FEDERAL RAILROAD ADMINISTRATION

NCHRP Report 755 Cost of Crossing Collisions

UNECE Group of Experts on Safety at Level Crossings – 4th Session Geneva, Switzerland

Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Who We Are

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

RAIL– Moving America Forward

Who We Are

The Federal Railroad Administration (FRA) enables the safe, reliable, and efficient movement of people and goods for a strong America, now and in the future.

- Safety is our number one priority
- Continuing a rigorous oversight and inspection program based on strategic use of data
- Advancing proactive approaches for early identification and mitigation of risk
- Predictable dedicated funding to improve infrastructure through capital investments and robust research and development
- Laying a foundation for higher performing rail

FRA – Highway-Rail Crossing & Trespass Prevention Programs

U.S. Department of Transportation

Federal Railroad Administration

Safety is our number one priority

Rail Has Never Been Safer

Every regulation and enforcement action we issue is based on facts. and sound research. New records in safety have been achieved four of the past five years.

- Over the past decade, train • accidents have declined 47 percent
- Highway-rail grade crossing accidents are down 35 percent

RAIL

Moving America Forward

And employee fatalities have been reduced by 59 percent

of Transportation

Federal Railroad Administration

Safety is our number one priority

FRA – Highway-Rail Crossing & Trespass Prevention Programs

FEDERAL RAILROAD ADMINISTRATION

Laying a foundation for higher performing rail

Our Multi-Billion Dollars Portfolio Includes:

- Amtrak Operating and Capital Programs \$7 billion
- High Speed and Intercity Passenger Rail (HSIPR) Grants \$10.1 billion
- Research and Development \$30 million
- Railroad Rehabilitation and Improvement Financing (RRIF) Program \$1.7 billion
- Transportation Investment Generating Economic Recovery (TIGER) Programs - \$423 million
- Rail Line Relocation Grants \$86 million
- Disaster Assistance Grants -\$18 million

FRA – Highway-Rail Crossing & Trespass Prevention Programs

1/28/2015

of Transportation Federal Railroad Administration

Laying a foundation for higher performing rail

The High Speed and Intercity Passenger Rail Program

of Transportation

Federal Railroad Administration

Moving America Forward

RAIL

Investments in Research and Development

U.S. Department of Transportation

Federal Railroad Administration

Since 2006, we have steadily invested nearly \$35 million in research and development annually.

FEDERAL RAILROAD ADMINISTRATI ΟΝ

RAIL

Guiding Principles

- **Integrity**; the highest standards of ethical conduct guide our stewardship of the public's trust and resources.
- **Excellence**; we will empower employees to focus time and resources on data-driven, cost-effective solutions that promote FRA mission accomplishments. We seek ongoing development of our knowledge base and skills. We exhibit professional behavior at all times.
- **Transparency and Accountability**; senior leadership will engage employees in robust dialogue and constructive communication. We will embrace open decision-making. Our reward and recognition system will hold each of us responsible for our performance.
- **Innovation**; we will become an enterprising, resilient organization that invests in the future, as it streamlines and improves current operations.
- **Engagement**; we will engage our stakeholders for creative problem solving and development of effective policies, programs, technology, and investments.
- **Safety**; we will strive to ensure the safety of our employees, the public, and the rail industry workforce.

RAIL

Moving America Forward

Administration

FRA Strategic Goals

- **Unify FRA:** Increase awareness and leverage cross-agency networks to execute FRA's single, unifying mission and vision.
- **The Future:** Advance rail's vital role in moving people and goods by making continuous safety improvements and promoting state of good repair, economic competitiveness, and environmental sustainability.
- **Communication:** Enhance opportunities and mechanisms to improve communication with and among employees, stakeholders, media, and the public.
- **Operational Efficiency:** Pursue a performance-oriented approach to advancing the mission and to make the best use of FRA's limited resources.
- **Workforce:** Recruit, develop, and retain an increasingly diverse, engaged, knowledgeable, empowered, and collaborative workforce.

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

U.S. Rail Facts

- Approximately 140,000 miles (226,097 km) of rail corridors
- 129,584 public level crossings
- 80,120 private level crossings
- 2,189 pathway level crossings
- 38,818 grade-separated crossings

Rail-Related Fatalities in 2013

RAIL

Federal Railroad Administration

Trends in Fatalities At Grade Crossings, 1991-2013

FRA – Highway-Rail Crossing & Trespass Prevention Programs

RAIL

Moving America Forward

Federal Railroad Administration

Trends in Fatalities At Grade Crossings, 2004-2013

Highway-Rail Level Crossing Collision Incident Rates per Million Train Mile

1/28/2015

Moving America Forward

RAIL

NCHRP 755 Report "The Comprehensive Costs of Highway-Rail At-Grade Crossings Crashes"

DecisionTek

Economic Development Research Group

Susan Jones Moses & Associates

http://www.trb.org/main/blurbs/169061.aspx

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Costs of Crashes

- Existing methods of grade crossing crash prediction (occurrence and severity) categorize crashes into casualty (fatal and non-fatal injury) and non-casualty (e.g., property damage only)
- Direct cost components of general highway crashes: medical, emergency services, market productivity, household productivity, insurance administration, workplace cost, legal cost, travel delay and property damage

Indirect Costs

- The indirect costs include intangible consequences of casualties (i.e., pain and suffering)
- Measures of indirect costs lead to crash cost estimates that are larger than the direct costs by an order of magnitude
- The Value of Statistical Life (VSL), from which values of injury by severity are derived, is inclusive of all direct and indirect costs - correct measure for benefit-cost analysis
- VSL determined by U.S. DOT as \$6.2 million in March 2011 (updated in March 2013 to \$9.1 million)

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Implication for GX crashes

- 1. Given the VSL-derived costs for casualties, refined estimates for crash costs depend upon per crash casualty counts
- 2. GX crash costs includes damage to rail equipment and infrastructure, some of which is captured in FRA databases
- 3. GX crash hazmat releases from rail cars are extremely rare
- 4. Methods for predicting crashes and their severity indicate useful refinements to the DOT Accident Prediction Severity Model are necessary

FRA – Highway-Rail Crossing & Trespass Prevention Programs

New Factors Used in Study

- Delay and Supply Chain Impacts
 - Re-routing costs
 - Lost sales
 - Prevention costs
 - Inventory spoilage
 - Freight and passenger delays
 - Freight and passenger reliability
- Total logistics cost model can be applied to estimate cost of supply chain effects due to crash
- Several approaches to account for costs of rare catastrophic crashes

GX Crash Cost Components

PrimaryDirectProperty damage (highway vehicles, railroad equipment and infrastructure) Other direct costs (e.g., EMS, insurance)PrimaryIndirectWork-related productivity loss Tax lossIndirectQuality of life Pain and suffering Environmental costSecondarySupply Chain and Business DisruptionRe-routing costs Lost sales Prevention costs Inventory spoilage Freight and passenger delays Freight and passenger reliability Increased inventory	Effect	Impact	Cost Component
PrimaryDirectOther direct costs (e.g., EMS, insurance)PrimaryIndirectWork-related productivity loss Tax lossIndirectQuality of lifeIntangiblePain and suffering Environmental costSecondarySupply Chain and Business DisruptionRe-routing costs Inventory spoilage Freight and passenger delays Freight and passenger reliability Increased inventory		Diment	Property damage (highway vehicles, railroad equipment and infrastructure)
PrimaryIndirectWork-related productivity loss Tax lossIndirectUality of lifeIntangiblePain and suffering Environmental costSecondarySupply Chain and Business DisruptionRe-routing costs 		Direct	Other direct costs (e.g., EMS, insurance)
SecondarySupply Chain and Business DisruptionQuality of life Pain and suffering Environmental costSecondaryRe-routing costs Lost sales Prevention costs Inventory spoilage Freight and passenger delays Freight and passenger reliability	Primary	Indirect	Work-related productivity loss Tax loss
SecondarySupply Chain and Business DisruptionRe-routing costs Lost salesFreight and passenger delays Freight and passenger reliability		Intangible	Quality of life Pain and suffering Environmental cost
	Secondary	Supply Chain and Business Disruption	Re-routing costs Lost sales Prevention costs Inventory spoilage Freight and passenger delays Freight and passenger reliability Increased inventory

RADO

Moving America Forward

× -

Comprehensive GX Crash Cost Framework

- Use existing tools (i.e., WBAPS, GradeDec.Net) to derive predicted crashes by severity type
- Estimate cost per crash by severity type
 - Casualty count and apply costs per casualty by severity
 - Property damage highway vehicles
 - Property damage railroad equipment and infrastructure
 - Delay and supply chain effects

Moving America Forward

- Sum predicted crashes times cost per crash
- Add costs associated with rare, catastrophic events

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Overview of Conceptual Framework

Method for Comprehensive Cost of GX Incidents

Note: $S = \Sigma$

U.S. Department of Transportation

Federal Railroad Administration

1/28/2015

RADE

Moving America Forward

FRA's WBAPS (Web-based Accident Prediction System)

- Calculates predicted grade crossing crashes
- Three severity categories fatality, injury, and property damage only
- Assigns a cost per crash to each crash severity category to estimate a total crash cost
- Contains crash incidence prediction models for three main grade crossing device types (passive, lights, and gates).
- Uses independent models for each grade crossing device type which can lead to insufficient sensitivity to variances in traffic volume, train speeds, and other factors for each type of grade crossing

Moving America Forward

FRA's GradeDec.Net

- Integrates WBAPS models
- Enables segmentation of highway and rail traffic into categories.
 - Highway: cars, trucks, and buses;
 - Rail: freight, passenger, local movements (switch trains).
- Includes high speed rail model severity based on kinetic energy and tracks casualties by mode
- Adds the risk assessment framework for grade crossing risks with high speed passenger rail

FRA – Highway-Rail Crossing & Trespass Prevention Programs

FRA's GradeDec.net

- Adds real-world aggravating risk factors, proximity to hazards, geography, and track characteristics (e.g., curvature)
- Enables full benefit-cost analysis and risk analysis, and is able to compare alternative grade crossing improvements
- Adds methods to estimate direct delay costs of queued vehicles at blocked crossings (not from crashes)
- Adds methods for estimating environmental impact

NCHRP 755

- Includes or improves on the above WBAPS and GradeDec.Net features, including:
 - Accommodates additional data granularity and setting densities
 - Adds explicit methods for calculating the average cost per crash by crash type
 - Adds methods to estimate supply chain costs and other secondary cost impacts
 - Adds methods to estimate costs of potential low probability catastrophic crashes in which multiple parties are injured or killed

Direct Costs

- Collisions Determined the numbers, types, fatalities and injuries
- Valuation of collision casualties fatal, severe injury, moderate injury, light injury and property damage only
- Property cost

RAIL

Moving America Forward

- Vehicle property damage
- Railroad damages rail equipment and infrastructure

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Indirect Costs

- Delay and Rerouting Cost
- Supply Chain Effects
- Transportation Cost
- Inventory Cost

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Rare, Catastrophic Events

- Alternate approaches
 - "Best guess" large number (estimate of damages) times small number (probability of occurrence)
 - "Disregard very small risks"
 - "Mitigation/Abatement approach" Quantify costs of catastrophic crashes and consider measure to mitigate the relative risk of occurrence (say, by half). Count the cost of mitigation as the crash cost component.
 - "Weighted Best Guess Approach" give greater weight to the catastrophic event in calculating cost

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Conclusions

- The research classified the types of primary and secondary costs imposed by grade crossing crashes.
- The research offered a clear method for calculating grade crossing crash costs and proposed data sources.
- The research demonstrated that secondary costs (delay and supply chain costs) can be significant for long closures due to crashes.
- The research prepared a software tool illustrating use of the method developed in the research.

Moving America Forward

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Spreadsheet Based Tool

- <u>http://www.trb.org/main/blurbs/169061.aspx</u>
- Allows user to input values to assess costs to fit specific situations

FRA – Highway-Rail Crossing & Trespass Prevention Programs

 Comprehensive Costs
 Project Project Information

 Project Store stimating the costs of highway-rail grade crossing crashes. A spreadsheet-bonline.

 Project Project Information

 Project Number: 08-85

 E-Newsletter Type: Recently Released TRB Publications

 TRB Publication Type: NCHRP Report

 This Summary Last Modified On: 3/30/2014

 WEW THIS PDF

 SPONSOR ORDER

BUY THIS BOOK

	RS: TH	E YELLOW H	GHL	GHT INDICA	FES U	SER INPUT	S. IN DETAIL V	NORKSHEETS CO	LUMN B GIV	ES
UISTED AS "TABLE"	OR VA	OM DRAFT F	ΊΝΔΙ	REPORT	IVIN	C, AND TH	ESE NAIVIESA	RE USED IN THE	FURIVIULAS. :	SUURCES
NCHRP 8-85 HIGHWAY-RAIL COMPREHEN	SIVE CI	RASH COST F	STIM	ATION FRAM	VIFW	ORK				
Grade crossing DOT ID	123	456J				onn				FROM EXTERNAL TOOL
Device type	Gat	ed			•					
<i>"</i>										
	Fata	al Crash	Inju	ry Crash	PDO) Crash	TOTAL			
Annual Predicted Crashes		0.075		0.24		0.36	0.675			
Annual Freudece crushes		0.075		0.24		0.50	0.075			
Primary Effect Crash Cost Compone	nts									
Casualty cost	\$	7,673,246	\$	412,772		NA	\$8,086,018			
Hway veh damage	\$	8,483	\$	11,707	\$	7,598	\$ 27,788			
RR eqip damage	\$	24,328	\$	17,527	\$	8,045	\$ 49,900			
RR infra damage	\$	2,448	\$	2,332	\$	923	\$ 5,703			
Total Primary Effect Crash Costs	\$	7,708,505	\$	444,338	\$	16,566	\$8,169,409			
Secondary Effect Crash Cost Compo	nents									
Delay cost	\$	147,395	\$	49,351	\$	49,351	\$ 246,098			
Rerouting cost	\$	2,815	\$	1,564	\$	938	\$ 5,318			
Supply Chain Cost, Trans Delay	\$	39,934	\$	24,606	\$	8,858	\$ 73,399			
Supply Chain Cost, Trans Diversion	\$	54,168	\$	30,093	\$	18,056	\$ 102,317			
Supply Chain Cost, Logistics - Loss	\$	1,541	\$	949	\$	342	\$ 2,832			
Supply Chain Cost, Logistics - Reliability	\$	7,663	\$	5,768	\$	2,077	\$ 15,508			
Total Secondary Effect Crash Costs	\$	253,517	\$	112,332	\$	79,622	\$ 445,471			
Total cost per Crash	\$	7,962,021	\$	556,670	\$	96,188	\$8,614,880			
Total annual crash costs at crossing	ć	507 152	ć	132 601	ć	3/1 6:29	\$ 765 290			
rotar annuar crash costs at crossing		357,132	4	133,001	4	34,020	y 105,500			

	D14 $-f_x$	USDOT VSL, per OST policy memom				
	A	В		С	D	
		Variable				
1	Description	Name	Value	e	Source	
2	Fatalities / Fatal crash	FATF	1.	126801153	Based on 2009-2011 national data	
3	Injuries / Fatal crash	INJF	0.	461095101	Based on 2009-2011 national data	
4	Injuries / Injury crash	INJI	1	1.40323547	Based on 2009-2011 national data	
5						
6	% Severity A of fatal crash injuries	PAINJF		71.6%	Based on 2009-2011 national data and analysis of NHTSA sample	
7	% Severity B of fatal crash injuries	PBINJF		21.7%	Based on 2009-2011 national data and analysis of NHTSA sample	
8	% Severity C of fatal crash injuries	PCINJF		6.7%		
9						
10	% Severity A of injury crash injuries	PAINJI		11.4%	Based on 2009-2011 national data and analysis of NHTSA sample	
11	% Severity B of injury crash injuries	PBINJI		18.5%	Based on 2009-2011 national data and analysis of NHTSA sample	
12	% Severity C of injury crash injuries	PCINJI		70.1%		
13						
14	Cost per fatality (VSL)	CFAT		6200000	USDOT VSL, per OST policy memom	
15	Cost per A (Severe) injury	CINJA		1992000	From Blincoe (2002) estimate of relative severity	
16	Cost per B (Moderate) Injury	CINJB		291400	From Blincoe (2002) estimate of relative severity	
17	Cost per C (Light) injury	CINJC		18600	From Blincoe (2002) estimate of relative severity	
18						
19	Fatality cost / fatal crash	CFATFC	\$	6,986,167		
20	Injury cost / fatal crash	CINJFC	\$	687,078		
21	Total casualty cost / fatal crash	TCFC	\$	7,673,246		
22						
23	Injury cost / injury crash	CINJIC	\$	412,772	07	
24	Total casualty cost / injury crash	TCIC	\$	412,772	37	

Thank You

Paul Worley, Director Rail Division, North Carolina Department of Transportation, for providing much of the material in this presentation.

FRA – Highway-Rail Crossing & Trespass Prevention Programs

Questions

Ron Ries, Staff Director

Highway-Rail Crossing and Trespass Programs Division

Federal Railroad Administration

1200 New Jersey Avenue, S.E., MS-25

Washington, DC 20590

(202) 493-6285

Ronald.ries@dot.gov

FRA – Highway-Rail Crossing & Trespass Prevention Programs

RAIL– Moving America Forward

Visit us at: <u>www.fra.dot.gov</u>

Connect with us USDOTFRA

Federal Railroad Administration

FRA – Highway-Rail Crossing & Trespass Prevention Programs