhstan	Akdala	Unknown		Operating	
liger	Akola 0000	Se Istone - Tabul	ar	Operating	

iNFCIS - UDEPO

Total 26 802 989 tU

Undiscovered Resources: 10 400 000 tU

IAEA /OECD NEA Uranium 2011: Resources, Production and Demand http://infcis.iaea.org

Unconventional Resources

Growing uranium inventory

	Туре	# of deposits	tU*
Unconformity	Unconformity	84	1 235 381
Hematite Breccia	Sandstone	566	3 872 095
■ QPC ■ Volcanic	Hematite Breccia	13	2 223 497
■ Intrusive	QPC	61	1 005 692
Vein Metasomtic	Volcanic	107	549 658
	Intrusive	77	1 077 134
 CBP Metamorphic Phosphate Lignite/Coal Black Shale Other Unknown 	Vein	240	845 620
	Metasomtic	52	957 676
	Surficial	57	382 154
	CBP	17	15 970
	Metamorphic	6	21 439
	Phosphate	39	12 894 830
	Lignite/Coal	23	305 285
	Black Shale	42	1 199 086
	Other	25	232 993
	Unknown	4	6 658
	Total	1413	26825168

*Total (geological) resources

Total 26 825 168 tU from ~75 countrie^{tt}

Uranium mining – Conventional

Rossing, Namibia

McArthur River, Canada

Total Conventional mine production - 25327 tU / year – 47%

Uranium recovery - ISL

Honeymoon, Australia

Nichols Ranch, USA

Total ISL production - 24,180 tU / year – 45%

Uranium recovery – By-product

Olympic Dam, Australia

Talvivaara, Finland

Total by-product production - 3987 tU / year – 7%

Thorium – Future of energy 1/2

Country	tTh	Country	tTh
Turkey	744000 - 880000	Peru	30000
Norway	320000	Uruguay	3000
Greenland	86000 - 93000	Argentina	1000
Finland	60000	Egypt	380000
Russia	>155000	South Africa	148000
Sweden	50000	Morocco	30000
France	1000	Nigeria	29000
Brazil	606000 -1300000	Madagascar	22000
US	434000	Angola	10000-20000
Venezuela	300000	Mozambique	10000
Canada	172000	Malawi	9000

Thorium – Future of energy 2/2

Country	tTh	Country	tTh
Kenya	8000	Vietnam est	5000 - 10000
Zaire	2500	Korea Rep	4500-7500
CIS excl Russia	1500000	Sri Lanka	4000
Kazakhstan est	>50000	Australia	474000
Uzbekistan	5000-10000		
India	846500	Total	6566000-
China est	>109000*		7421000
Iran	30000		
Malaysia	18000		
Bangaladesh est	17000		
Thailand est	10000		
* Includes Chinese Taipei 9000 tTh			

16

Energy Basins (1)

Dominant fuels coal, oil & gas and uranium are to a large extent supplied from giant sedimentary basins.

There could a linkage between the presence of coal / oil & gas and uranium, which is not well understood yet in terms its genesis or total 'energy flows' in the basin.

Some examples:

- oil & gas and adjoining uranium in sedimentary basins of Kazakhstan;
- oil & gas, coal and uranium in sedimentary basins in north China;
- coal and possibly uranium in Gondwana basins of India;
- coal and uranium; uranium and oil & gas in sedimentary basins of Texas;
- uranium, chromium, vanadium, nickel and hydrocarbons in Bakken Shales, Canada;
- uranium and oil & gas in sedimentary basins of Argentina;
- the Karoo basin of Africa, which is a source of coal and uranium etc.

All the energy basins will have potential of various renewables energy sources

At times large resources of minerals like phosphates are also seen to occur in such basins, close to oil & gas occurrences and the genetic link remains to be established.

Energy Basins (2)

Unified and holistic approach to understand such 'energy basins' will greatly aid the exploration and discovery of multiple energy sources in many basins.

Holistic approach in developing such energy basins to extract multiple energy fuels like oil & gas, coal and uranium and renewables will aid the optimal and sustainable local development and conservation of all useful materials.

For example

uranium from deep levels in a basin, which could be uneconomic to mine conventionally, could be extracted economically with oil & gas;

uranium could extracted from coal with suitable modifications to coal to liquid technology; and co-extraction of uranium, valuable elements and oil & gas from gas shales;

co-extraction of uranium and hydrocarbons from off-shore basins etc.

... and combined with harnessing the power of sun, wind, tides and other renewable energy sources

If properly understood and developed 'energy basins' could be supply 'plentiful energy' to meet the growing global demand, the supply of which is at present is based on a conventional compartmentalized developmental paradigm.

Need for petroleum, uranium, coal, phosphate and renewable experts to talk to each other.

Ultimately, energy basins can act as waste disposal repositories

Why uranium and thorium are special?

- •Only fuel / metal globally reported by an inter-governmental agency.
- Need to keep an inventory for 100 years of more.
- •Need to keep track of thorium, which has no market today but can be used for 1000s of years in to future.
- In many countries uranium and thorium are **reported separately**.
- In many countries uranium mining is regulated separately.
- In some 'energy basins' U seen to occur with other energy fuels. Use of common classification systems can help in energy studies.
- There has to be some **commodity specific issues**, while an unified classification system, the UNFC is applied.

You can reach me at ...

Harikrishnan Tulsidas

Nuclear Technology Specialist

Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Tel: (+431) 2600 22758 Fax: (+431) 26007 22758 Room **A26 19**

Email: T.Harikrishnan@iaea.org

