Commodity Specifications for the UNFC-2009: Application of the Framework Classification Using the PRMS

David MacDonald
London, 12 June 2013

75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013
Outline

• Why do we bother to classify resources?
• What is the UNFC?
• How do we use with the SPE-PRMS?
• What are the future applications?
Stakeholders

- External Influencers
- Internal Stakeholders
 - Internal preparers
 - Governance and Assurance
 - Internal users
- External user
Resource progression

Access Appraise Select Define Execute Operate

Development Pending Justified for Development Approved for Development On Production Production

Discovery Criteria
Commercial Criteria
Volumetric Uncertainty

Key
- Exploration
- Non-Commercial
- Commercial
- Potentially Commercial

Exploration Prospect
Resource progression – adding value

- Access
- Appraise
- Select
- Define
- Execute
- Operate

Key

- Exploration
- Commercial
- Non-Commercial
- Potentially Commercial

Diagram

- Exploration Prospect
- Development Unclarified
- Development on Hold
- Development Pending
- Justified for Development
- Approved for Development
- On Production
- Production

Criteria

- Discovery Criteria
- Commercial Criteria
- Volumetric Uncertainty
Outline

• Why do we bother to classify resources?
• What is the UNFC?
• How do we use with the SPE-PRMS?
• What are the future applications?
● United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources

● Generic, principles-based system
 – Applicable to both solid minerals and fluids

● Based on three criteria
 – Economic and social viability
 – Field project status and feasibility
 – Geological knowledge
Why do we need the UNFC?

Need for common global language for energy and mineral resource estimates

- What are “proved reserves”?
- What are “resources”?

Increasing overlap between mining and oil & gas industries

- Major issue with respect to “unconventional” resources
- Which system applies to mined petroleum solids?

Increasing need to be able to compare renewable energy resources with non-renewable resources
Proved reserves must be...

- Geologically well defined (with high confidence)
- Technically feasible to extract
- Economic to extract (commercially feasible)
UNFC – How it works

Category Definition

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Extraction and sale has been confirmed to be economically viable.</td>
</tr>
<tr>
<td>F1</td>
<td>Feasibility of extraction by a defined development project or mining operation has been confirmed.</td>
</tr>
<tr>
<td>G1</td>
<td>Quantities associated with a known deposit that can be estimated with a high level of confidence.</td>
</tr>
</tbody>
</table>

UNFC Class: 111
UNFC – 2D representation

<table>
<thead>
<tr>
<th>Extracted</th>
<th>Sales Production</th>
<th>Non-sales Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class</td>
<td>Categories</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>Future recovery by commercial development projects or mining operations</td>
<td>Commercial Projects</td>
<td>1</td>
</tr>
<tr>
<td>Potential future recovery by contingent development projects or mining operations</td>
<td>Potentially Commercial Projects</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Non-Commercial Projects</td>
<td>3</td>
</tr>
<tr>
<td>Additional quantities in place associated with known deposits</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Potential future recovery by successful exploration activities</td>
<td>Exploration Projects</td>
<td>3</td>
</tr>
<tr>
<td>Additional quantities in place associated with potential deposits</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Each class is uniquely defined by its code.
UNFC – sub-categories

- The system allows further granularity through sub-categories

- These are optional

- They facilitate mapping with the project maturity sub-classes of PRMS

- These sub-classes also align with some mining companies’ reporting practices and with the IAEA classification of production centres
UNFC Classes defined by categories and sub-categories

<table>
<thead>
<tr>
<th>Class</th>
<th>Sub-class</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracted</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Sales Production</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Non-sales Production</td>
<td></td>
</tr>
<tr>
<td>Total commodity initially in place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known Deposit</td>
<td>Commercial Projects</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Approved for Development</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Justified for Development</td>
<td>1</td>
</tr>
<tr>
<td>Potentially Commercial Projects</td>
<td>Development Pending</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Development On Hold</td>
<td>2</td>
</tr>
<tr>
<td>Non-Commercial Projects</td>
<td>Development Unclarified</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Development Not Viable</td>
<td>3.3</td>
</tr>
<tr>
<td>Additional quantities in place</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Potential Deposit</td>
<td>Exploration Projects</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>[No sub-classes defined]</td>
<td></td>
</tr>
<tr>
<td>Additional quantities in place</td>
<td></td>
<td>3.3</td>
</tr>
</tbody>
</table>
Outline

• Why do we bother to classify resources?
• What is the UNFC?
• How do we use with the SPE-PRMS?
• What are the future applications?
Alignment to other systems

UNFC-2009

- Total commodity initially in place
 - Sales Production
 - Non-sales Production
 - Class
 - Commercial Projects
 - Potentially Commercial Projects
 - Non-Commercial Projects
 - Additional quantities in place
 - Exploration Projects
 - Additional quantities in place

PRMS

- Production
 - Class
 - Reserves
 - Contingent Resources
 - Unrecoverable
 - Prospective Resources
 - Unrecoverable

CRIRSCO

- Extracted
 - Class
 - Mineral Reserves
 - Not reported
 - Mineral Resources
 - Not reported
 - Exploration Results
 - Not reported
UNFC Alignment

Classification Framework and Category Definitions

Generic Specifications

- Bridging Document
- Bridging Document
- Bridging Document

- Petroleum Specifications PRMS
- Solid Mineral Specifications CRIRSCO
- Other Aligned Systems
How can we use alignment?

- Quantities can be estimated using current well-established commodity-specific systems.
- Reporting under these systems can continue unchanged.
- But the same quantities can also be reported under UNFC using the numerical codes.
- The reporting is then independent of commodity type, extraction methodology and ambiguous terminology (e.g. “reserves”).
Outline

• Why do we bother to classify resources?
• What is the UNFC?
• How do we use with the SPE-PRMS?
• What are the future applications?
Applications under development

- Renewable energy
 - Bio-fuels
 - Wind
 - Solar
- Uranium classification with the IAEA
- Carbon Storage evaluation
Renewable energy is on a significant growth trend

The same issues impacting mineral and petroleum projects are relevant for renewable energy

There is a real need for a consistent framework for comparing renewable projects with conventional energy forms

UNFC could meet these needs with minimal modification, providing a tool for communication around issues of sustainable energy

Real stakeholder commitment
Conclusion

● **UNFC-2009 is a generic, principles-based system**
 - Applicable to both solid minerals and fluids
 - Uses a numerical coding system

● **Based on three criteria**
 - Economic and social viability
 - Field project status and feasibility
 - Geological knowledge

● **Direct linkage to PRMS and the CRIRSCO Template**
 - Quantities can be estimated using these systems and reported using the UNFC numerical codes

● **Key goal is to provide a tool to facilitate global communications**
 - Other systems can be linked to it (e.g. IAEA “red book” system)
 - Potential to use system for renewable energy and CCS projects