

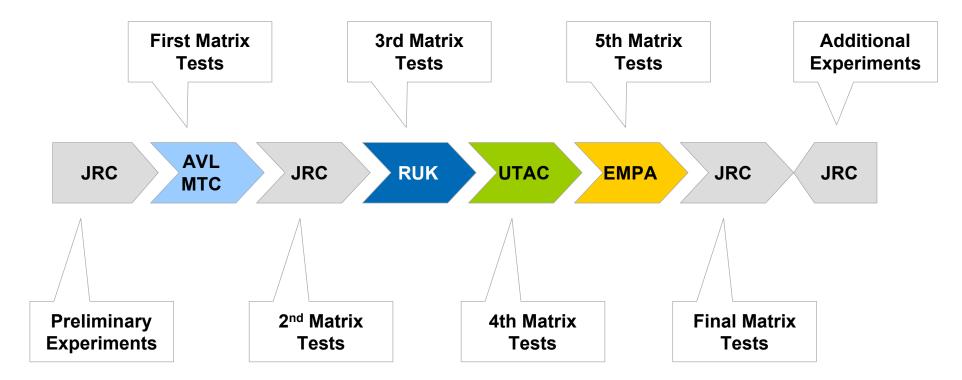
PMP Phase 3 Heavy-duty Validation Exercise – Golden Engineer's Observations

PMP WG Meeting, Dec 14th 2009, JRC Ispra

Delivering Value Through Innovation & technology

- Role of Golden Engineer
- Participating Laboratories
- Observations
- Conclusions
- DR49

Role of Golden Engineer in HD-VE


- To produce, and update where necessary, a guide for testing
 - Inter-laboratory guide for heavy-duty testing (ILG_HD)
- To provide technical support to the Programme Manager from JRC, and test laboratories during the validation exercise
 - Preliminary visit to discuss the programme, R49 and ILG_HD and identify potential issues with testing at the laboratory visited
 - Commissioning visit to witness first tests and troubleshoot if necessary
- To report, at the end of the inter-laboratory correlation exercise:
 - Experiences of the application of the measurement systems
 - Experiences of the implementation of the particle number and revised particulate mass procedures within the Inter-lab guide (and draft R49 documentation)

- Role of Golden Engineer
- Participating Laboratories
- Observations
- Conclusions
- DR49

Test Order and Participating Labs

- JRC measurements twice in the test sequence and two sets of experiments to investigate issues
 - Internal standard
 - Preliminary experiments to help establish the test protocol
 - Additional experiments to investigate issues arising and of interest

- Role of Golden Engineer
- Participating Laboratories

Observations

- Conclusions
- DR49

Observations Familiarity with PN measurements

- All labs participating in the HD validation exercise had previously participated in the light-duty work
 - DR49 is substantially similar to the R83 PN Annex, ILG_HD is more prescriptive
 - No major issues with the concepts for sampling and measurements from the CVS
 - Some concerns about using the SPCS systems

_	Power requirements	[Details added to ILG_HD]
_	Installation and commissioning	[JRC helped out]

- Sampling manifold [JRC provided]
- Sample return to CVS [Required but may be not necessary]
- Participating labs were unfamiliar with making particle number measurements from partial dilution tunnel (PDT) systems, so the many discussions were around this

Observations PN from PDTs was new and concerning

- Issues raised
 - Hardware modifications needed to make simultaneous PM and PN measurements possible
 - Hardware and/or software corrections required for valid PM data
 - Sample probe raw exhaust
 - Sample probe from the PDT
 - Use of a cyclone
 - Generic operating conditions [Defined in preliminary experiments]

Observations Facility Modifications

- All labs were relatively well prepared for the programme
- Hardware actions were limited to
 - LEPA, Carbon, HEPA filters for CVS dilution air
 - Improved quality of dilution air for secondary tunnels (PM)
 - Control of filter face temperature to $47^{\circ}C \pm 5^{\circ}C$
 - Heating of secondary dilution air
 - Implementation of heating chambers to contain cyclone and filter holder

Observations PM Sampling

- Filter holders (CVS and PDT)
 - Some labs used current PM holders without a back-up
 - Other labs used US07 style holders
 - All labs used TX40 filters
- Weighing Processes
 - No labs reported any reference filter failures
 - (within $\pm 5\mu g$ versus ≤ 30 day rolling average)
 - One lab had 1 of 3 filters borderline
 - 10µg variance required?
 - Some labs needed to install real-time RH and Temp monitoring in their weighing environments
- Background PM
 - In most cases equal to or higher than sample masses
 - Same effect in CVS and PDT
 - Some CVS systems had very high PM backgrounds

Functionality

PN 'Golden Systems'

 One SPCS suffered from overheating problems, but this was resolved by applying external cooling at all labs

Pass Requirement

Validation

Observations

No labs reported any failures of the validation exercises

Test

i est	r ass rrequirement	01 00-19	51 00-20
PNC Zero	<0.2#/cm ³	0.01	0.01
PNC Flow	1.00l/min +/- 0.05	0.95	0.96
System zero	<0.5#/cm ³	0.1	0.02
PNC temperature	Green LED	Green LED	Green LED
SPCS temperatures	Software Pass	Software Pass	Software Pass

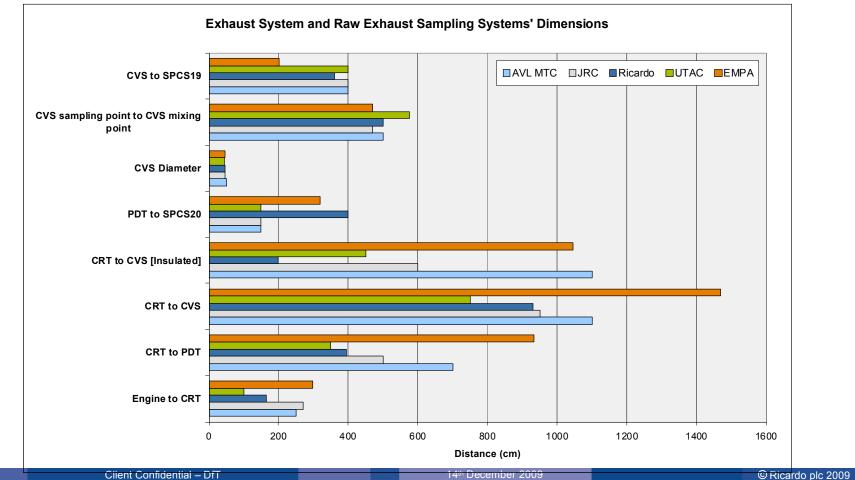
SPCS-19

- Background Particle Number Levels
 - Similar between PDT
 - Much more variable between CVS
 - Generally much higher from CVS

	CVS	PDT			
AVL-MTC	n/a	n/a			
JRC	6	4.5			
Ricardo	2082	3.2			
UTAC	120	375* / 30			
EMPA	49	2			

DN Background (#/cm³)

SPCS-20


Observations Exhaust and Sampling System Installations

12

[No obvious effect seen]

- Exhaust system installations were as similar as was practically possible
 - Engine CRT distance could be critical for emissions [impact to be studied]
 - Temperature gradients could be critical for PM

Q52154

Observations Dilution Tunnels

EMPA

80

470

47

Yes

2.5

40

2

200

1.4

0.3

1.61

0.46

UTAC

80

575

45

Yes

2.5

50

2

30

8

1.5

1.97

1.81

- CVS facilities were broadly similar
- Tunnel residence times controlled to 1.6s to 2.3s range
- Much larger range in secondary tunnel dimensions and residence time
 - (0.4s to 7.8s)
 - No discernible impact on PM
- 8 8.6 10 Secondary tunnel diameter [cm] Secondary Tunnel 1.5 3.7 7.9 volume (dm3) CVS Residence time (s) 1.90 1.61 2.28 2° tunnel residence time (s) 1.81 4.46 7.85

CVS flowrate [Nm3/min]

CVS length [cm]

CVS diameter [cm]

CVS Heat exchanger

Preclassifier cutpoint [um]

Secondary tunnel flowrate [lpm]

Secondary tunnel DF

Secondary tunnel length

[cm]

AVL MTC

72

500

50

No

2.5

50

2

30

JRC

80

470

47

Yes

2.5

50

2

64

Ricardo

60

500

46

Yes

2.5

60

2

100

- PDT systems were operated at similar conditions at all labs
 - Range of tunnel sizes with different PDT manufacturers (different t_{res})
 - Little evidence of systematic differences in PN
 - No evidence of PM impact

- Role of Golden Engineer
- Participating Laboratories
- Observations
- Conclusions
- DR49

Conclusions

- Labs were confident with the measurements of PM and PN from CVS systems but required more support with the PDT approach
- After specific discussions on sampling, flow corrections and measurement protocols, no labs experienced difficulties with simultaneous measurements of PM and PN from PDT during the exercise
- Several facilities required upgrades to dilution air filtration
 - Mostly CVS, but some PDT systems' filtration is substantially poorer quality than others
- Weighing facilities do not always have the required RH and temp monitoring capabilities
- Reference filter checks were always passed, but it might be wise to have a 10µg tolerance
- The GPMS systems performed extremely well and daily validation exercises were passed without issue throughout the exercise
 - For the SPCS system at least, daily validation is unnecessary
- Background particle number levels were higher and more variable in CVS systems than in PDT systems
- Background PM was frequently higher than sample masses even from PDT systems that showed very low background PN

DR49 – possible recommendations

- PN measurements from partial flow to be integrated along with specific PDT performance for sampling
 - Sample probe dimensions / lengths may not need to be as prescriptive as the full flow procedures, and some are not relevant / unachievable
- Dilution air requirements for PDT systems to be rigorously defined
- Preconditioning requirements or cleaning requirements might be valuable as recommendations
- Implement thresholds for background subtraction with particle numbers and particulate mass from high background facilities
 - Similar to 1mg/km maximum subtraction in light-duty R83
 - Possibly
 - 2.2mg/kWh PM = 22% of Euro VI PM limit
 - 1.8x10¹¹/kWh = 22% of proposal for Euro VI PN limit on WHSC
 - [1mg is 22% of Euro 6 PM limit]