

NHTSA-Volpe Phase 3 Research

Test Procedure Development, Preliminary Data, & Sound Parameters

NHTSA Quieter Vehicles Team

October 18th, 2011

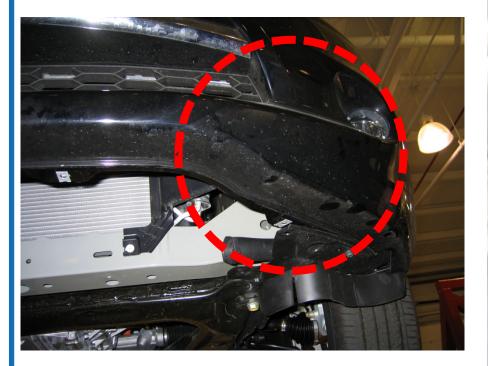
NHTSA-Volpe Phase 3 Research

PEDESTRIAN ALERT SOUND SYSTEM (PASS) TESTING

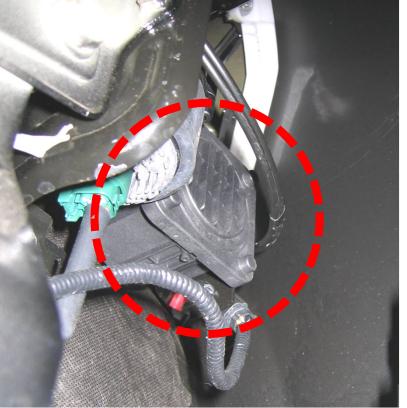
FOUR HYBRID-ELECTRIC OR ELECTRIC VEHICLES WITH PASS

VS.

FOUR PEER INTERNAL COMBUSTION ENGINE VEHICLES

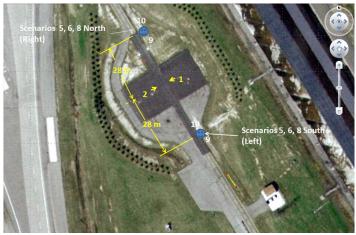

Phase 3 Testing Overview

- Goal is to support the NHTSA rulemaking effort for PSEA by developing a test procedure with accompanying performance specifications
- Completed Outdoor Testing on ISO 10844:1994 Noise Pad
 - June to October, 2011 (Data is preliminary)
- Production Vehicles with Pedestrian Alert Sound(s)
 - Nissan Leaf Electric Vehicle (EV) / Nissan Versa 1.8L SL Hatchback ICE Peer
- Prototype Vehicles with Pedestrian Alert Sound(s)
 - Prototype 1 Hybrid Electric Vehicle (HEV) & ICE Peer
 - Prototype 2 Hybrid Electric Vehicle (HEV) & ICE Peer
 - Prototype 3 Hybrid Electric Vehicle (HEV) & ICE Peer
- All HEVs & EVs were measured in electric propulsion mode (e.g., ICE off)
- Seven separate test scenarios used for each vehicle


Pedestrian Alert Sound System (PASS)

PASS Speaker Location – Nissan Leaf EV

Behind front bumper, driver's side, above wheel-well housing.

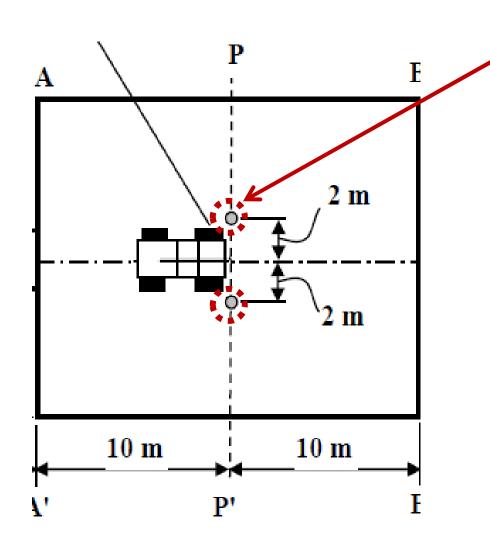

PASS Speaker – Nissan Leaf EV

Outdoor Pass-by Noise Measurement Equipment

ISO 10844 Noise Pad & Pass-by Noise Measurement System

Two Microphones & Light Traps

5


Evaluation of Draft SAE J2889-1

SAE J2889-1: "*MEASUREMENT OF MINIMUM NOISE EMITTED BY ROAD VEHICLES*," ISSUED 2011-SEPT-21

Scenario A - SAE J2889-1 "Stopped Condition"

Graphic: SAE J2889-1 with overlays

7

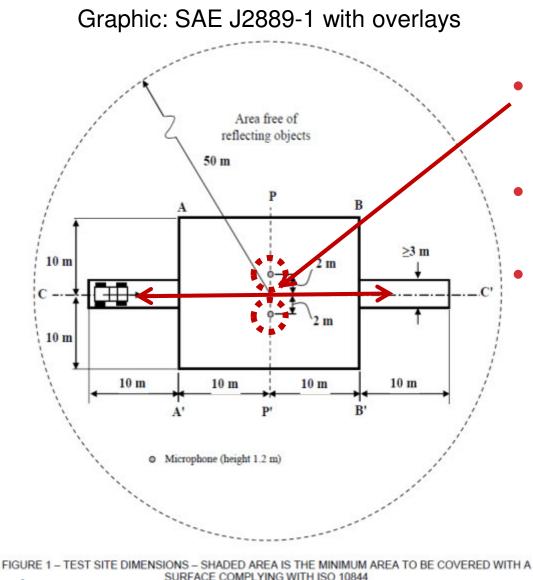
- Two microphones at a line P-P'
 - Microphones 2.0-m from centerline, 1.2-m in height
- Vehicle stopped
- For front engine vehicles
 - Front end of vehicle at microphone line

Four measurement minimum

- 10 second measurement
- Maximum A-weighted sound pressure level for each microphone is corrected for background noise level
- Corrected results are averaged for each side of the vehicle
- Reported value is the <u>lower</u> value of the two sides

Initial Results – Scenario A (0 km/h), Front Plane, Pass "On"

Vehicle	Sound at Idle?	Volume Level Set	0 km/h
	(Yes/No)	by Manufacturer	(dBA)
		(Yes/No)	
Nissan Leaf EV	Reverse Gear	Yes	(58) – Reverse Beeper
	Only		
Nissan Versa ICE	Yes	N/A	49
	Diffe	erence = PASS - ICE	(+9) – Reverse Beeper
Prototype 1 HEV	No	N/A	N/A
Prototype 1 ICE Peer	Yes	N/A	53
	Diffe	erence = PASS - ICE	N/A
Prototype 2 HEV	Yes	No (Adjustable)	(Adjustable Range 46-68)
Prototype 2 ICE Peer	Yes	N/A	50
	Diffe	erence = PASS - ICE	N/A
Prototype 3 HEV	No	N/A	N/A
Prototype 3 ICE Peer	Yes	N/A	54
Difference = PASS - ICE			N/A
EV/HEV Average			<i>N/A</i>
	51.5		


None of the four HEV/EVs tested had a parked or forward-gear

idle sound at a fixed noise level to evaluate with SAE J2889.

8

Scenario B- SAE J2889-1 "Slow Speed Cruise" (10 km/h), Pass "On"

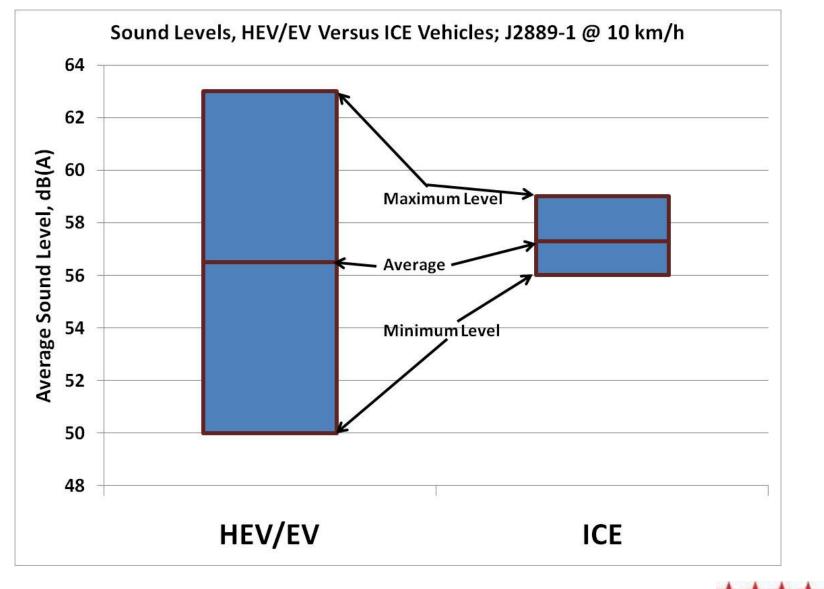
Two microphones at a line P-P'

- Microphones 2.0-m from centerline, 1.2-m in height
- Vehicle Pass-by
 - 10 km/h (+/- 1 km/h)

Four measurement minimum

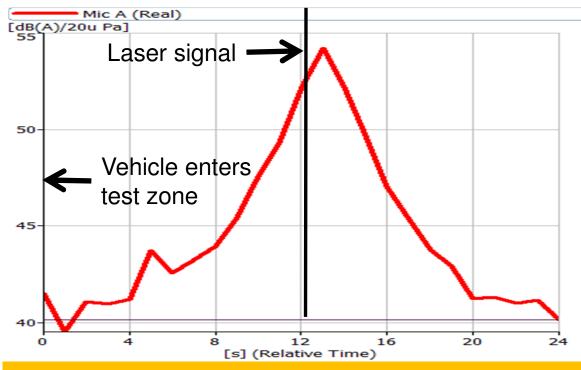
- Maximum A-weighted sound pressure level for each microphone is corrected for background noise level
- Corrected results are averaged for each side of the vehicle
- Reported value is the <u>lower</u> value of the two sides

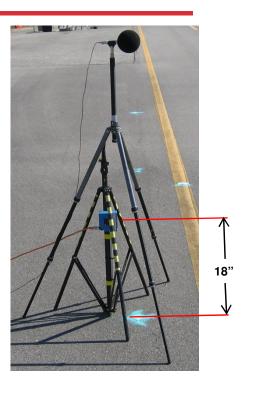
Initial Results – Scenario B (10 km/h), PASS "On"


Vehicle	Volume Level Set by Manufacturer (Yes/No)	10 km/h (dBA)	
Nissan Leaf EV	Yes	50	
Nissan Versa ICE	N/A	56	
	Difference = PASS - ICE	-6	
Prototype 1 HEV	Yes	56	
Prototype 1 ICE Peer	N/A	57	
	-1		
Prototype 2 HEV	No (Adjustable)	(Range 51-68)	
Prototype 2 ICE Peer	N/A	57	
	Difference = PASS - ICE	N/A	
Prototype 3 HEV	Yes	63	
Prototype 3 ICE Peer	N/A	59	
	4		
	EV/HEV Average		
	57.3		

The 10 km/h pass-by level of the HEV/EVs ranged from **10% quieter to 7% louder** than their ICE peers.

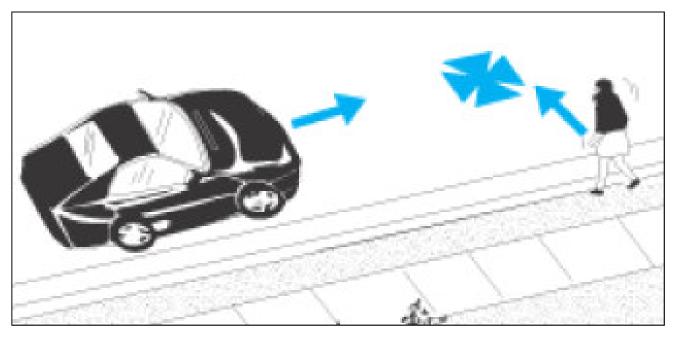
10


Initial Results – Scenario B (10 km/h)



Maximum Sound Level and Sound Level at P-P' Line

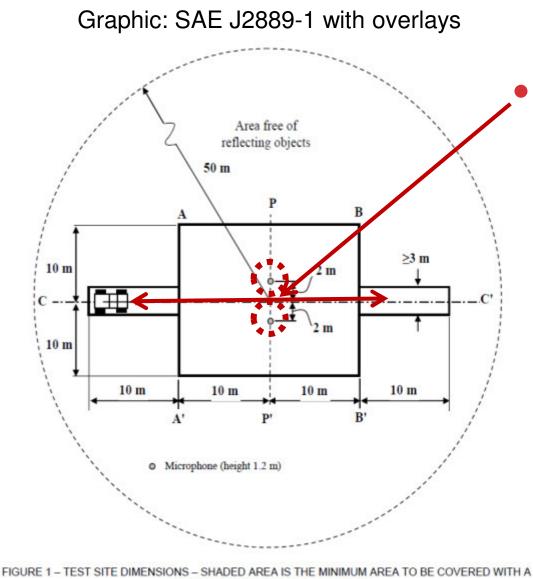
- Laser device added at the P-P' line at center of bumper height specification (FMVSS 49CFR Part 581: 16" to 20")
- J2889-1 measurement at 10 km/h was compared to the value for the same microphone when the front plane of vehicle has reached the P-P' line



The maximum sound level recorded may be up to 0.7 seconds <u>after</u> the front plane of the vehicle crosses the microphone P-P' line for some vehicles.

Additional Test Scenarios

ADDITIONAL ON-ROAD SCENARIOS


Pedestrian crossing roadway

Graphic: Evaluation of the Miami-Dade Pedestrian Safety Demonstration Project, June 2008, NHTSA

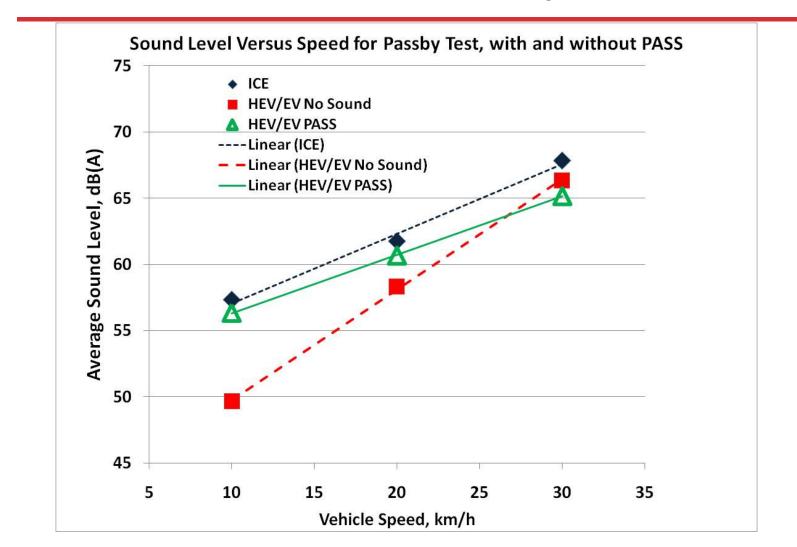
Scenario C - SAE J2889-1 @ 10, 20 & 30 km/h

SURFACE COMPLYING WITH ISO 10844

Vehicle Pass-by

- -Added <u>20 & 30 km/h</u> Scenarios
- —Tested HEV/EV vehicles <u>with and</u> <u>without alert sound</u>
- Help identify speed at which tire, aerodynamic, etc.
 noise is dominant (cross-over speed)

14


Initial Results – Scenario C – Crossover Speed

Vehicle	10 km/h (dBA)	20 km/h (dBA)	30 km/h (dBA)
Nissan Leaf EV – No sound	49	57	64
Nissan Versa ICE	56	62	68
Difference = ICE – EV No Sound	7	5	4
Prototype 2 HEV – No sound	51	60	71
Prototype 2 ICE Peer	57	61	67.5
Difference = ICE – HEV No Sound	6	1	-3.5
Prototype 3 HEV – No sound	49	58	64
Prototype 3 ICE Peer	59	63	68
Difference = ICE – HEV No Sound	10	5	4
Average Difference	8 dBA	4 dBA	1.5 dBA

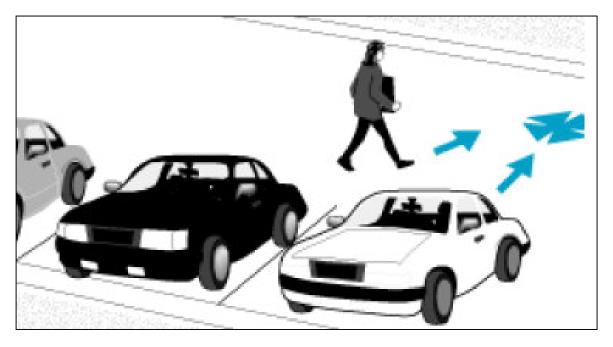
Two of the three HEV/EVs tested with PASS "Off" did not exceed ICE sound levels at 10, 20, & 30 km/h.

Scenario C – Crossover Speed

Initial Results – Scenario C – PASS "ON" 20 & 30 km/h

Vehicle	Volume Level Set by Manufacturer (Yes/No)	10 km/h (dBA)	20 km/h (dBA)	30 km/h (dBA)
Nissan Leaf EV	Yes	50	57	64
Nissan Versa ICE	N/A	56	62	68
	Difference = PASS - ICE	-6	-5	-4
Prototype 1 HEV	Yes	56	61	66.5
Prototype 1 ICE Peer	N/A	57	61	N/A
	Difference = PASS - ICE	-1	0	N/A
Prototype 2 HEV	No (Adjustable)	(Range 46-68)	-	-
Prototype 2 ICE Peer	N/A	57	61	67.5
	Difference = PASS - ICE	N/A	N/A	N/A
Prototype 3 HEV	N/A	63	64	65
Prototype 3 ICE Peer	N/A	59	63	68
	Difference = PASS - ICE	4	1	-3
	EV/HEV Average		60.7	65.2
	ICE Average	56.3	62.0	67.8

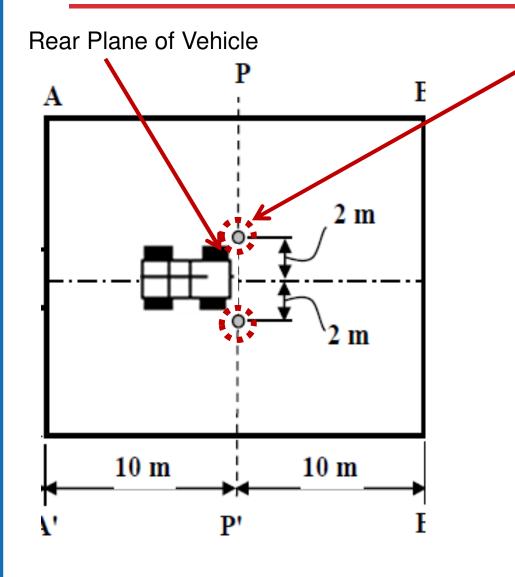
The 20 & 30 km/h pass-by values of the three HEV/EVs with PASS "On" were on average 2% & 4% lower than their ICE peers.



17

Additional Test Scenarios

NON-ROAD SCENARIOS


Parking lot, driveway, private road, alley, sidewalk, service station, yard, etc.

Graphic: Evaluation of the Miami-Dade Pedestrian Safety Demonstration Project, June 2008, NHTSA

Scenario D - Modified SAE J2889-1 "Stopped Condition" - Rear

Graphic: SAE J2889-1 with overlays

Two microphones at a line P-P'

Microphones 2.0-m from centerline, 1.2-m in height

Vehicle stopped

• For front engine vehicles:

—<u>Rear plane</u> of vehicle at microphone line (instead of front plane)

-10 second measurement

Initial Results – Scenario D (0 km/h), Rear Plane, PASS "On"

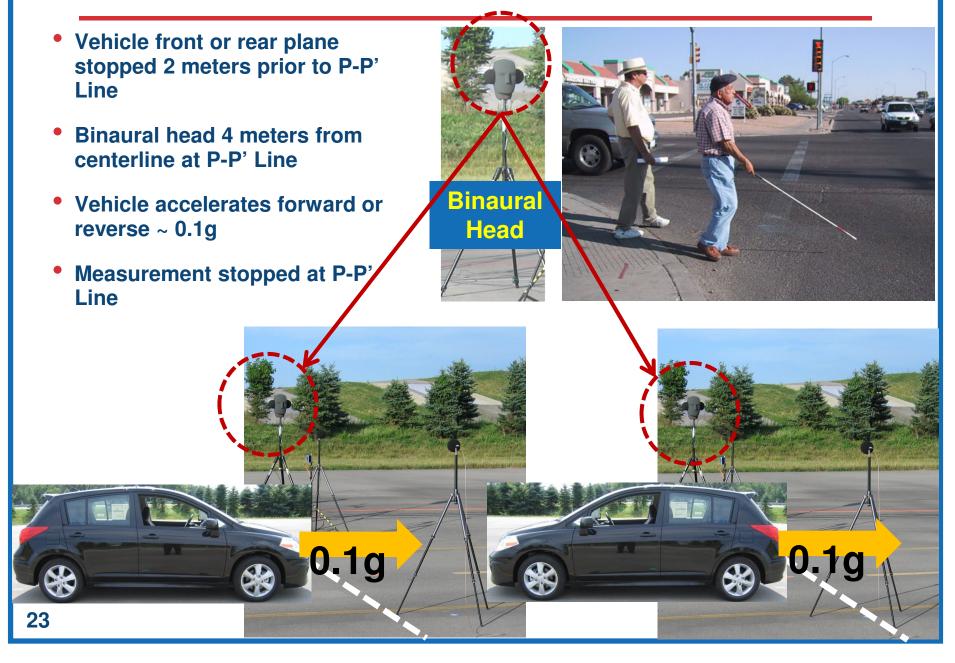
Vehicle	Sound at Idle? (Yes/No)	Volume Level Set by Manufacturer (Yes/No)	Front (dBA)	Rear (dBA)	Difference = Rear – Front (dBA)
Nissan Leaf EV	Reverse Gear Engaged (Only)	Yes	(58) – Reverse Beeper	(50) – Reverse Beeper	-8
Nissan Versa ICE	Yes	N/A	49	47	-2
Prototype 1 HEV	No	N/A	N/A	N/A	N/A
Prototype 1 ICE Peer	Yes	N/A	52	48	-4
Prototype 2 HEV	Yes	No (Adjustable)	(Adjustable Range 46-68)	(Adjustable Range 41-53)	(Range -5 to -15)
Prototype 2 ICE Peer	Yes	N/A	50	48	-2
Prototype 3 HEV	No	N/A	N/A	N/A	N/A
Prototype 3 ICE Peer	Yes	N/A	54	53	-1
	EV/HEV Average		N/A	N/A	N/A
	ICE Average			49	-2.3

There was an average drop off in static sound levels for <u>ICEs</u> from front to rear planes of 2.3 dBA. PASS speaker had 8 dBA drop-off.

20

Scenario E – 360-Degree Static Sound Directivity

- Static measurement (0 km/h)
- Eight microphones around the perimeter of the vehicle
- Measure sound at start-up and idle


Initial Results – Scenario E – 360-Degree Static Sound Directivity

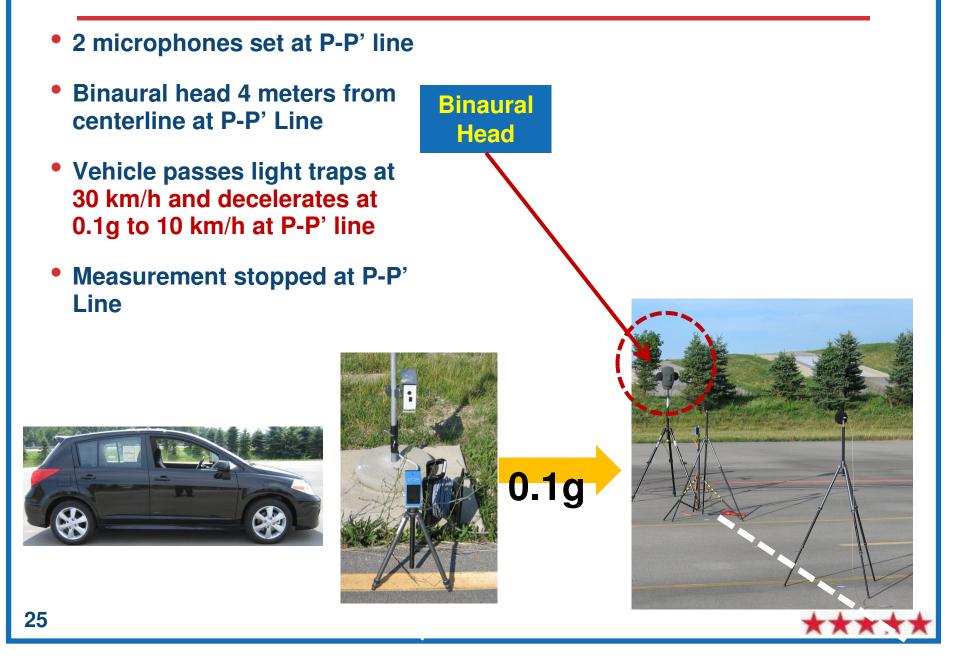
Vehicle	Sound at Idle? (Yes/No)	Volume Level Set by Manufacturer (Yes/No)	Center Front (dBA)	Center Rear (dBA)	Difference = Center Rear – Center Front (dBA)
Nissan Leaf EV	Reverse Gear Engaged (Only)	Yes	54	44	-10
Nissan Versa ICE	Yes	N/A	48	43	-5
Prototype 1 HEV	No	N/A	N/A	N/A	N/A
Prototype 1 ICE Peer	Yes	N/A	52	45	-7
Prototype 2 HEV	Yes	No (Adjustable)	Adjustable (Range 46 – 65)	Adjustable (Range 40 – 52)	(Range -6 to -13)
Prototype 2 ICE Peer	Yes	N/A	50	47	-3
Prototype 3 HEV	No	N/A	N/A	N/A	N/A
Prototype 3 ICE Peer	Yes	N/A	53	50	-3
		EV/HEV Average	N/A	N/A	N/A
ICE Average			50.8	46.3	-4.5

There was an average drop off in static sound levels for ICEs from center front to center rear of 4.5 dBA. Pass Speaker had 10 dBA drop-off.

XXX

Scenario F – Acceleration From Stop Sound Recordings

Initial Results – Scenario F – Acceleration From Stop, PASS "On"


Vehicle	Volume Level Set by Manufacturer (Yes/No)	Peak Forward Acceleration (dBA)	Peak Rearward Acceleration (dBA)	Difference = Rearward – Forward (dBA)
Nissan Leaf EV*	Yes	N/A	55	N/A
Nissan Versa ICE	N/A	55	55	0
Prototype 1 HEV	N/A	57	57	0
Prototype 1 ICE Peer	N/A	60	58	-2
Prototype 2 HEV	No (Adjustable)	N/A	N/A	N/A
Prototype 2 ICE Peer	N/A	60	58	-2
Prototype 3 HEV	N/A	61	58	-3
Prototype 3 ICE Peer	N/A	56	54	-2
	EV/HEV Average		57	-1.5
ICE Average		59	56	-1.5

* Beeper on Nissan Leaf operates in reverse gear only

For HEV/EVs & ICEs - Peak rearward accelerations were about 1.5 dBA quieter than peak forward accelerations.

Scenario G – Deceleration From 30 km/h Sound Recordings

Initial Results – Scenario G – Volpe Deceleration, PASS "On"

Vehicle	Volume Level Set by Manufacturer (Yes/No)	Volume at PP' Line (dBA)	
Nissan Leaf EV	Yes	53	
Nissan Versa ICE	N/A	55	
Prototype 1 HEV	N/A	55	
Prototype 1 ICE Peer	N/A	57	
Prototype 2 HEV	No (Adjustable)	Range 49 - 68	
Prototype 2 ICE Peer	N/A	56	
Prototype 3 HEV	N/A	62	
Prototype 3 ICE Peer	N/A	55	
	EV/HEV Average		
	ICE Average	55.8	

30 to 10 km/h deceleration pass-by tests for HEV/EV Sound "ON" versus ICE peers were within 1 dBA.

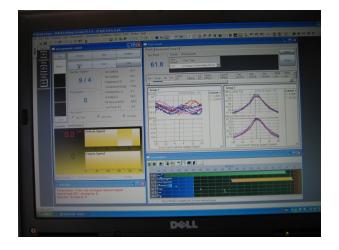
DEVELOPMENT OF PARAMETERS FOR ALERTING SOUNDS

John A. Volpe National Transportation Systems Center

A Federal Center of Excellence

Serving the Nation as a leader in global multimodal transportation innovation since 1970

Volpe Cen


Parameters for Alerting Sounds

Considerations

- Identify acoustic parameters that would aid in detectability
- Identify acoustic parameters that would aid in recognition
- Apply to ICE-like and 'other' sounds
- Objective and practical

• Expected Outcome

- Performance Parameters, for example:
 - Overall level
 - Frequency range
 - Number of tonal components, level for tonal components
 - Amplitude and frequency modulation
 - Pitch and amplitude shifting in proportion to vehicle speed
 - Directivity

Parameters for Alerting Sounds

Activities

- Establish baseline sound level(s) = target values for loudness considering ambient of 55 and 60 dBA
 - (Assumptions: (a) alerting sounds should be as detectable as current ICEs;
 - (b) sounds with equal Loudness will be equally detectable)
- Identify acoustic parameters (and criteria) for a sound to be recognizable and detectable
 - broadband noise/random noise and tonal components
- Generate sounds with acoustic parameters identified above (using sound simulation program in MATLAB®)
- Examine synthesized sounds
 - detectability models and engineering judgment
- Refine acoustic parameters and criteria

Data, Methods, & Goals

Question(s)	Data/Input	Method(s)	Goal
What level(s)? What frequencies?	 Phase 1 Data SAE-type data for ICEs: Phase 2 (n=9) OICA (n=24) VRTC (n=4) 	 Stat analysis Moore's Loudness model with ambient 	 Time for pedestrian to make decision Overall level/Loudness Spectra content
Parameters that would aid in detectability	SAE-type data (VRTC)Synthesized sounds	 Sound simulation Moore's Loudness model with ambient 	 Broadband/random noise Tonal components (# and levels)
Parameters that would aid in recognition	 SAE-type data (VRTC) Synthesized sounds Long duration pass-by recordings (VRTC)* 	 Sound simulation Engineering judgment 	 Amplitude and frequency modulation Pitch shifting
Sound dispersion (front, side, back). Uniform? Sound louder in front of vehicle?	•Multiple microphone measurements (VRTC)	 Statistical analysis 	DirectivityMicrophone location

Summary

- Phase 2 report has been published: http://www.nhtsa.gov/DOT/NHTSA/NVS/Crash%20Avoidance/Technical%20Publications/2011/811496.pdf
- None of the four HEV/EVs tested had a parked or forward-gear idle sound at a fixed noise level to evaluate with SAE J2889
- The 10 km/h pass-by level of the HEV/EVs ranged from 10% quieter to 7% louder than their ICE peers.
- The maximum sound level recorded may be up to 0.7 seconds after the front plane of the vehicle crosses the microphone P-P' line for some vehicles.
- Two of the three HEV/EVs tested with PASS "Off" did not exceed ICE sound levels at 10, 20, & 30 km/h.
- The 20 & 30 km/h pass-by values of the four HEV/EVs with PASS "On" were on average 2% & 4% lower than their ICE peers.
- There was an average drop-off in static sound levels for ICEs from front to rear planes of 2.3 dBA. The vehicle with PASS speaker had 8 dBA drop-off.
- There was an average drop-off in static sound levels for ICEs from center front to center rear of 4.5 dBA. The vehicle with Pass Speaker had 10 dBA drop-off.
- Peak rearward accelerations were about 1.5 dBA quieter than peak forward accelerations.
- 30 to 10 km/h deceleration pass-by tests for HEV/EV Sound "ON" versus ICE peers were within 1 dBA.
- VRTC is developing a test procedure for the regulation.
- Volpe is using test data to help develop parameters for alert sounds.

Outdoor Noise Testing

- Ambient conditions such as wind speed, temperature, precipitation, etc. difficult to achieve year-around, even day-to-day.
- Automatic cooling fans & coolant pumps for electric batteries kick on and off unpredictably during warm weather testing (safety hazard to disconnect) and affect test noise levels

• SAE J2889-1

- Allows credit for peak sound pressure level <u>after</u> front plane of vehicle is past P-P' microphone line (i.e., after vehicle has crossed the potential path of a frontal pedestrian)
- Static sound levels for mid-engine and rear-engine vehicles measured with engine at P-P' microphone line rather than front plane of the vehicle (i.e., not from the perspective of a frontal pedestrian)
- Large ambient test temperature window in standard means cooling fan and coolant pump activity states can vary significantly
- Does not apply to (electric) motorcycle category
- Pitch shifting test methods currently under development

