

GRPE/WHDC/FE34

WHDC DEVELOPMENT - REFERENCE FUEL PROGRAMME

G. Martini, M. Carriero

Institute for Environment and Sustainability Transport and Air Quality Unit

28th meeting of the GRPE working group on the worldwide heavy duty certification procedure (WHDC) - Geneva, 09 June 2009

Informal Meeting of the GRPE working group on the World-wide harmonized Heavy-Duty Certification Procedure Geneva, 9th June 2009

Objectives of the programme

 To investigate the effect of different reference fuels on the emissions of Euro V / US2007 engines measured over the WHTC cycle.

– Geneva, 09 June 2009

• The programme is being carried out in collaboration with the engine manufacturers

TEST Engines (provided by OICA)

- EURO V Engine
 - MAN 2066LF18
 - 6 Cylinders intercooler Turbo Diesel Engine 10.5 I 300 kW
 - Common Rail Injection System

28th meeting of the GRPE working group on the worldwide heavy duty certification procedure (WHDC) - Geneva, 09 June 2009

- Euro V emission control device SCR with Urea injection
- US 2007 Engine
 - Cummins ISX500
 - 6 Cylinders intercooler Turbo Diesel Engine 14.9 L. 373 kW
 - HPI Electronic injection System DPF and Cooled EGR
 - EPA 2007, CARB 2007 Emission Certification

TEST FUELS

4

28th meeting of the GRPE working group on the worldwide heavy duty certification procedure (WHDC) - Geneva, 09 June 2009

		Fuel A	Fuel B	Fuel C
		RF-06-03	RF-06-03+5% FAME	US 86.113-07
Density @ 15 C	kg/m3	833.6	833.6	845.4
Cetane Number		52.9	53.1	46.9
Distillation				
IBP	°C	204	207	197.5
10% v/v	٥C	233.7		217.7
50% v/v	°C	275.3	278.1	272.3
90% v/v	°C	322.3		311.6
95% v/v	°C	348.4	349	
FBP	°C	357.7	356.7	333.6
Viscosity @ 40 C	mm2/s	2.93	2.93	2.55
Aromatics				
Total	%wt	23.4	22.8	36.3
Mono	%wt	19	18.8	
Poly	%wt	4.4	4	
Sulphur	mg/kg	1.6	1.7	7
Net heating value	MJ/kg	43.199	42.942	42.886
FAME	%vol		5.1	
Oxygen	%wt		0.7	

Test fuels: main differences

- Fuel A (European Ref.) vs Fuel B (European Ref. + 5% FAME)
 - Very similar properties

28th meeting of the GRPE working group on the worldwide heavy duty certification procedure (WHDC) - Geneva, 09 June 2009

- 0.7 % oxygen content in Fuel B
- Reduced heating value (- 0.6 %)
- Fuel C (US Ref.) vs Fuel A (European Ref.)
 - Higher density (+1.4%)
 - Lower average boiling point (much lower T95%)
 - Higher total aromatic content (36% vs 23%)
 - Lower heating value but higher density -> higher volumetric heating value (+0.68%)

6

28th meeting of the GRPE working group on the worldwide heavy duty certification procedure (WHDC) - Geneva, 09 June 2009

Results US 2007 Engine

TEST MATRIX

	Fuel	Day 1	Day 2	Day 3
1	А	COLD	COLD	COLD
		WHTC#1	WHTC#1	WHTC#1
2	regen	НОТ	НОТ	НОТ
		WHTC#2	WHTC#6	WHSC#4
3	FLC	НОТ	НОТ	НОТ
		WHTC#3	WHSC#1	WHSC#5
4	Build up	НОТ	НОТ	
		WHTC#4	WHSC#2	
5		НОТ	НОТ	
		WHTC#5	WHSC#3	

Regen regeneration phase (set by ECM)

FLC full load Power Curve

Build up soot cake: (45 min) Medium Load Medium speed

8

Emission comparison on different cycles

9

Emission comparison on different cycles

10

Emission comparison on different cycles

14

WHTC cycle

15

WHTC cycle

16

WHTC cycle

17

18

19

28th meeting of the GRPE working group on the worldwide heavy duty certification procedure (WHDC) – Geneva, 09 June 2009

giorgio.martini@jrc.it http://ies.jrc.ec.europa.eu