

ERA biennial report on safety Railway Safety Performance in the EU - 2014

3rd Session of the Group of Experts on LC safetyGeneva, 23 October 2014
EKSLER Vojtech, Safety Unit

Legal basis

- Art. 4,5,7 of the RSD (safety at least maintained, thus must be monitored with CSIs/CSTs.
- Art. 5 + Annex I introduce safety indicators (CSI) to allow safety monitoring in MSs.

Agency Regulation 881/2004 Art.9:

"The Agency shall submit every two years a report on safety performance, which shall be made public."

2014 report

- 4th statutory biennial report (7th report on the development of railway safety in the EU by the Agency)
- Based mostly on NSA annual reports and records in ERAIL database
- Geographical scope extended with Croatian accession to EU-28

Report content

Safety overview

- **General safety figures outcomes**
- Risk development in time
- Safety targets
- **International comparison**
- **Intermodal comparison**

Accident outcomes

Accident costs

Safety of infrastructure

Traffic volumes

Safety management

Independent accident investigation

Methods and limitations

Data used

- Common Safety Indicators as defined in the Railway Safety Directive (49/2009/EC) and its Annex I – amended by 88/2014/EU
- Mandatory reporting by MSs to ERA (deadline end September)
- The purpose of CSIs is to allows for general monitoring of railway safety and use of common safety targets

Limits

- Risk analysis (type of accident/level crossing, ...)
- Only significant accidents (limited learning)

Number and types of LCs

Number of level crossings (LCs) per 100 line kilometres (2012)

Number and types of LCs

Types of LCs

Level crossings per type (EU-28 excluding FR and DK)

- with automatic user-side warning
- with automatic user-side protection
- with automatic user-side protection and warning
- with automatic user-side protection and warning, and rail-side protection
- with manual user-side warning and/or protection
- Passive level crossings

Exposure and accident data per LC (type) not available...

Underlying classification system (CSIs)

Table: Level crossing types classification matrix

Accidents at LCs and their outcomes

Development in level-crossing accidents and the resulting casualties (EU-28, 2006-2013)

Since 1990: On average 3 LC accidents with more than 4 fatalities (catastrophic accidents) each year

Underlying definitions

Definitions in Reg.91/2003/EC (on transport statistics – Eurostat) and in specific legislation.

- Common definitions for fatality, serious injury, level crossing, ...
- Minor discrepancies for accident

	Rail (88/2014/EU)	Road (93/704/EC)
Accident	Significant accident Criteria: serious injury, significant damage or extensive traffic disruption	Accident Fatal/Non-fatal/injury
Level crossing accident	At least one railway vehicle and crossing vehicle, pedestrian or object at a level crossing.	Occurring at a level crossing.

! Accidents per type of LC not yet available!

Level crossing accident fatalities shares

Level crossing accidents represents 26% of railway accidents and resulting fatalities represents 29% of all fatalities on railways (suicides excluded)

Share of LC accident fatalities among all railway and road fatalities (EU-28: 2010-2012)

Level crossing accident fatalities shares

Who are the road user victims?

Killed LC users

Seriously injured LC users

Road casualties in LC accidents

ERA survey among 14 MSs (2012 data)

CARE database – data for 6 MS (2006-2013)

Fatality risk on LCs

Fatality risk at level crossings: Level crossing fatalities per million train-km (EU-28: 2010-2012)

Method of risk standardization

Risk at level crossings

- Accident risk
 - Relative number of significant accidents at LCs (per train-kilometres) (1)
- Casualty risks
 - Relative number of fatalities, serious injuries, KSIs, FWSI in LC accidents (per train-km) (2)
 - Number of LC user FWSIs per year arising from significant accidents/Number of train-km per year (3)
 - Number of LC user FWSIs per year arising from significant accidents/[(Number of Train-km per year * Number of LCs)/Track-km)] (4)

Independent accident investigation

NIB independent investigation of LC accidents

- NIBs investigated 6 % of LC accidents (2006-2013) (EU-28)
- LC accidents investigations account for 1/4 of investigations

Serious accidents investigated

Serious accidents investigated by NIBs per type of accident (EU-27)

Accident investigation reports

What the independent accident investigation reports tell us?

- Indirect and underlying causes
 - Inspections carried out on the LC (visibility, protective devices...)
 - SMS of the IM and responsibility arrangements
 - Emergency response functioning
- Costs of accidents
 - Road infrastructure (about 7,000 EUR on average)
 - Rail infrastructure + vehicles (100 kEUR+ on average)
- Recommendations made (examples)
 - Install barrier protection device
 - Assure a proper risk management by IMs

Concluding remarks

- CSI data collected for EU-28 + NO+CH allows to evaluate and analyze safety at level crossings, but only at the top level.
 - While a common classification of LC types exists, the accident data are not yet collected for them.
 - Accident data may not be fully harmonized for different databases (rail, road), while fatalities and serious injury are.
 - Data on risk exposure (of different road users) is scarce not available at EU level.
 - Methodologies for evaluating risk exist and have been tested (SELCAT, ERA) and are readily available

Making the railway system work better for society.

era.europa.eu