Gilowice Project as a First Step to Develop Pre-mine Drainage Technology in Poland – update on activities, review of the latest results
Agenda

1. Introduction to the problem of methane emission in the Upper Silesian Coal Basin
2. Overview of the GEO-METHANE experimental program
3. Geo-Methane Phase I – Gilowice pilot project results
5. Geo-Methane Phase III – future implementation
Coalbed Methane Resources in the Polish Coal Basins

- LCB: 9100 km²
 - 1989: 1,9
 - 2016: 7,3
- USCB: 5760 km²
 - 1989: 171
 - 2016: 59,2

Methane:
- LCB: 10-20 bln m³
- USCB: 230-250 bln m³
- Silesian Coal Basin: 2-5 bln m³

- LCB: 5, 2,6
- USCB: 65, 171
- Silesian Coal Basin: -
Methane Emission from Coal Mines in the USCB

Emissions, Recovery and Utilization of Methane in 2017 [MMm³]

<table>
<thead>
<tr>
<th>Methane volume</th>
<th>Emission to atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>captured</td>
</tr>
<tr>
<td>948.5 MM³</td>
<td>337.0</td>
</tr>
</tbody>
</table>

Measured volume of methane

(methane released and recorded by mines – methane contained in ventilation air + methane captured)

948.5 MM³

Unmeasured methane sources

(“non-methane” and “low methane” mines + extracted coal and barren rock consisting of 5–10% of measured methane)

c.a. 47–95 MM³

Total volume of methane emission per year: c.a. 780–825 MM³

(1 CH₄ = 25 CO₂; → 20–21 Bm³ CO₂)
Methane Content of Coal Increasing with Depth

It is critical to initiate systematic efforts leading to a comprehensive solution, or, at least, considerable reduction of coal mine methane problem.

In the light of current and future energy policy of Poland, coal, recovered from domestic resources, will continue to be, over many years, the main source of power supply.

It is also important to change the perception of methane, especially in the coal industry sector:

from a hazardous waste to be disposed of, to a valuable energy commodity

The long-term solution to the problem of gassy mines in USCB

PRE-MINE DRAINAGE OF COAL SEAMS

Methane recovery from coal seams for a few or several years before mining:

▪ early recovery of valuable energy source (1.0–1.5 Bm³, increasing domestic gas production)
▪ extraction of coal in more favorable mining and economic conditions (reducing methane hazard, improved work safety, significant reduction of coal extraction costs)
▪ reduction of methane emissions to the atmosphere (mitigation of the greenhouse effect, reducing the cost of emission fees, especially in case of EU ETS)
The Main Features of Pre-mine Drainage in the USCB

1. **Methane recovery from coal seams planned several years before mining operations** (using surface wells) – difference in relation to the current in-mine demethanization systems.

2. **It is not possible to recover all methane from coal seams using pre-drainage with surface wells.** Pre-mine drainage will supplement the existing demethanization system.

3. **A Recovery factor of 50-70% of the total coal seam gas is possible**, the recovery of 30-50% of methane from coal seams would essentially change the conditions of coal mining (reducing category of methane hazard, eg. from IV to II).

4. **Activity identical to virgin coalbed methane operation**, applied to coal in the vicinity of active mining operations (new, deeper levels of mines, newly available fields).

5. **Future cost reduction in mining of partially demethanized coal seams should be included in the coal mine economics** – safer mining with lower financial investment.

6. **Application of modern technologies (Surface-to-in-Seam drilling) and well-stimulation technique** – prospects for a commercial recovery of coalbed methane.
Objectives of Geo-Methane Program

1. To support development of **CBM production technologies** in the Polish coal basins, as well as **methane drainage of coal mines**, which leads to:
 - increasing gas production potential in Poland
 - supporting the domestic coal mining industry by providing a comprehensive solution to the problem of methane emissions in coal mines.

2. **Determining, on an experimental basis, the screening criteria** for pre-mine drainage of coal seam gas depending on geological-mining conditions.

3. **Development of directional drilling technologies** and methods of coalbed gas production enhancement suitable for the Upper Silesian Basin conditions.

4. **In case of positive results**, demonstrate the feasibility of the pre-mine drainage technology with its implementation in the selected areas.

Phases of work:

- **Phase I** – Experimental Project (Gilowice)
- **Phase II** – Pilot
- **Phase III** – Implementation (Production)

Gilowice-1 and Gilowice-2H wells were drilled (2011–2012) by Dart Energy (Poland).

Following the completion of production tests, the ownership of wells was transferred to the Polish Geological Institute in order to perform further studies.

Scope of work:

1. Workover of the wells
2. Hydraulic fracturing of the Gilowice-2H well
3. Methane production testing
4. Reporting results
Gilowice-1 and Gilowice-2H wells

Gilowice-1
- total depth – 1080 m (TVD 1039 m)
- thickness of 510 coal seam – 5.28 m
- gas content of 510 coal seam – 13.7 m³/t
- methane concentration in gas – 97.7%
- permeability of 510 coal seam – 0.2–0.8 mD

Gilowice-2H
- total depth – 2300 m (TVD 850 m)
- horizontal displacement – 1616 m
- length of the well in 510 coal seam – 795 m
Gilowice-1 and 2H testing results

- **Downhole pressure [bar]**
- **Water production [m³/day]**
- **Gas flow rate [m³/day]**

1st stage - Dewatering
- 10,000 m³/day
- 7,000 m³/day

2nd stage - Stabilization
- Gas flow rate
- Downhole pressure
- Water production

Dart Energy – max. 170 m³/day

Σ = 842,857 m³

CH₄: 98,04–99,25%
Summary of the Gilowice Project Results

1. Massive fraccing of the target coal seam and the surrounding strata, including several gassy coalbeds, (fracture propagation: height - 50-100 m, length - 200-400 m, SRV - 14 million m3).

2. Production test results: maximum initial water rates: 40-70 m3/d, water rates after dewatering: 5,5-3,1 m3/d, maximum gas rates: 10 000 m3/d, stable gas rates after dewatering: 5 000 m3/d, test duration: 145 days.

3. Comparison to the previous CBM production tests in the USCB:
 - openhole completion, horizontal well, (Dart Energy): >30-fold increase in gas rates,
 - fracture stimulated completion, vertical wells (Texaco): 15 to 30-fold increase in gas rates,

4. Gilowice project confirmed that the selected technology of massive fracture stimulation (with slick water and gel) is the best solution for low permeability coal seams in the USCB.

5. The most critical factor of success is fracture stimulation effectiveness which enables creating the network of propped fractures in coal seams and associated rocks.

6. The most important technical challenge – selection of suitable downhole pumping equipment for a dewatering stage.
Geo-Methane Phase II – Pilot

Phase II objectives:

1. Research focusing on:
 - determination of optimal geological-mining conditions for methane drainage;
 - optimizing drilling and fracture stimulation technology.

2. Demonstration focusing on:
 - pilot project of effective methane recovery by the wells drilled from surface;
 - carrying out long-term production tests.

Scope of work:

1. Drilling of experimental wells in 3 areas with different geological and mining conditions, with variable patterns of laterals and type of intersections.

2. Comprehensive evaluation of CBM reservoir parameters (field and lab tests).

3. Methane production enhancement – fracture stimulation using different techniques, with a possibility of refracturing.

4. CBM gas production tests with determination of gas flow rates in a long period (min. 2-3 years).

5. Verification of technical parameters of gas recovery and the feasibility of the CBM development project (on a stand alone basis).

6. Evaluation of pre-mine drainage effects for gas emission of the planned longwall panels.

7. Detailed feasibility study of pre-mine drainage of coal seams in the mining industry including underground demethanisation cost analysis.

Completion time of Phase II: 4–5 years
Geo-Methane Phase II – new pilot project site selection

• Geological, mining and environmental criteria for pre-mine drainage site selection were elaborated
• Seven gassy mines (of three different mining groups) were initially selected based on the applied criteria
• The three most favorable mines were selected based on questionnaires given to the seven mines and extensive research

Lokalizacje:
1. KWK Pniówek
2. KWK Budryk
3. KWK Ruda – Ruch Bielszowice
4. KWK Ruda – Ruch Halemba
5. KWK Murcki-Staszic
6. KWK Mysłowice-Wesoła
7. KWK Brzeszcze
Geo-Methane Phase III – Implementation

Phase objectives:

1. **Commercialization of solutions** developed during phase I and phase II.
2. **Implementation of gas production** in the area of the selected coal deposit.

Scope of work:

1. **Drilling a number of directional wells** with special production stimulation treatments and installations for gas recovery and transmission (or local use); 12 multilateral clusters of directional wells in the area of 18-20 km² are assumed.
2. **Carrying out gas production** until the flow rates drop to the level predetermined based on the previous phases, as justified by geological, mining, and economic conditions.
3. **Report** on the implementation phase and business evaluation of the work performed.

Completion time of Phase III: 5–7 years
Thank you for your attention