Maximizing the Value of Abandoned Mine Methane at Abandoned Mines in the United States

25th World Mining Congress
June 20, 2018
Astana, Kazakhstan

Michael Coté, President
Ruby Canyon Engineering
Abandoned Mine Methane (AMM) Development

- Similar to conventional underground coal mine methane (CMM) projects
- A few differences worth noting:
 - No active mine ventilation; therefore fewer complexities
 - “Medium-quality” gas (30-80% CH4 concentrations); more consistent concentrations, less variation
 - AMM project infrastructure smaller-scale than CMM
 - AMM gas ownership may be unclear
 - Gas flows decline over time
 - Mining company involvement optional
Technical Barriers

- Uncertainty in methane resource
- Geological conditions
- Water flooding
- Compartmentalization
- Adequate piping and seals upon closure
- Suction pressure
- Remote locations with limited access
Actual AMM Production vs. Decline Curve Model Forecast

![Graph showing actual AMM production vs. decline curve model forecast. The graph plots Mcf/d against time from January 1999 to January 2015. There is a red line indicating the default decline curve.](image-url)
Methane Emissions After Coal Mine Closure

AMM Recovery - Sooner is Better!

- AMM Emissions Forecast Using Decline Curve Estimate

![Graph showing AMM emissions over time]

Active Mine Emissions = 100,000 M³ / Day

- First 5 years
- Next 13 years
- First 10 years
- Next 27 years
- First 20 years
- Next 58 years

AMM Emissions (million M³/yr)
Preparing Underground Workings at Active Mines

Certain actions can lead to increased methane recovery and use after the mine closes:

- Installing gas piping underground
- Accessing sealed mining districts
- Using the mine roadways as conduit for methane flow
- Verify integrity of surface seals to prevent atmospheric air intrusion
- Use of drones and IR technology to identify methane leaks
Installing Underground Pipes to Access Sealed Areas
Installing Underground Pipes to Access Sealed Areas
Underground Pipes Fuel a 3 MW AMM Electric Power Project

- Colorado, USA
- Recovers AMM from 5 mines total
- Enclosed flare accompanies power plant
Accessing Sealed Areas Using Mine Roadways
Accessing Sealed Areas Using Mine Roadways
AMM Enclosed Flare Deployed at the Existing Gob Well Site

- Utah, USA
- 72 MMbtu/hr flare system

Remote location requires weatherization of equipment and on-site power generation
Evaluating AMM Resources

- **Pressure Testing**
 - Estimate the void volume
 - Continuously monitor the borehole static P and barometric P

- **Flow Testing**
 - Continuously monitor gas flow rate, CH4 content and inlet P
 - Shut-in well, let pressure stabilize
 - Compare actual P to expected P from void model

Photo courtesy of Perennial Energy
Aggregating Abandoned Mines Can Increase Project Viability

- Total AMM Projects in U.S. –
 - 19 AMM projects at 45 mines
 - 7 of 19 projects with multiple mines

- Aggregated Projects Include –
 - 3 AMM projects group 3-5 mines into a single project
 - 1 AMM project aggregates methane from 14 mines
 - 3 AMM projects are combined with existing CMM projects
Example AMM Project – Illinois, U.S.

- 14 mines
- 31 wells
- 70% CH$_4$
- 34,000 hectares
- 11 field stations
- 85 mM3/day
Conclusions

- AMM projects offer unique set of opportunities and challenges
- Preparing an active mine for methane extraction following closure is important step to ensuring successful AMM projects
- Perform a proper methane resource evaluation to adequately size the project
- Aggregating several abandoned mines into a single project can be economically beneficial
Thank You

Michael Coté, President
Tel: +1-970-241-9298 ext.11
Email: mcote@rubycanyoneng.com
Website: www.rubycanyoneng.com

Felicia Ruiz
Coalbed Methane Outreach Program
Tel: +1-202-343-9129
Email: ruiz.Felicia@epa.gov
Website: www.epa.gov/cmop