NATIONAL PLAN ON INDUSTRY 4.0
ITALY’S INDUSTRIAL POLICY FOR INNOVATION

Stefano Firpo
Italian Ministry of Economic Development
DG for Industrial Policy, Competitiveness and SMEs
CHALLENGES, POLICY APPROACH AND SCOPE
Next Production Revolution

SISTEMI DI MANUFACTURING EVOLUTI

- **SENSORI**
 - Zero errori / deviazioni
 - Reattività
 - Tracciabilità
 - Prevedibilità

- **3D PRINTING / ADDITIVE MANUFACTURING**
 - Eliminazione degli scarti
 - Mass customization
 - Rapid prototyping

- **NANOTECNOLOGIE / MATERIALI AVANZATI**
 - Prodotti a valore aggiunto intelligenti
 - Differenziazione tecnica
 - Connettività

- **ROBOT**
 - Real time – Autonomia – Produttività
 - Completa trasparenza (controlli, robot collaborativi) sulla reportistica dei dati
 - Ottimizzazione dei flussi
 - Sicurezza aumentata
 - Riduzione dei costi

- **VEICOLI AUTONOMI**
 - Vicinanza Cliente - Marketing
 - Flessibilità
 - Perfetto incontro tra bisogni del cliente e efficienza della produzione di massa
 - On demand manufacturing

- **CYBERSECURITY**
 - Sicurezza per l’“internet based manufacturing”
 - Allungamento del ciclo vita dei prodotti tecnologici

- **CLOUD COMPUTING**

- **BIG DATA**
 - Gestione della complessità
 - Creatività
 - Manufacturing collaborativo

- **IMPIANTO PRODUTTIVO DEL FUTURO A**
 - Energie pulite e rinnovabili ovunque
 - Stocaggio di energia
 - Materiali alternativi

- **IMPIANTO PRODUTTIVO DEL FUTURO B**
 - Catena di fornitura pienamente integrata
 - Sistemi interconnessi
 - Perfetta coordinazione

- **LOGISTICA 4.0**
 - Sicurezza aumentata
 - Riduzione dei costi

- **INTERNET OF THINGS**
 - Controllo elettronico dell’oggetto
 - Comunicazione internet-oggetto
 - Dati in real time
 - Magazzino ottimizzato
 - Minori scarti e sprechi

- **MASS CUSTOMIZATION**

- **EOLICO**

- **SOLARE**

- **GEOTERMICO**

- **CLUSTER DEI FORNITORI**

- **FORNITORI**

- **CLIENTI**
Key enabling technologies for industry 4.0

- BIG DATA & DATA ANALYTICS
- SENSOR SYSTEMS AND IOT
- COLLABORATIVE AUTOMATION & ROBOTICS
- CLOUD COMPUTING & CYBER SECURITY
- HUMAN MACHINE INTERFACE
- ARTIFICIAL INTELLIGENCE
- ADDITIVE MANUFACTURING NEW MATERIALS
Expected benefits within and outside the factory: smart factory and supply chain integration

- **Flexibility**
 - Higher flexibility: enabling small batches production, strong variety and customisation, all with the economies of scale of mass production

- **Speed**
 - Faster time-to-market: product and process “digital twins” allow faster prototyping and factory layout design, saving time and costs

- **Efficiency**
 - Higher productivity: thanks to lower set-up time and continuous monitoring, errors and downtimes are cut down

- **Quality and sustainability**
 - Improved quality and sustainability: scrap reduction thanks to sensors that allow real-time production monitoring, smarter resource management, a more circular and ecological production

- **New business models**
 - Higher competitiveness of products thanks to additional functionalities enabled by Internet of Things, which open the way for new business models
Industry 4.0: growth issues at stake in Italy

Investments and innovation
- Decreasing quantity of fixed industrial investments in the last 15 years: increasing obsolescence in installed equipment, risk aversion, underdeveloped VC market.

Capital allocation and productivity
- Low quality of investment allocation: resources going to low-performing firms, misallocation within firms rather than sectors, rent seeking, and poor bank creditors’ discipline.

Stronger skills
- Poor skills in STEM subjects: 25% of graduates in science and tech domains (OECD average: 22%) and low appeal of vocational education: >200,000 students do not go to university nor to tertiary professional education, poor re-placement services.

Connectivity
- 70% of companies do not have adequate connectivity (>30 Mbps) and are located in grey/white areas (where providers experience some degree of market failure).

Digital Competitiveness
- Italy ranks 25th out of 28 EU member States in the Digital Economy and Society Scoreboard: only 6.5% of SMEs are selling online. Well positioned in cloud computing, but...
Two lost decades: GDP per capita and employment

GDP per capita (Index 2010=100)

Total employment (Index 2005=100)

Source: Eurostat data
Two lost decades: investments and productivity

Total Factor Productivity (2010=100)

Gross Fixed Investment (2005=100)

Fonte: dati OECD Total Multifactor productivity

Fonte: dati Eurostat
Macro-economic trends in the aftermath of the crisis

<table>
<thead>
<tr>
<th>GDP (€ Mln; chain-linked volumes, ref. year 2010)</th>
<th>Industrial production(^1) (Average for 2010 = 100)</th>
<th>Employment (in thousands of employees) (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of the crisis</td>
<td>Impact of the crisis</td>
<td>Impact of the crisis</td>
</tr>
<tr>
<td>2017 upswing</td>
<td>2017 upswing</td>
<td>2017 upswing</td>
</tr>
<tr>
<td>- 9.5%</td>
<td>- 26.1%</td>
<td>-1,057,000</td>
</tr>
<tr>
<td>+ 4.8%</td>
<td>+ 8%</td>
<td>+ 953,000</td>
</tr>
</tbody>
</table>

1: Non-seasonally adjusted data
Source: ISTAT
Industry 4.0: the Italian approach

Italian industrial sector features

- Few large industrial and ICT private players able to lead the Italian manufacturing transformation
- Limited number of industry champions able to coordinate the evolution/integration of value chains
 - Industrial sector largely based on SMEs where productivity gains are more needed
 - High quality of research but fragmented network of research/tech-transfer centers
 - Strong manufacturing know-how and Made in Italy quality

Government guidelines

- Embrace a technological and sectoral neutrality logic
- Avoid “call for tender” logic; implement fiscal measures and horizontal actions
- Operate on enabling factors: investments, skills, infrastructures
- Steer existing instruments to promote technological leap and productivity
- Coordinate key stakeholders without acting as a controller or decision-maker
Industry 4.0: four pillars

Core focus

- **Innovative investments**
 - Stimulate **private investments** in new equipment and I4.0 transformation (super/hyper-depreciation, “Nuova Sabatini”)
 - Increase **private expenditure in R&D&I** (ad hoc tax credit)
 - Patent Box to spur investment in **intangible assets**

- **Skills**
 - Spread the I4.0 culture through "**Scuola Digitale**" and "**Alternanza Scuola Lavoro**" programmes
 - Develop I4.0 skills in academic paths and **vocational education: ITS², CIF 4.0**
 - Financing research, upscaling **Clusters** and doctoral studies
 - Create **Competence Centers** and a network of Digital Innovation Hubs

- **Enabling Infrastructures**
 - Ensure adequate network infrastructure – Ultra Broadband Plan with a “**Fiber to the factory**” approach that prioritizes industrial areas
 - Cooperate in the definition of IoT open standards and **interoperability criteria**

- **Public instruments at support**
 - **Attract FDI** and support large I4.0 investments (Development Contracts, Innovation Agreements)
 - Reinforce corporate finance, improve **savings allocation** towards productive investments (Individual Saving Loans)
 - Strengthen the **productivity-salary taxation exchange** through lower taxes on “productivity benefits”, negotiated in decentralized bargaining

1. Work-related learning; 2. Italian professional institutes
MAIN SUPPORT MEASURES
Super- and Hyper-depreciation on capital goods

Innovative investments

Super and Hyper-depreciation

- **Super-depreciation rate confirmed**
- **Phase out of super-depreciation (130%)**
- **140% for intangible assets, such as software, IT systems and digital platforms**

State-of-the-art after 2018 Budget

Super and Hyper-depreciation

- **Super**
 - 130%
- **Hyper**
 - 250%

Deadline of prorogation

- Hyper-depreciation: investment made in 2018 or 2019, provided that by the end of 2018 the order has been accepted by supplier and 20% of the amount has been paid
- Super-depreciation: delivery date postponed to 30 June 2019
Super- and Hyper-depreciation: eligibility criteria

Annex A to law 11 december 2016, no. 232

5 mandatory features

1. Control by CNC (Computer Numerical Control) or PLC (Programmable Logic Controller)
2. **Interconnection** to factory information systems with remote loading of instructions and/or part programs;
3. **Automatic Integration** with the logistics system of the factory or with the supply network and/or with other machines of the production cycle
4. Simple and intuitive interface between man and machine
5. Fulfillment of the latest parameters of security, health and hygiene at work

2/3 further requirements

1. Remote maintenance and/or tele-diagnosis systems and/or remote control
2. Continuous monitoring of working conditions and process parameters through appropriate sensor sets and adaptability to process drifts,
3. Characteristics of integration between the physical machine and/or the plant with the modeling and/or cyber-physical system

1. Instrumental goods whose operations are controlled by computerized systems or managed by dedicated sensors and drives
2. Quality assurance and sustainability systems
3. Devices for human-machine interaction and improvement of ergonomics and workplace security in a "4.0" logic

Items 2 and 3 require that systems/devices are interconnected. Instrumental goods have to meet 5+2 requirements.
Super and Hyper-depreciation scheme: an example

<table>
<thead>
<tr>
<th></th>
<th>Ordinary depreciation rate</th>
<th>Super-depreciation (+30%)</th>
<th>Hyper-depreciation (+150%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deductible amount for corporate tax purposes</td>
<td>1,000,000</td>
<td>1,300,000</td>
<td>2,500,000</td>
</tr>
<tr>
<td>Tax saving (24% of deductible amount)</td>
<td>240,000</td>
<td>312,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Net cost of investment (1,000,000 – tax saving)</td>
<td>760,000</td>
<td>688,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Increase in saving on net cost of investment</td>
<td></td>
<td>7.2%</td>
<td>36.00%</td>
</tr>
</tbody>
</table>

The benefit may increase if mixed with interest rate subsidies from the so-called “New Sabatini” tool and financial leasing instruments
R&D Tax Credit: how it works

R&D&I expenditure (2017 example)

How to calculate

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate for intra-muros expenditures</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>Rate for extra-muros expenditures</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Maximum benefit</td>
<td>5 €M</td>
<td>20 €M</td>
</tr>
</tbody>
</table>

Valid until 2020
Italy’s Patent Box

- **Optional tax regime**: a *deduction by 50%* of taxable IRES income that demonstrably derives from direct or indirect use (as licensee) of IP, such as: *industrial models, patents, formulas, software* protected by copyright, *know-how*.

- It transposes into law OECD guidelines on *harmful tax practises*, being only applicable to the production, development and maintenance activities of IP that are based on real research and development («*nexus approach*»).

- It is a **permanent fiscal instrument** to reward firms that base their value production on knowledge and IP.

- It can be combined with the R&D Tax Credit.

- In case of use of internally-developed IP, a *ruling agreement* with the Italian Revenue Agency is required.
Italy: the 2nd most attractive country for digital investment (Digital Tax Index 2017)

<table>
<thead>
<tr>
<th>Country (Region)</th>
<th>Effective tax rate 2017</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>-10.32%</td>
<td>1</td>
</tr>
<tr>
<td>Italy</td>
<td>-8.84%</td>
<td>2</td>
</tr>
<tr>
<td>Hungary</td>
<td>-6.85%</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Switzerland (Zurich)</td>
<td>8.39%</td>
<td>11</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>11.11%</td>
<td>16</td>
</tr>
<tr>
<td>France</td>
<td>12.39%</td>
<td>18</td>
</tr>
<tr>
<td>Spain</td>
<td>12.85%</td>
<td>20</td>
</tr>
<tr>
<td>Netherlands</td>
<td>13.61%</td>
<td>22</td>
</tr>
<tr>
<td>Germany</td>
<td>22.81%</td>
<td>31</td>
</tr>
<tr>
<td>USA (California)</td>
<td>22.82%</td>
<td>32</td>
</tr>
</tbody>
</table>
A top-10 country in the world for FDI attractiveness
A.T. Kearney Foreign Direct Investment Confidence Index 2018

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
<td>+3</td>
<td>+2</td>
</tr>
<tr>
<td>Germany</td>
<td>3</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>4</td>
<td>-</td>
<td>+1</td>
</tr>
<tr>
<td>China</td>
<td>5</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>9</td>
<td>+3</td>
<td>+2</td>
</tr>
<tr>
<td>Italy</td>
<td>10</td>
<td>+3</td>
<td>+6</td>
</tr>
<tr>
<td>India</td>
<td>11</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>Singapore</td>
<td>12</td>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Italy ranks 10th in the **A.T. Kearney Foreign Direct Investment Confidence Index for 2018**: a jump of six spots in two years, more than any other country in the top-10.

The National Plan for Industry 4.0 is explicitly mentioned in the report as a likely strong driver for foreign investment, in spite of increased political risk and middling economic growth.
FIRST RESULTS
The role of incentives in 2017

Incentives considered «highly» or «fairly» relevant for making new investments
(\% manufacturing firms that invested in 2017, breakdown by size and geographic location)

Source: Istat, «Indagine sul clima di fiducia delle imprese manifatturiere» ad hoc form (November 2017)
Gross fixed investments: domestic orders trends

Relevant I4.0 measures: *Iperammortamento, Superammortamento and Nuova Sabatini*

Gross fixed capital inv

~ 80 Mld €

(100%)

<table>
<thead>
<tr>
<th>Other categories + 10%</th>
<th>37%</th>
</tr>
</thead>
<tbody>
<tr>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>35%</td>
<td></td>
</tr>
</tbody>
</table>

Main categories

- **Machinery and other equipment**
 - Δ Domestic orders ‘17 vs ‘16 + 13%

- **Electric and electronic equipment**
 - Δ Domestic orders ‘17 vs ‘16 + 7%

- **Upkeep and installation of machinery**
 - Δ Domestic orders ‘17 vs ‘16 n.a.

Totale*

- Δ Domestic orders ‘17 vs ‘16 + 10%

- Δ Domestic orders ‘17 vs ‘16 + 11%

*Total manufacturing, excluding I4.0 domains: +3.2%.
UCIMU index: +45.9 (2017/2016)
Survey by MiSE-MET

DIFFUSION OF 4.0 TECHNOLOGIES

Detail by class size (%)

<table>
<thead>
<tr>
<th>Class Size</th>
<th>Traditional businesses with 4.0 investment planned</th>
<th>Businesses 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4.7%</td>
<td>8.4%</td>
</tr>
<tr>
<td>1-9</td>
<td>3.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>10-49</td>
<td>9.4%</td>
<td>18.4%</td>
</tr>
<tr>
<td>50-249</td>
<td>8.2%</td>
<td>35.5%</td>
</tr>
<tr>
<td>250 and more</td>
<td>2.9%</td>
<td>47.1%</td>
</tr>
</tbody>
</table>

Type of 4.0 technology used (%)

- Traditional businesses with 4.0 investment planned
 - Only data technology
 - Only production technology
 - Both data and production technology

Almost 20% of small firms

- Total
 - 48.1%
 - 49.9%
- 10-49
 - 35.9%
 - 32.7%
- 50-249
 - 48.8%
- 250 and more
 - 50.0%
 - 69.2%
Purpose of using 4.0 technology

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make production more flexible</td>
<td>25.3%</td>
</tr>
<tr>
<td>Increase productivity</td>
<td>46.3%</td>
</tr>
<tr>
<td>New markets/business models</td>
<td>21.9%</td>
</tr>
<tr>
<td>Decrease employees</td>
<td>6.3%</td>
</tr>
<tr>
<td>Reduce errors/quality</td>
<td>63.4%</td>
</tr>
<tr>
<td>Security</td>
<td>20.9%</td>
</tr>
</tbody>
</table>

Survey by MiSE-MET
Use of R&D tax credit and R&D expenditure by surveyed companies

<table>
<thead>
<tr>
<th></th>
<th>Tax credit amount</th>
<th>No. of recipients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural persons</td>
<td>3,841,968</td>
<td>185</td>
</tr>
<tr>
<td>Limited companies</td>
<td>1,256,061,655</td>
<td>15,520</td>
</tr>
<tr>
<td>Partnerships</td>
<td>15,600,636</td>
<td>475</td>
</tr>
<tr>
<td>Other</td>
<td>7,350,900</td>
<td>95</td>
</tr>
</tbody>
</table>
R&D expenditure (Istat report, 10 September 2018)

2016

- **In-house research** grows significantly (+9.3%)
- **Personnel employed in R&D**: +11.7% in total and +16.4% in companies. Highly-qualified personnel (researchers) grow only by 6.6%
- Applied research constitutes 43.3% of overall R&D; growth in 2016 regards mostly experimental research

2017

Foreseen **increase in R&D expenditure by 1.8%** (private and public sectors)
Venture Capital investments

Relevant I4.0 measures: *incentives to equity investments, possibility to sell startup losses to «sponsor companies», equity crowdfunding*

- In the first 7 months of 2018, Italy ranks 7th in Europe + Israel area by number of VC rounds >€2M (104).
- The Italian VC market therefore exceeds €200M in the first 7 months of 2018, without considering <€2M deals.
- Compared to the first 7 months of 2017, Italy ranks first by increase in number of VC rounds >€2M (+175%).

Number of rounds (> €2M size) Jan-July ‘18

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>517</td>
</tr>
<tr>
<td>France</td>
<td>362</td>
</tr>
<tr>
<td>Sweden</td>
<td>230</td>
</tr>
<tr>
<td>Germany</td>
<td>185</td>
</tr>
<tr>
<td>Netherlands</td>
<td>162</td>
</tr>
<tr>
<td>Israel</td>
<td>158</td>
</tr>
<tr>
<td>Italy</td>
<td>104</td>
</tr>
<tr>
<td>Spain</td>
<td>103</td>
</tr>
<tr>
<td>Switzerland</td>
<td>98</td>
</tr>
<tr>
<td>Norway</td>
<td>76</td>
</tr>
<tr>
<td>Russia</td>
<td>59</td>
</tr>
<tr>
<td>Denmark</td>
<td>58</td>
</tr>
<tr>
<td>Finland</td>
<td>56</td>
</tr>
<tr>
<td>Ireland</td>
<td>44</td>
</tr>
<tr>
<td>Belgium</td>
<td>38</td>
</tr>
<tr>
<td>Austria</td>
<td>27</td>
</tr>
<tr>
<td>Greece</td>
<td>11</td>
</tr>
<tr>
<td>Estonia</td>
<td>10</td>
</tr>
<tr>
<td>Romania</td>
<td>2</td>
</tr>
</tbody>
</table>

% YoY change (number of rounds > €2M)

- Italy: 175%
- Norway: 80%
- Austria: 80%
- Estonia: 50%
- Switzerland: 36%
- France: 26%
- United Kingdom: 15%
- Netherlands: 13%
- Israel: 13%
- Denmark: 5%
- Belgium: 4%
- Greece: 0%
- Romania: 0%
- Ireland: -13%
- Finland: -15%
- Germany: -23%
- Sweden: -29%
- Spain: -28%
- Russia: -30%

(R60%)
Venture Capital investments

Relevant I4.0 measures: incentives to equity investments, possibility to sell startup losses to «sponsor companies», equity crowdfunding

Largest deals in 2018

- **€46M**
 - Former innovative startup
 - moneyfarm

- **€13M**
 - Innovative SME», former innovative startup
 - Supermercato24

- **€10M**
 - Innovative startup
 - brumbrum

- **€10M**
 - Innovative startup
 - FREEDA

The growth of the Italian VC market

Source: estimates of Osservatorio Startup Hi-Tech, PoliMi
Ultra Broadband Plan

National coverage of Ultrabroadband
(public consultation forecast, %)

<table>
<thead>
<tr>
<th>Year</th>
<th>30 Mbps</th>
<th>100 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>47.1</td>
<td>5.3</td>
</tr>
<tr>
<td>2018</td>
<td>53.6</td>
<td>17.5</td>
</tr>
<tr>
<td>2019</td>
<td>46.7</td>
<td>5%</td>
</tr>
<tr>
<td>2020</td>
<td>49.3</td>
<td>50.7</td>
</tr>
</tbody>
</table>

86.5%

Fonte: Dati Infratel su 32 milioni di civici (stanziamenti pubblici) [http://www.camera.it/temiap/documentazione temi/pdf/1104721.pdf]
MEASURES TO ENHANCE COMPETENCES
Fill the knowledge gap of the labour force

Digital skills gap to cover
% high digital skills in the labour force (employed and unemployed; 2016)

Total workforce taking part in training courses, 24-65 years old

Source: Eurostat
Incentivise 4.0 training to protect and strengthen employment

Tax Credit for 4.0 training

- A 40% tax credit on the cost of personnel employed in training courses for the acquisition and consolidation of skills in 4.0 technologies
- Maximum contribution per company of 300,000 € / year
- **Validity**: on an experimental basis for the year 2018
- **Legal basis**: Regulation (EU) No 651/2014
- Applicable regardless of hyper-depreciation
- The costs incurred for internal teaching or tutoring staff are also eligible.
Strengthen the ITS system

€95m between 2018 and 2020 to increase the number of students enrolled in the ITS system, from current 9,000 to about 20,000
Digital Innovation Hubs and I4.0 Competence Centers

Digital Innovation Hubs

Features:
- Point of contact and information for companies on I4.0
- Selected DIH located at Confindustria's and R.E.TE. Imprese Italia's branches

Mission:
- Awareness creation on I4.0 opportunities
- Digital maturity assessment
- Support in innovative investment planning
- Orientation to Competence Centers and I4.0 network
- Support in accessing public and private financing solutions/investors
- Mentoring services

I4.0 Competence Center

Features:
- Few and selected national Competence Centers, putting together the best practices
- Strong involvement of leading Italian universities and private players (PPPs)
- Ad hoc governance and adequate managerial skills

Mission:
- Live demos on new technologies and access to I4.0 best practices
- Technical advisory on I4.0 for SMEs
- Launch and acceleration of technological development and innovative projects with high TRL
- Trial support and "on-site" development of new I4.0 technologies
- On-site I4.0 advanced training
- Coordination with European CCs
Competence Centers: timetable

Public resources

• **€70m** to support the start-up costs of the centers and to finance the demand for projects by companies

• Each centre may receive a public contribution up to a maximum of:
 - **€7.5m** to cover up to 50% of the costs incurred for establishment and start-up of the CC
 - **€200,000** for each project submitted by customer firms

Create a national network of centers of excellence, to support technology transfer to Italian SME and be more competitive in view of FP9

The tender process: milestones

- **29/1** Tender opens
- **30/4** Tender closes
- **24/5** Provisional ranking
- **31/12** Allocation of resources

8 projects selected
Competence Centers: selection results

<table>
<thead>
<tr>
<th></th>
<th>Lead partner</th>
<th>Name of Competence Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Politecnico di Torino</td>
<td>Manufacturing 4.0</td>
</tr>
<tr>
<td>2</td>
<td>Politecnico di Milano</td>
<td>Made in Italy 4.0</td>
</tr>
<tr>
<td>3</td>
<td>Alma Mater Studiorum Università di Bologna</td>
<td>BI-REX</td>
</tr>
<tr>
<td>4</td>
<td>Scuola Superiore Sant’Anna di Pisa</td>
<td>ARTES 4.0</td>
</tr>
<tr>
<td>5</td>
<td>Università degli Studi di Padova</td>
<td>SMACT</td>
</tr>
<tr>
<td>6</td>
<td>Università degli Studi di Napoli “Federico II”</td>
<td>Industry 4.0</td>
</tr>
<tr>
<td>7</td>
<td>Consiglio Nazionale delle Ricerche</td>
<td>START 4.0</td>
</tr>
<tr>
<td>8</td>
<td>Università degli Studi di Roma “La Sapienza”</td>
<td>Cyber 4.0</td>
</tr>
</tbody>
</table>