

MAC test results with Korean vehicles based on draft procedure of GRPE-61-21(2011)

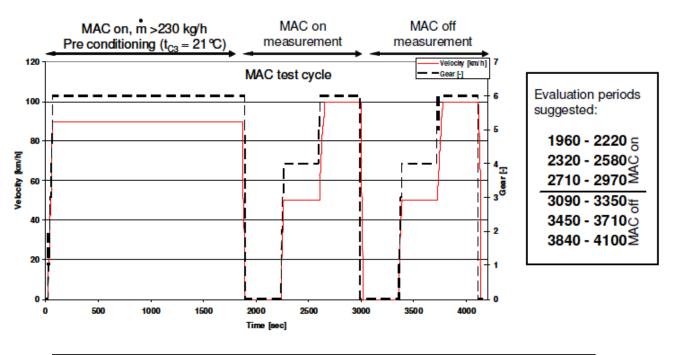
2012. 1. 17

Background

- MAC TP in GRPE(Jan. 2011) proposed test procedure for MAC and asked non-EU countries' participation in the pilot test program (Under 1958 Agreement)
 - 'MAC test procedure to be used in a pilot phase (GRPE-61-21)'
 - Mainly estimating additional fuel consumption (or CO₂) by MAC operation
 - NIER in Korea tested 5 vehilces based on the draft procedure in Jan.
 2011

Korean Emission and GHG regulation

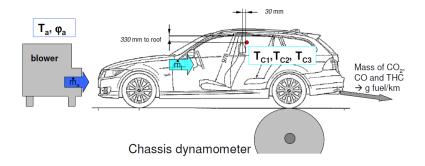
- Korea has introduced or referred to US and European regulations on vehicle emission
 - Gasoline and Gas LDV: Fleet Average System in CARB (FTP-75)
 - Diesel LDV: Euro-5(NEDC)
 - HDV: Euro-5(ESC, ETC)
- Korean GHG Emission Regulation start in 2012
 - CO2 target is 140g/km in 2015 (combined FTP-75 & US highway)
 - Incentive for Eco-innovation technologies (including MAC)
 - Methods to estimate CO₂ reduction of the thechnologies are not determined (manufacturers may need to prove)
 - Test procedrues established in WP29 could be good references


Summay of test conditions

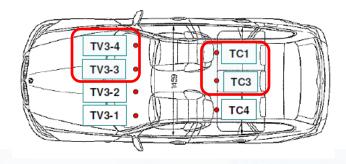
- Following up draft procedure GRPE-61-21, but
 - Not perfect test cell temp. and humidity control
 - Setting maximum cabin mass flows
 - No correction for glazing effect
- 5 vehicles tested
 - 3 gasoline(ULEV) and 2 diesel(1 EURO-4, 1 EURO-5)
 - Roughly, different categories in MAC grades
- Test results are presented based on open issues as follows
 - Outlet vent or cabin temperature as target
 - Pre-conditioning
 - Test tolerance
 - Performance for MAC ranking

MAC test cycle

Steady state test cycle in MAC on/off



$$FC_{\mathit{MAC_T}} = 0.15 \times FC_{\mathit{MAC_{idling}}} + 0.65 \times FC_{\mathit{MAC50km/h+}} + 0.20 \times FC_{\mathit{MAC_{100km/h}}}$$



MAC test setup

- Location of temp. and humidity sensors
 - Test cell: measured near blower (cooling fan)

■ Interior: measured TV3-3,4 for vent and TC1,3 for cabin

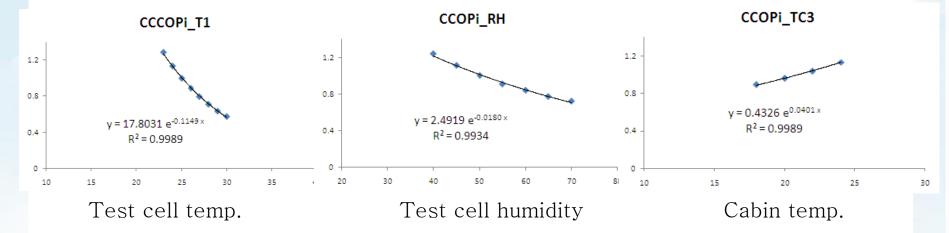
MAC test setup

- Cabin Temperature Condition
 - Option 1 Cabin(TC₃) below 23°C
 - Option 2 vent(TV) below 15℃
- Cabin mass flow
 - Over 230kg/h
 - → Maxium setting (difficult to get exact setting data for proposed mass flow)
- Test cell temperature and humidity
 - Humidiy: 45±5% (or over 45%)
 - Temperature: $25\pm2^{\circ}$ °C (or over 25° °C)
 - → Humidity control is quite challengeable

MAC emission measurement

- Emission Measurement
 - Using instantaneous signal from CVS for emission
 - Using bag for dilution air: 1 bag for MAC on / 1 bag for MAC off step
- Tolerances for CO₂
 - Standard deviation / Average

Test part	MAC status	Start [s]	End [s]	Result [kg/h]	max. CO ₂ standard deviation (1)
Precon	On, adjust TV3	90	1800	-	Not relevant
Idling	On	1960	2220	FC i-MAC	10% from average
50 km/h	On	2320	2580	FC 50-MAC	5% from average
100 km/h	On	2710	2970	FC 100-MAC	5% from average
Idling	Off	3090	3350	FC i	10% from average
50 km/h	Off	3450	3710	FC 50	5% from average
100 km/h	Iff	3840	4100	FC 100	5% from average



MAC correction

Correction

$$FC_{MAC_i} = 3.6 \times C_{COP_i} \times (C_{Pe_i} \times FC_{iMeasured-AC-on} - FC_{iMeasured-AC-off})$$

- Dyno load correction(C_{pei}): $C_{Pei} = \frac{P_{B_{AC-On_Speed_i}}}{P_{B_{AC-Off_Speed_i}}}$
- C_{copi}: $C_{COPi} = C_{COPi-T1} \times C_{COPi-RH} \times C_{COPi-TC3}$

Glazing effect: N/A in this test (short of related data)

Test Vehilces

• Test vehicle specification

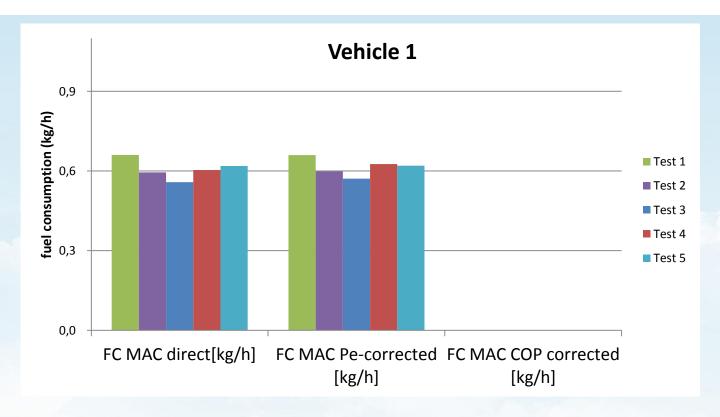
Vehicle	fuel	Displacement [L] Emission level		Curb weight [kg]	
Vehicle 1	Diesel	1.6	EURO-4	1340	
Vehicle 2	Gasoline	1.6	ULEV	1305	
Vehicle 3	Gasoline	2.0	ULEV	1410	
Vehicle 4	Diesel	2.0	EURO-5	1625	
Vehicle 5	Gasoline	2.4	ULEV	1525	

Test vehicles-MAC technologies

Rough categorization based on TNO report

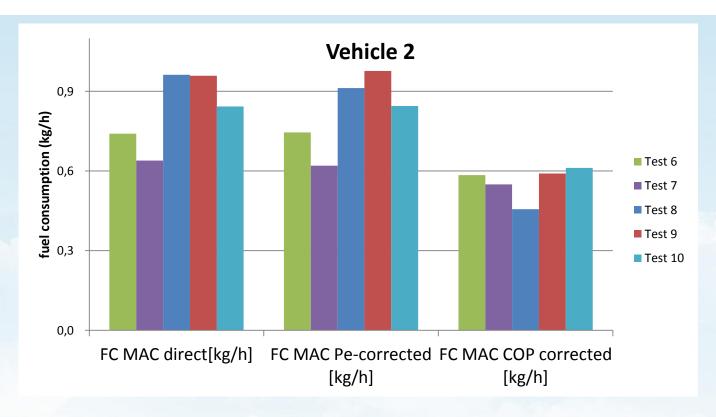
techologies	Vehicle 1	Vehicle 2	Vehicle 3	Vehicle 4	Vehicle 5
Basic/ simple					
- VDC(or fixed) with internal control					
- Orifice tube as expansion device					
- Accumulator					
- Manual control (fans, air flow, control flaps)					
- Simple heat exchangers					
In between/regular					
- VDC with internal control					
- thermal expansion valve					
- integrated or non-integrated receiver/dryer					
- IHX/no-IHX					
- simple control					
Advanced					
- VDC with external control					
- thermal expansion valve/ other type of controlled expa					
nsion device					
- integrated receiver/dryer					
- IHX, internal heat exchanger					
- Automated control (PWM fans and blower,					
air flow control flaps)					
- More efficient heat exchangers(micro channerl, others)					

Test Result Summary

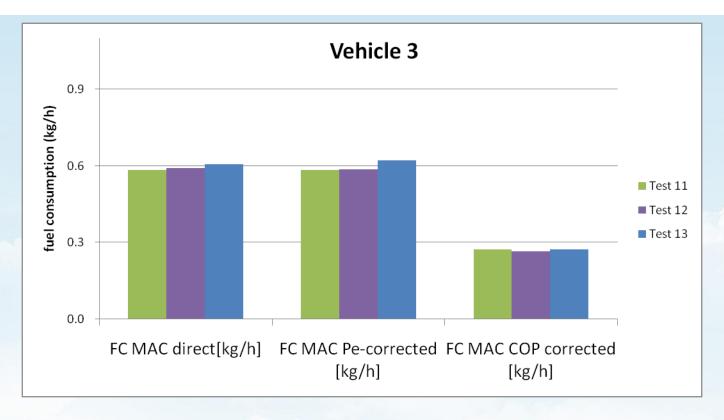

• Additional fuel consumpton by MAC operation

MAC	vehicle 1 vehic		icle 2 vehicle 3		vehicle 4		vehicle 5			
fuel consumption	measured	corrected	measured	corrected	measured	corrected	measured	corrected	measured	corrected
average [kg/h]	0.607	_	0.829	0.559	0.594	0.270	0.467	0.270	0.554	0.220
average [L/100km]	1.390	_	2.128	1.434	1.524	0.694	1.069	0.610	1.421	0.564
standard deviation [% from mean value]	6.2%	_	16.9%	11.0%	2.0%	1.5%	2.7%	7.6%	9.8%	2.8%
Test numbers	rs 5		5		3		3		3	

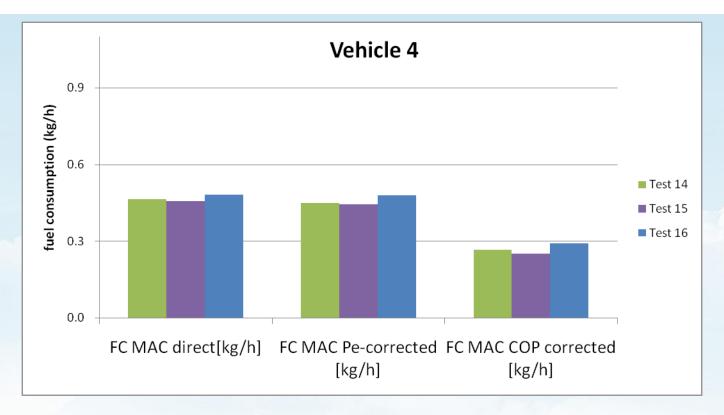
© TemplatesWise.com



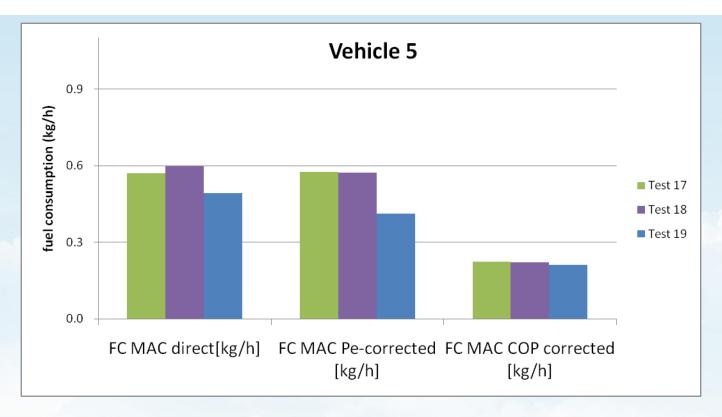
• Test vehicle 1 (diesel 1.6L, EURO-4)



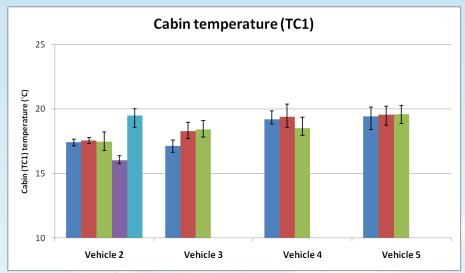
• Test Vehicle 2 (gasoline 1.6L, ULEV)

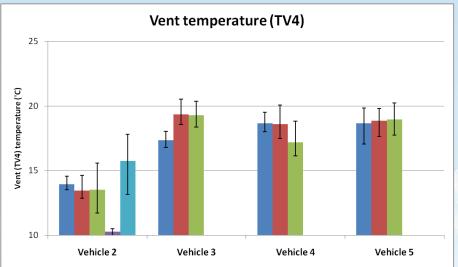


• Test Vehicle 3 (gasoline 2.0L, ULEV)

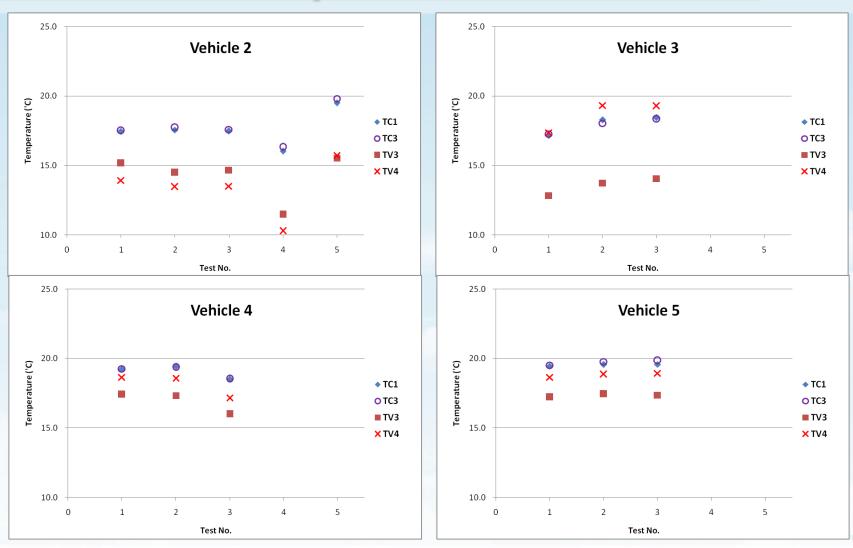


• Test Vehicle 4 (Diesel 2.0L, EURO-5)

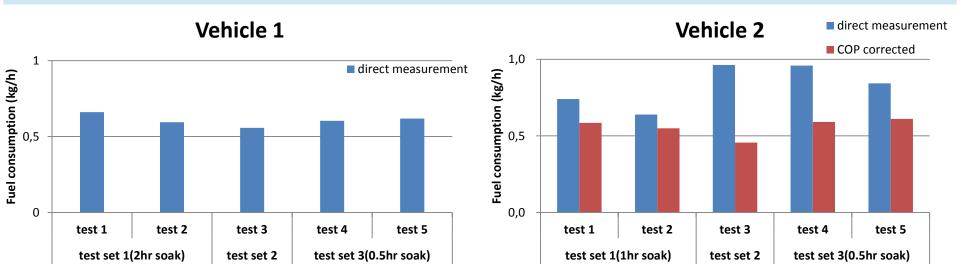



• Test Vehicle 5 (Gasoline 2.4L, ULEV)

Cabin & Vent temperature-deviation

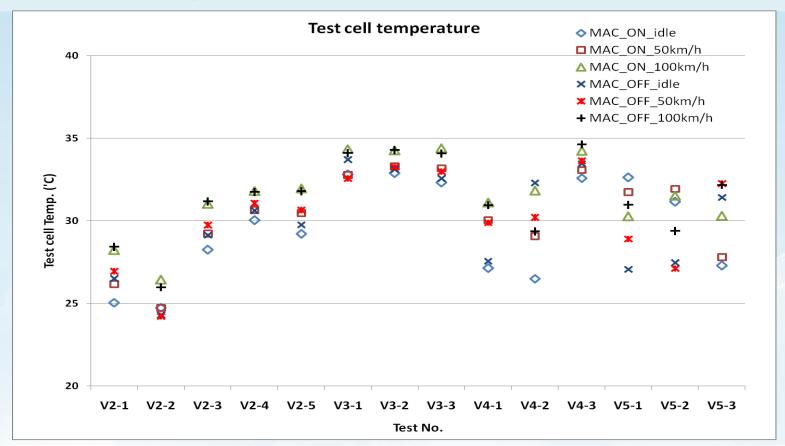


- Deviation of average cabin temperature in speed steps
 - \triangleright Within +/- 1 °C in all tests
- Deviation of vent temperature in speed steps
 - Bigger than deviation of cabin temperature

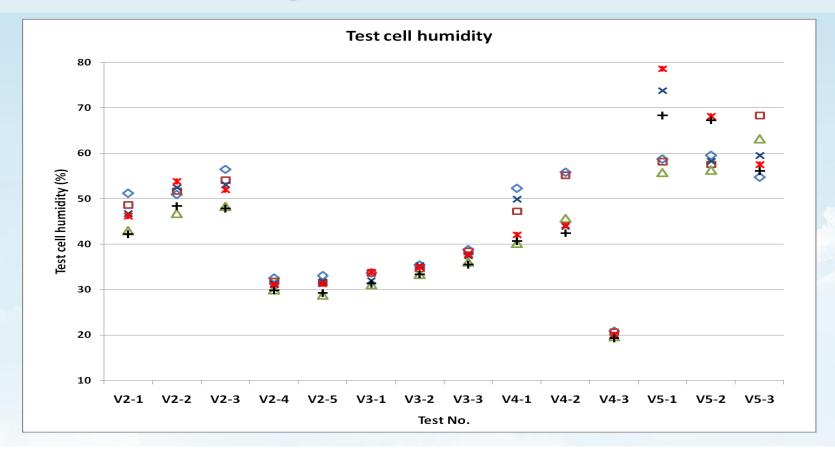


Cabin & Vent temp. difference as location

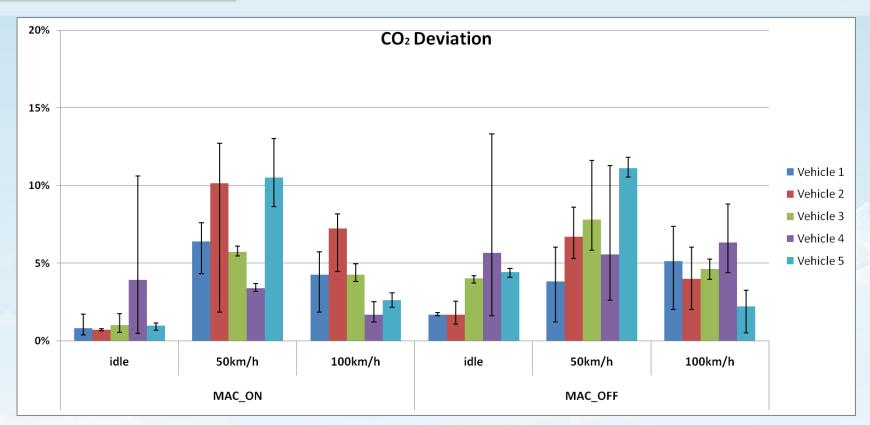
Pre-conditioning


• Repeatability as soaking time between tests

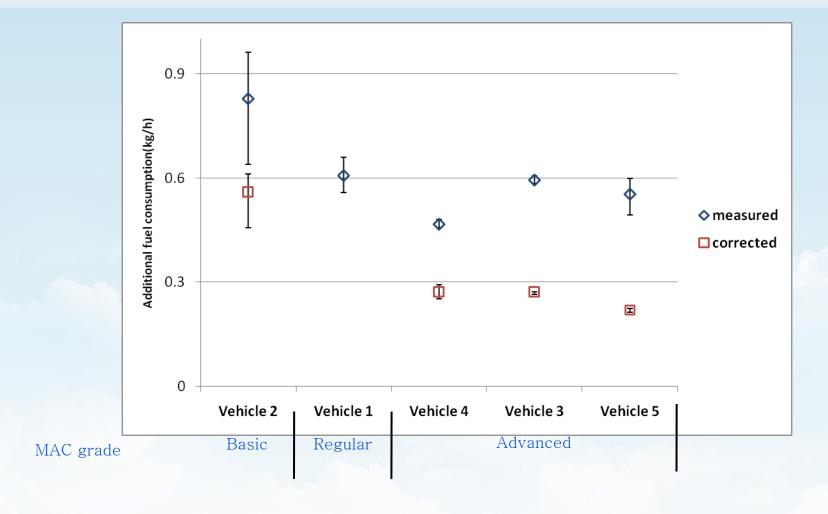
- Soaking time between tests does not big effect on test results
 - 90km/hr preconditions for 30min. would make the test conditions stable enough
 - Over 30min. soaking is realistic considering time for bag analysis


Test cell temperature tolerance

- Deviation of average test cell temperature in speed steps
 - \triangleright Over +/-2 °C in testing vehicle 4, 5


Test cell humidity tolerance

- Deviation of average test cell humidity in each speed step
 - \triangleright Over +/-5 % in testing vehicle 4, 5


CO₂ tolerance

- 5% CO₂ tolerance in 50km/h, 100km/h seems severe to Korean vehicles depending on vehicle type and MAC control
 - 10% tolerance seems realistic

Performance for MAC ranking

Comments

- MAC test procedure set up in WP29 will be a good reference to Korea
 - To give CO₂ incentive for high efficiency MAC
- COP corrections improve repeatability
- Deviation of cabin temp. is smaller than that of vent temp.
 - depending on speed steps and measuring locations
- Need to review the effect of tolerances on repeatability based on pilot phase results
 - Possibility to extend tolerances for cell temp., humidity and CO₂ deviation
- The higher tech. MAC shows the lower additional fuel consumption with draft test procedure

