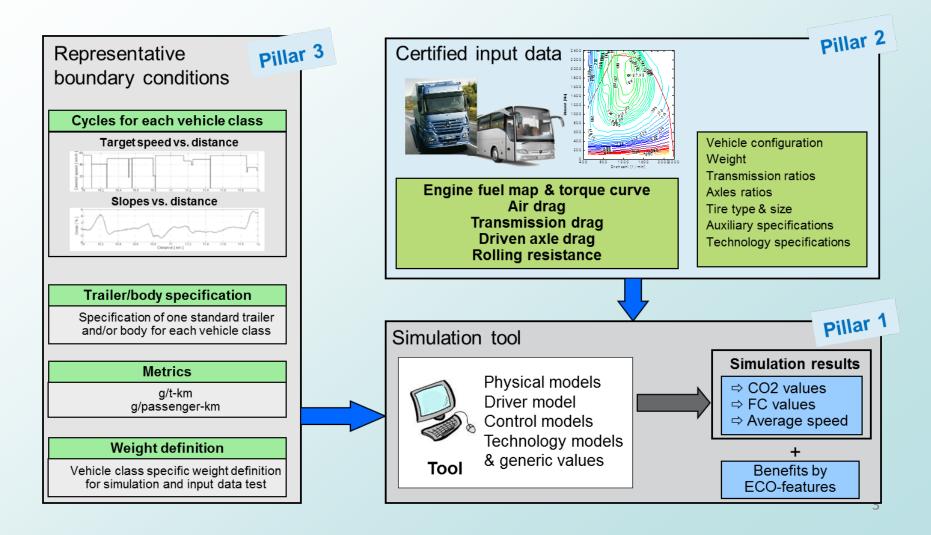

HD FE Harmonization

OICA HD-FE TF Y. Takenaka

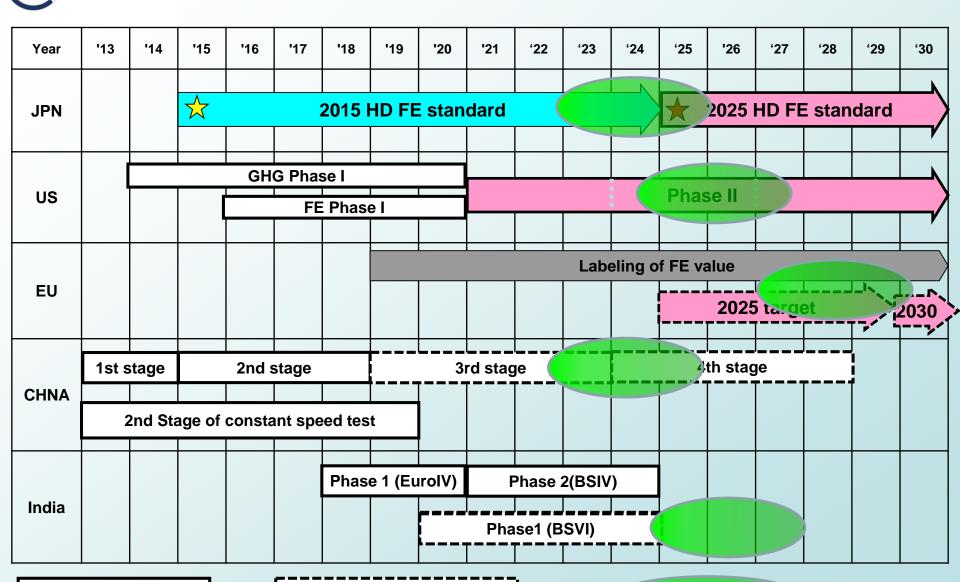
OICAHD FE regulatory schedule in each area


2

ICA Example of FE Measurement

There are 3 major pillars of a simulation based CO2 declaration method: Simulation tool, certified input data and representative boundary conditions.

O Telements FE regulation including measurement method


Elements	Sub-Elements	Issues	Examples	
FE Unit	-	Transport efficiency or easily understand able unit	- km/L - ton.km/L	
Others	Criteria	Limit of FE value or average value	- Averaged by number of sales (CAFE)	
Vehicle classification	-	Simpler category is desired, but needs to reflect to real world complexity	- Vehicle type (Tractor, busetc) - GVW, type of cabin	
Items of FE effect	-	Accuracy vs. cost of measurement Contribution for FE	- Engine, T/M - Aero dynamic and rolling resistance	
Driving Mode	-	Vehicle speed base or road data base less complexity vs real world reflection	- Combination of two cycles - Unique mode for each vehicle type	
	Chassis dynamometer	Chassis dynamometer measurement requires real vehicle		
	Simulation	Driver model is required for simulation	- Common calculation logic - Difference of steady and transient	
Measurement	Engine measurement	Number of measurement points Transient operation effect	- CO2 measurement by engine - Engine FE map and simulation	
Method	Aero dynamic measurement	Measurement methods Selection of vehicle type, rear body	- Coast down, steady speed drive - CFD - Wind tunnel	
	Tyre rolling resistance	Measurement method, labeling	- Common tyre measurement method - How to handle a number of axis 4	
	Others	Measurement method	- Driveline drag, Auxiliary drag, etc	

FE Elements in each Area

Item			Status of each region					
		Sub-item	EU US (Phase II) Chi		China	Japan (Next FES)		
Categorize			Axles, Configurations, Weight	Weight Cab type	Vehicle type Weight	Vehicle type Weight		
FE Unit			CO ₂ g/ton-km g/passenger-km	gal/1000ton-mile CO ₂ g/ton-mile	L/100km	km/L		
FE	Criteria		Consider after labeling	Becomes strict every 3 years	Becoming strict in 2019	FES value around 2025 is decided this year		
ſ	Mode		10type	ARB tangents 55,65 mph	C-WHVC	JE05, Inter city		
		Steady state Engine Map	100 points	70points for 55,65 mph	81 points	51 points		
	Engine	Transient Engine Map	NA	Cycle average map	NA (Include chassis dyno)	NA		
		Transient coefficient	WHTC correction factor tool	Include Cycle average map	NA (Include chassis dyno)	Table value 3%		
	Powertrain	FE map with powertrain	For Hybrid, AT, AMT by simulation	For Hybrid, AT, AMT by powertrain test	NA	For Hybrid and AMT by simulation		
	Gear	T/M efficiency	Table value or Measurement	Table value or Measurement	NA (Include chassis dyno)	Table value		
Measurem		AT parts efficiency	Table value or Measurement	Include powertrain test method	NA (Include chassis dyno)	Table value or Measurement		
ent method		Axle efficiency	Table value or Measurement	Table value or Measurement	NA (Include chassis dyno)	Table value		
	Aero Drag	Aero Drag measurement	Constant speed Simulation	Coast down Wind tunnel CFD	Table value (Opt. Wind tunnel or coast down)	Coast down or Constant speed		
		Vehicle select method	Family Concept	?	?	Family Concept		
	Tire	Resistance measurement	(EC) 1222/2009 = ISO28580	ISO28580	Table value	Ranking by ISO28580		
		Resistance select Method	Direct input of tire RRC for each vehicle	Direct input of tire RRC for each vehicle	-	Averaging tire RRC to be used		
	auxiliary parts		Generic or OEM-specific	?	NA	Only installed when measuring engine		
Determine	Simulation	Input data & Logic	Input data and driver model is different based on item above			ove 5		
FE value	Chassis dyno		NA	NA	Must family-representative vehicle	NA		

OICA HD FE regulatory schedule in each area

Legislation

Under consideration

Possibility of Rule making

OICA Steps for Harmonization

Elements	Sub-Elements	Issues	Examples
FE Unit	-	Transport efficiency or Easy to understand for everybody	- km/L - ton.km/L
Others	Critorio	Limit of FE value or average value	- Averaged by number of sales - CAFÉ
Vehicle classification	56	Sir pler-ea égon is desired but le eds to ref ect to real world come ex ty	- Velicle (vpe) Tructor, pusetc) - VV /, tube of callin
Items of FE effect	-	Accuracy vs. cost of measurement Contribution for FE	- Engine, T/M - Aero dynamic and rolling resistance
Driving Mode	-	less complexity vs real world reflection	- Combination of two cycles - Unique mode for each vehicle type
	Chassis dynamometer	Should Chassis dynamometer measurement be used	
	Simulation	Should simulation be used we model contents	- Common calculation logic - Difference of steady and transient
Measurement	Engine measuremer		- C 72 neas prement by engine - Engile FF map and simulation
Method	Aero dynamic measurement	Measurement methods Selection of vehicle type, rear body	- Coast down, steady speed drive - CFD - Wind tunnel
	Tyre rolling resistance	Measurement method, labeling	- Common tyre measurement method - How to handle a number of axis 7
	Others	Measurement method	- Driveline drag, Auxiliary drag, etc

Summary

- > FE legislation is increased in these 10 years and will increase more in future. This is big burden for manufactures.
- Several rules are updated but not harmonized, rather sometimes unique rules are introduced based on each governmental policy.
- Simulation is adopted in each rule and exist 4 different software. It may increase in future.
- It seems each rule will be updated in near future. Several countries is planning to introduce FE legislation near future. Harmonize rule should be prepared as soon as possible not to miss the chance of harmonization.
- It is recommended to separate two steps for HD FE harmonization to be effective in short time. FE measurement GTR is recommended as 1st step.
- It is strongly recommended by OICA/GEPE that the WS to share the information on this matter and consider about suitable action in future will be organized in next GRPE.

Technical Information

OICA Major Elements of FE Measurement

- Driving cycle
- Simulation
- Engine measurement
- Driving Resistnace

ICA Key Elements of FE Measurement

Driving Cycle

Driving cycle defines the driving conditions to evaluate the fuel consumption. Two types of driving cycle are adopted in.

A: Time and vehicle speed

B: Distance and target speed

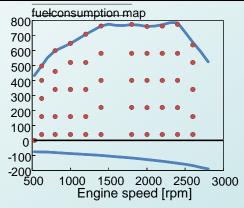
Item	EU	US (Phase Ⅱ)	China	Japan (FES 2025)	Remarks
Туре	B Distance and target speed	A Time and speed	A Time and speed	A Time and speed	B requires more realistic driver model
Number of cycle types	10	4	3	2	
Details of cycle	Trucks:5City Bus:3Bus:2	 ARB tangents 55 mph 65 mph Idle Above four kinds of weighting factor depending on the category of the vehicle. 	C-WHVC Urban Suburban Highway Above three kinds of weighting factor depending on the category of the vehicle.	 JE05 Inter city (80km/h) Above two kinds of weighting factor depending on the category of the vehicle. 	Although there are few types of cycles other than EU, weighting factor is changed for each vehicle category.

Simulation

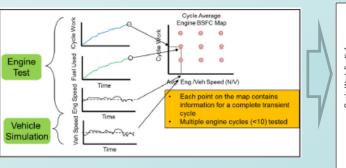
Simulation is introduced to evaluate HDV with fuel efficiency. Mathematical method of simulation seems similar for each software. Input data differs because of the difference of concept or FE items.

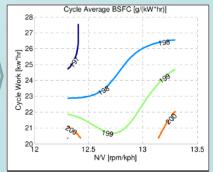
Classification	Item	EU /VECTO	US/GEM (PhaseII)	China	Japan (FES2025)	Remarks
	Vehicle Category	✓	✓	✓	✓	
	Curb Weight	✓	✓	✓	✓	
	Gross Vehicle Weight	✓	✓	✓	✓	
	Maximum Payload	✓	✓	✓	✓	
Vehicle	Gross Combination Weight	✓	✓	✓	✓	
Parameters	Rated Passenger Capacity	✓	✓	✓	✓	
I didilictors	Axle Configuration	✓	-	✓	-	
	Axle Number	✓	-	✓	-	
	Aero drag (Cd)	✓	✓	✓	✓	
	Auxiliary	(√)*	-	-	-	* By spec. of technology
	Engine Fuel Map	✓	✓	✓	✓	
	Full Load Engine Torque	✓	✓	✓	✓	
Engine	Motored Engine Torque	✓	✓	✓	✓	
	Idling Speed	✓	√	✓	✓	
Parameters	Rated Engine Speed	✓	✓	✓	✓	
	Maximum Engine Speed	√	√	✓	-	
	Transient Engine Map	-	✓	-	-	
	Transmission type	√	√	-	√	MT,AT,AMT
	Number of gear	√	√	✓	√	
Duive tuein	Transmission gear ratio	√	✓	✓	✓	
Drive train	Transmission drag	✓	√	-	√	
	Final reduction gear ratio	✓	✓	✓	1	
	Drive axle drag	√	✓	-	✓	
Tive	Rolling radius	✓	✓	✓	✓	
Tire	Rolling resistance	✓	✓	✓	✓	

ICA Key Elements of FE Measurement


Engine measurement

FE map measured by steady state operation is commonly used to take account engine performance.


However, US Phase II introduced new method called "Cycle averaging map".


Item	EU	US (Phase Ⅱ)	China	Japan (FES2025)	Remarks
Steady state Engine Map	100 points	70points for 55,65 mph	81 points	51 points	Difference in concept
Transient Engine Map	NA	Cycle averaging map	NA	NA	Difference in concept
Transient coefficient	WHTC correction factor tool	Include Cycle averaging map	NA	Table value 3%	

Steady state Engine measurement

Cycle averaging map

ICA Key Elements of FE Measurement

Driving Resistance

There are two types of methods for measuring Aero Drag, "Coast down test" and "Constant speed test". One of these or both is adopted in each area.

Tire RRC measurement uses ISO 28580 which is a tire bench test method common to each region.

Item	Sub-item	EU	US (Phase Ⅲ)	China	Japan (FES2025)	Remarks	
Aero Drag	Aero Drag measurement	· Constant speed	Coast downWind tunnelCFD	• Table value (Opt. Wind tunnel or coast down)		Similar method is used, but no common method	
Tire	Resistance measurement	(EC) 1222/2009 = ISO28580	ISO28580	Table value	ISO28580	Method of measuring tire RRC is common in	
RRC	Resistance select Method	Direct input of tire RRC for each vehicle	Direct input of tire RRC for each vehicle	-	Averaging DDC to	individual areas in the unit test by ISO method.	