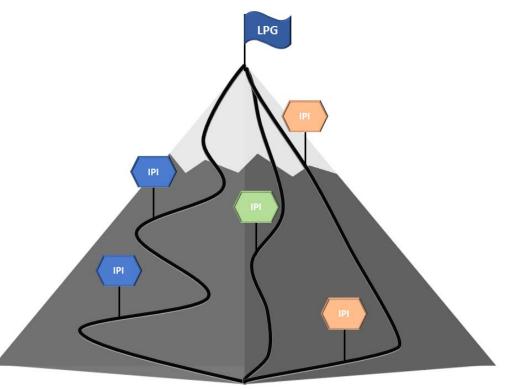
Introduction to Modelling Approach

Glossary: Important Definitions

Metrics

- Quantifiable indicators consistent with three pillars of sustainability
- Measurable in real world and from model outputs
- Either linked to a specific SDG or an "informal" indicator assigned to a SDG
- Not limited to the SDG time frame, go beyond 2030

Long-term Performance Goals (LPGs)


- Stated targets that can be measured
- Inherently globally harmonious
- Defined as outcomes in 2050
- Not all LPG's are necessarily harmonious (achieving one may make achieving another harder)
- Linked to energy related SDG's

Glossary: Important Definitions

Interim Performance Indicators (IPIs)

- Modelled values of metrics at specific points in time along a given pathway
- Used to track progress towards LPGs
- May be LPG measures or other metric
- Either consistent with SDG indicator c an informal indicator assigned to a SE

Glossary: Important Definitions

Storylines

- Narrative descriptions of alternative futures
- Qualitative in nature
- Do not contain strategies for achieving specific goals or outcomes

Scenarios

- Quantified descriptions of a future (often outlined by a storyline)
- Quantification in 3 stages:
 - Quantified Assumptions (Input)
 - Quantified Relationships (Modelling)
 - Quantified Outcomes (Output)

Model Overview and Definition Summary

INPUT (Quantified Assumptions)	Examples	MODEL (Quantified Relationships)	OUTPUT (Quantified Outcomes)	Examples	Targets/Goals
Demographic	 Population by region GDP per capita by 	Integrated Model • Resource	Energy Security	 Price of energy Energy imports/exports Electricity access Energy/GDP 	LPG
Productivity Technology	region Power plant conversion efficiency Transport fuel economy, etc. Crop yields, etc. 	extraction, exports- imports, energy transformation and use Markets Capital Labor Agriculture Land use	Quality of Life	 GDP per capita Energy services per capita Share calories from non- staples Water stress 	LPG
Resources	•Fossil fuel, uranium, solar, wind, geothermal, land, water and other	 Carbon cycle Atmosphere Hydrology Oceans 		 SO₂ NO_x O₃ concentrations Deforestation/afforestation 	
Policies	Pollution controlNDCsWater use		Environmental Sustainability	 Avg. Earth surface temp Water withdrawals/recharge 	LPG

Folie 5 © Fraunhofer UMSICHT

Modelling Approach: Start

Reference Scenario

- Contains baseline assumptions from historical trends and current policies
- Modelling starts with the reference scenario (SSP2)

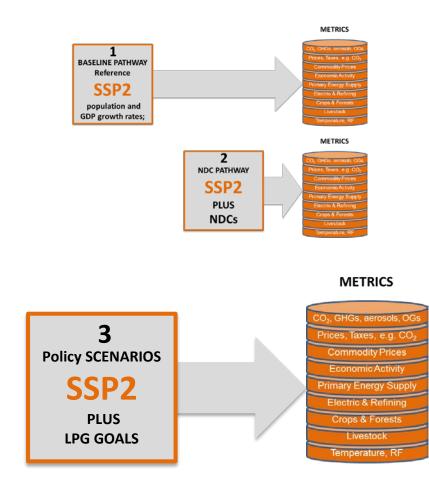
 Reference Scenario for this project is SSP2 (Shared-Socio-Economic-Pathway) – termed "the middle of the road"

METRICS

Modelling Approach: Next Step

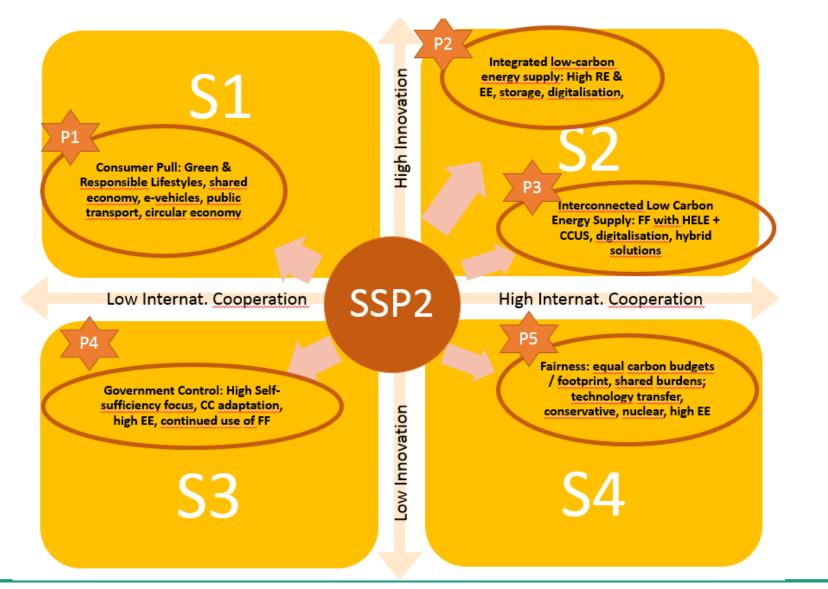
METRICS

Livestock Temperature, RF


scenario

Modelling Approach: Policy Scenarios

In a third step policy scenarios are added


Policy Scenario

- 2 types of policy scenarios
 - A <u>policy proposal</u> is given (i.e. a subsidy for technologies x,y,z) and modelled on top of the base scenario
 - Or an <u>LPG</u> can be analyzed.
 For this the target range/value of the LPG is inserted into the model as a constraint

Example Policy Scenarios

