ОРГАНИЗАЦИЯ ОБЪЕДИНЕННЫХ НАЦИЙ

Distr. GENERAL

ECE/TRANS/WP.29/2009/121 26 August 2009

RUSSIAN

Original: ENGLISH

ЕВРОПЕЙСКАЯ ЭКОНОМИЧЕСКАЯ КОМИССИЯ

КОМИТЕТ ПО ВНУТРЕННЕМУ ТРАНСПОРТУ

Всемирный форум для согласования правил в области транспортных средств

Сто сорок девятая сессия Женева, 10-13 ноября 2009 года Пункт 14.3 предварительной повестки дня

РАССМОТРЕНИЕ ПРОЕКТОВ ГЛОБАЛЬНЫХ ТЕХНИЧЕСКИХ ПРАВИЛ И/ИЛИ ПРОЕКТОВ ПОПРАВОК К ВВЕДЕННЫМ ГЛОБАЛЬНЫМ ТЕХНИЧЕСКИМ ПРАВИЛАМ И ГОЛОСОВАНИЕ ПО НИМ

<u>Предложение по поправке 1 к глобальным техническим правилам № 4</u> (всемирная согласованная процедура сертификации двигателей большой мощности)

Предложение по поправке 1 к глобальным техническим правилам (гтп) № 4: Процедура испытания двигателей с воспламенением от сжатия и двигателей с принудительным зажиганием, работающих на природном газе (ПГ) или сжиженном нефтяном газе (СНГ), в отношении выделяемых ими загрязняющих веществ

Представлено Рабочей группой по проблемам энергии и загрязнения окружающей среды*

Воспроизведенный ниже текст был принят Рабочей группой по проблемам энергии и загрязнения окружающей среды (GRPE) на ее пятьдесят восьмой сессии. Он тесно связан

^{*} В соответствии с программой работы Комитета по внутреннему транспорту на 2006-2010 годы (ECE/TRANS/166/Add.1, подпрограмма 02.4) Всемирный форум будет разрабатывать, согласовывать и обновлять правила в области улучшения характеристик транспортных средств. Настоящий документ представлен в соответствии с этим мандатом.

с документом ECE/TRANS/WP.29/GRPE/2009/114. В его основу положен документ ECE/TRANS/WP.29/GRPE/2009/10 с поправками, содержащимися в неофициальном документе № GRPE-58-20. Он был подготовлен в качестве сводного пересмотренного варианта глобальных технических правил (гтп) № 4. Он представлен Всемирному форуму для согласования правил в области транспортных средств (WP.29) и Исполнительному комитету (AC.3) Соглашения 1998 года для рассмотрения (ECE/TRANS/WP.29/GRPE/58, пункт 7).

І. ИЗЛОЖЕНИЕ ТЕХНИЧЕСКИХ СООБРАЖЕНИЙ И ОБОСНОВАНИЯ

А. ТЕХНИЧЕСКАЯ И ЭКОНОМИЧЕСКАЯ ОСУЩЕСТВИМОСТЬ

- 1. Цель настоящего предложения состоит в введении глобальных технических правил (гтп), касающихся процедуры официального утверждения типа двигателей большой мощности в отношении выбросов выхлопных газов. В основе этого предложения лежит процедура испытания, разработанная неофициальной группой GRPE по ВСБМ (см. неофициальный документ № 4, распространенный в ходе сорок шестой сессии GRPE).
- 2. Правила, регулирующие аспекты выбросов выхлопных газов двигателями большой мощности, существуют уже многие годы, однако циклы испытаний и методы измерения выбросов весьма различаются. Для того чтобы можно было правильно определять воздействие транспортных средств большой мощности на окружающую среду с точки зрения выбросов загрязняющих веществ, процедуры лабораторных испытаний, и следовательно гтп, должны адекватно отражать реальные условия эксплуатации транспортных средств.
- 3. Предлагаемые правила основаны на новом исследовании модели эксплуатации коммерческих транспортных средств большой грузоподъемности в реальных условиях во всем мире. С учетом собранных данных были установлены два репрезентативных цикла испытаний: переходный цикл испытаний (ВСПЦ) в соответствии с требованиями для запуска двигателя из холодного и горячего состояния и цикл испытаний в устойчивом состоянии для запуска горячего двигателя (ВСУЦ), которые соответствуют типичным условиям вождения в Европейском союзе (ЕС), Соединенных Штатах Америки, Японии и Австралии. Альтернативные процедуры измерения выбросов были разработаны одним из комитетов экспертов ИСО и опубликованы в качестве стандарта ISO 16183. Этот стандарт базируется на технологии измерения выбросов выхлопных газов, позволяющей тщательно определять объем выбросов загрязнителей из будущих двигателей, характеризующихся низким уровнем выбросов. Такая деятельность служит основой для разработки будущего законодательства Японии и ЕС относительно выбросов. Параллельно с этим в течение последних нескольких лет в Соединенных Штатах Америки уже на иной основе ведется целенаправленная работа по усовершенствованию процедур измерения выбросов, протоколов испытаний и нормативной структуры в сфере транспортных средств большой грузоподъемности, эксплуатируемых как на дорогах, так и вне дорог. Эта деятельность подтверждена соответствующей документацией в рамках нормотворческого процесса в Соединенных Штатах Америки, которая опубликована

13 июля 2005 года. После внесения поправки 1 большинство этих новых протоколов испытаний нашли отражение в настоящих гтп.

- 4. По просьбе Договаривающихся сторон Соглашения 1998 года эта поправка была разработана для решения проблем, связанных с вариантами гтп № 4, и для обеспечения максимального соответствия между настоящими гтп и гтп, касающимися транспортных средств с дизельным двигателем, предназначенных для использования вне дорог. Будущий процесс внесения поправок в настоящие гтп с целью включения в них предельных значений, по-видимому, даст удобную возможность для согласования сколь-либо существенных различий между гтп, касающимися всемирной согласованной процедуры сертификации двигателей большой мощности (ВСБМ), и гтп, касающимися внедорожной подвижной техники (ВДПТ).
- 5. Циклы испытаний ВСПЦ и ВСУЦ максимально точно отражают реальные дорожные условия эксплуатации двигателей большой мощности во всем мире и в значительной степени приближают к реальным условиям процедуры испытания для измерения уровня выбросов существующих и будущих двигателей большой мощности. Иными словами, процедура испытания была разработана таким образом, чтобы она:
 - а) была репрезентативной для реальных дорожных условий эксплуатации транспортных средств во всем мире;
 - b) была способна обеспечить наивысший возможный уровень эффективности для снижения уровня выбросов в дорожных условиях;
 - с) использовала самую современную технологию испытаний, отбора проб и измерения;
 - d) была применима на практике к существующим и возможным будущим технологиям снижения уровня выбросов выхлопных газов; и
 - е) была способна обеспечить надежное ранжирование уровней выбросов выхлопных газов двигателями различных типов.
- 6. На данном этапе гтп представляются без указания предельных значений. Таким образом, процедуре испытаний может быть придан законный статус, и с учетом этого от Договаривающихся сторон требуется приступить к осуществлению процесса включения гтп в их национальное законодательство. Предельные значения должны быть разработаны Договаривающимися сторонами в соответствии с их собственными правилами процедуры.

- 7. Если проблемы, связанные с мощностью двигателя и измерением частиц, могут быть решены, то некоторые другие варианты, предусмотренные гтп, принимаются по усмотрению Договаривающихся сторон. Эти варианты связаны с исходным топливом, процедурой выдерживания при повышенной температуре в рамках цикла ВСПЦ в процессе запуска двигателя из холодного и горячего состояния, а также с коэффициентом взвешивания ВСПЦ в холодном и горячем состоянии. Вместе с тем при установлении общих предельных значений эти аспекты должны быть полностью согласованы.
- 8. При осуществлении процедуры испытаний, предусмотренной в настоящих гтп, Договаривающимся сторонам в рамках их национальных правил или законодательства предлагается использовать предельные значения, которые по крайней мере соответствуют уровню жесткости, установленному в их действующих правилах, до разработки согласованных предельных значений Исполнительным комитетом (АС.3) в контексте Соглашения 1998 года, относящегося к ведению Всемирного форума для согласования правил в области транспортных средств (WP.29). Следовательно, уровни эффективности (результаты испытаний на выбросы), которые должны быть предусмотрены в гтп, будут обсуждаться с учетом самых последних согласованных законодательных положений, действующих в Договаривающихся сторонах, как это и требуется Соглашением 1998 года.

В. ОЖИДАЕМЫЕ ПРЕИМУЩЕСТВА

Производство коммерческих транспортных средств большой грузоподъемности и устанавливаемых на них двигателей все в большей степени ориентируется на мировой рынок. Изготовителям экономически не выгодно производить существенно различающиеся модели, поскольку приходится обеспечивать соответствие различным нормативным положениям, касающимся выбросов, и методам измерения выбросов, которые в принципе направлены на достижение одной и той же цели. Для более эффективной и оперативной разработки новых моделей требуются гтп. Экономия, обусловленная применением гтп, будет выгодна не только изготовителям, но и - что более важно - потребителям.

Вместе с тем разработка процедуры испытания только для решения экономических вопросов не полностью соответствует мандату, предоставленному в начальный момент работы над настоящими гтп. Процедура испытания должна также способствовать усовершенствованию методов испытания двигателей большой мощности и полнее отражать нынешние возможности эксплуатации таких двигателей. По сравнению с методами измерения, определенными в действующем законодательстве Договаривающихся сторон Соглашения 1998 года, методы испытаний, установленные в настоящих гтп, являются значительно более репрезентативными для реальных условий

вождения коммерческих транспортных средств во всем мире. Следует отметить, что предписания настоящих гтп надлежит дополнить требованиями о контроле за выбросами вне цикла испытаний (ВВЦ) и о БД системах (бортовых диагностических системах).

Таким образом, можно ожидать, что применение настоящих гтп в рамках законодательства Договаривающихся сторон Соглашения 1998 года, касающегося выбросов, позволит снизить уровень выбросов из эксплуатируемых в настоящее время двигателей вследствие улучшения соотношения методов испытаний с реальными условиями.

С. ПОТЕНЦИАЛЬНАЯ РЕНТАБЕЛЬНОСТЬ

Расчет точных оценок рентабельности для настоящих гтп не производился. Основная причина этого заключается в том, что Исполнительный комитет (АС.3) Соглашения 1998 года решил продолжать работу над настоящими гтп без учета предельных величин. Эта общая договоренность была достигнута исходя из того понимания, что конкретные показатели эффективности затрат пока еще неизвестны. Вместе с тем можно с полной уверенностью ожидать, что такая информация будет накапливаться, главным образом, в результате введения настоящих правил в национальное законодательство, а также в контексте определения согласованных предельных величин в качестве следующего шага в разработке настоящих гтп. В частности, ожидается, что каждая Договаривающаяся сторона, включающая настоящие гтп в свое национальное законодательство, определит соответствующий уровень жесткости требований, связанных с использованием этих новых процедур испытания, причем вышеупомянутые новые величины должны быть по крайней мере такими же жесткими, как и сопоставимые существующие предписания. Кроме того, предприятия, производящие двигатели большой мощности, постепенно накопят опыт увязки любых расходов и экономии средств с использованием данной процедуры испытания. В таком случае информацию о расходах и уровнях выбросов можно будет проанализировать на следующем этапе разработки настоящих гтп, с тем чтобы определить показатели рентабельности принимаемых в настоящее время процедур испытания наряду с новыми величинами, которые будут согласованы в будущем. И хотя расчет издержек на тонну выбросов не производился, эксперты GRPE считают, что выгода, связанная с применением этих правил, очевидна.

II. ТЕКСТ ПРАВИЛ

1. ЦЕЛЬ

Настоящие правила нацелены на обеспечение согласованного на всемирном уровне метода определения уровней выбросов загрязнителей из двигателей, используемых на транспортных средствах большой грузоподъемности, которые являются репрезентативными с точки зрения распространенных в мире реальных условий эксплуатации транспортных средств. Полученные результаты могут послужить основой для регулирования аспектов выбросов загрязнителей в рамках действующих на региональном уровне процедур официального утверждения типа и сертификации.

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящие правила применяются в отношении измерения выбросов газообразных загрязняющих веществ и твердых частиц из двигателей с воспламенением от сжатия и двигателей с принудительным зажиганием, работающих на природном газе (ПГ) или сжиженном нефтяном газе (СНГ), который используется для обеспечения движения механических транспортных средств категорий 1-2 и 2, расчетная скорость которых превышает 25 км/ч и максимальная масса которых больше 3,5 тонн.

3. ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

3.1 Определения

Для целей настоящих Правил

- 3.1.1 "непрерывная регенерация" означает процесс регенерации системы последующей обработки отработавших газов, который происходит непрерывно или, как минимум, один раз на испытание в условиях запуска двигателя в прогретом состоянии (ВСПЦ);
- 3.1.2 "время задержки" означает разницу во времени между моментом изменения компонента, подлежащего измерению в исходной точке, и моментом, в который показания сработавшей системы составляют 10% от конечных показаний (t₁₀), причем пробоотборник определяется в качестве исходной точки. В случае газообразных компонентов это время представляет собой время переноса замеряемого компонента от пробоотборника до детектора;

- 3.1.3 "система deNO_x" означает систему последующей обработки отработавших газов в целях снижения объема выбросов оксидов азота (NO_x) (например, пассивные и активные каталитические нейтрализаторы NO_x , поглотители NO_x и системы селективного каталитического восстановления (СКВ));
- 3.1.4 "<u>дизельный двигатель</u>" означает двигатель, работающий по принципу воспламенения от сжатия;
- 3.1.5 "дрейф" означает разность между значениями чувствительности на нулевой и поверочный газы у измерительного прибора после и до проведения испытания на предмет определения уровня выбросов;
- 3.1.6 "семейство двигателей" означает объединенную изготовителями в группу категорию двигателей, которые в силу своей конструкции, определенной в пункте 5.2 настоящих гтп, имеют одинаковые характеристики в отношении выбросов отработавших газов; все члены семейства должны соответствовать применяемым предельным значениям выбросов загрязняющих веществ;
- 3.1.7 "система двигателя" означает двигатель, систему ограничения выбросов и связной интерфейс (аппаратное обеспечение и система сообщений) между электронным(и) управляющим(и) блоком (блоками) системы двигателя (ЭУБ) и любым иным элементом трансмиссии или устройством управления транспортным средством;
- 3.1.8 "<u>тип двигателя</u>" означает категорию двигателей, не имеющих между собой существенных различий в отношении основных характеристик двигателя;
- 3.1.9 "система последующей обработки отработавших газов" означает каталитический нейтрализатор (окислительный или трехкомпонентный), фильтр твердых частиц, систему deNOx, комбинированный фильтр deNOx твердых частиц или любое другое устройство ограничения выбросов загрязняющих веществ, установленное на выходе двигателя. В это определение не входит система рециркуляции отработавших газов (РОГ), которая считается составной частью двигателя;
- 3.1.10 "метод полного разбавления потока" означает процесс смешивания полного потока отработавших газов с разбавляющим воздухом перед отделением соответствующей фракции потока разбавленных отработавших газов в целях анализа;

- 3.1.11 "загрязняющие газообразные вещества" означают оксид углерода, углеводороды и/или углеводороды, не содержащие метан (при предполагаемом соотношении $CH_{1,85}$ для дизельного топлива, $CH_{2,525}$ для $CH\Gamma$ и $CH_{2,93}$ для $\Pi\Gamma$ и с условной молекулой $CH_3O_{0,5}$ для этанола, предназначенного для дизельных двигателей), метан (с условной молекулой CH_4 для $\Pi\Gamma$) и оксиды азота (выражаемые в эквиваленте диоксида азота (NO_2));
- 3.1.12 "высокая частота вращения (n_{hi}) " означает максимальную частоту вращения двигателя, при которой достигается 70% заявленной максимальной мощности;
- 3.1.13 "низкая частота вращения (n_{lo}) " означает минимальную частоту вращения двигателя, при которой достигается 55% заявленной максимальной мощности;
- 3.1.14 "максимальная мощность (P_{max})" означает максимальную мощность в кВт, указанную изготовителем;
- 3.1.15 "максимальный крутящий момент" означает частоту вращения двигателя, при которой достигается максимальный крутящий момент двигателя, указанный изготовителем;
- 3.1.16 "<u>приведенный крутящий момент</u>" означает значение крутящего момента в процентах, приведенное по имеющемуся значению максимального крутящего момента на данной частоте вращения двигателя;
- 3.1.17 "запрос оператора" означает какое-либо вмешательство со стороны оператора двигателя с целью регулирования мощности двигателя. Оператором может быть какое-либо лицо (ручное вмешательство) или какой-либо регулятор (автоматическое вмешательство), которые посылают двигателю механический или электронный сигнал с запросом об обеспечении определенной мощности. Этот сигнал может подаваться путем воздействия на педаль акселератора, рычаг дроссельной заслонки, рычаг подачи топлива, рычаг регулятора оборотов или рабочую точку регулятора оборотов либо же электронными средствами, заменяющими все указанные выше действия;
- 3.1.18 "<u>базовый двигатель</u>" означает двигатель, отобранный из семейства двигателей таким образом, чтобы его характеристики в отношении выбросов являлись репрезентативными для данного семейства двигателей;
- 3.1.19 "устройство последующей обработки твердых частиц" означает систему последующей обработки отработавших газов, предназначенную для

- ограничения выбросов твердых частиц (ТЧ) посредством механической, аэродинамической, диффузионной или инерционной сепарации;
- 3.1.20 "метод частичного разбавления потока" означает процесс отделения части от полного потока отработавших газов и ее последующее смешивание с соответствующим объемом разбавляющего воздуха перед фильтром отбора проб твердых частиц;
- 3.1.21 "твердые частицы (ТЧ)" означают любую субстанцию, улавливаемую какимлибо конкретно указанным фильтрующим материалом после разбавления отработавших газов чистым отфильтрованным разбавителем при температуре в пределах 315 К (42° С) 325 К (52° С); к ним относятся прежде всего углерод, конденсированные углеводороды и сульфаты в соединении с водой;
- 3.1.22 "периодическая регенерация" означает процесс регенерации системы последующей обработки отработавших газов, который происходит периодически, как правило, менее чем через 100 часов обычной работы двигателя. Во время циклов регенерации нормы выбросов могут превышаться;
- 3.1.23 "ступенчатый цикл испытаний в установившихся режимах" означает испытательный цикл, предусматривающий последовательность испытаний двигателя в установившихся режимах при определенных критериях частоты вращения и крутящего момента в каждом режиме и определенные ступени перехода между этими режимами (ВСУЦ);
- 3.1.24 "номинальная частота вращения" означает максимальную частоту вращения при полной нагрузке, допускаемую регулятором в соответствии со спецификациями изготовителя, указанными в его рекламных и сервисных материалах, или, если такой регулятор отсутствует, частоту вращения, при которой достигается максимальная мощность двигателя, указанная изготовителем в его рекламных или сервисных материалах;
- 3.1.25 "время срабатывания" означает разницу во времени между моментом изменения компонента, подлежащего измерению в исходной точке, и моментом, в который показания сработавшей системы составляют 90% от конечных показаний (t_{90}) (причем пробоотборник определяется в качестве исходной точки), когда изменение измеряемого компонента составляет по крайней мере 60% полной шкалы (FS) и происходит менее чем за 0,1 секунды.

Время срабатывания системы состоит из времени задержки системы и времени восстановления системы;

- 3.1.26 "время восстановления" означает разницу во времени в пределах 10-90% конечных показаний времени срабатывания ($t_{90} t_{10}$);
- 3.1.27 "<u>чувствительность к калибровке</u>" означает среднюю чувствительность к поверочному газу в течение 30-секундного отрезка времени;
- 3.1.28 "удельные выбросы" означают массу выбросов, выраженную в г/кВт·ч;
- 3.1.29 "испытательный цикл" означает последовательную серию испытательных операций, выполняемых с определенной частотой вращения и определенным крутящим моментом двигателя в установившемся режиме (ВСУЦ) или в переходных режимах работы (ВСПЦ);
- 3.1.30 "время перехода" означает разницу во времени между моментом изменения компонента, подлежащего измерению в исходной точке, и моментом, в который показания сработавшей системы составляют 50% от конечных показаний (t_{50}), причем пробоотборник определяется в качестве исходной точки. Время перехода используется для синхронизации сигналов различных измерительных приборов;
- 3.1.31 "<u>цикл испытаний в переходных режимах</u>" означает испытательный цикл в виде последовательности приведенных значений частоты вращения и крутящего момента, которые изменяются во времени относительно быстро (ВСПЦ);
- 3.1.32 "срок эксплуатации" означает соответствующий пробег и/или период времени, в течение которого необходимо обеспечить соблюдение соответствующих норм выбросов газообразных веществ и твердых частиц;
- 3.1.33 "<u>чувствительность к нулю</u>" означает среднюю чувствительность к нулевому газу в течение 30-секундного отрезка времени.

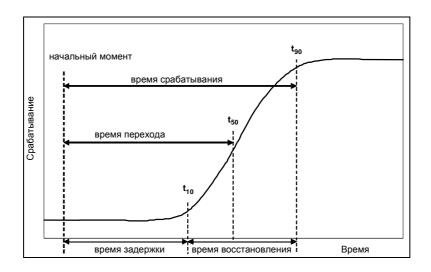


Рис. 1: Определения моментов срабатывания системы

3.2 Общие обозначения

Обозначение	Единица измерения	Наименование показателя	
A/F _{st}	_	Стехиометрическое отношение воздуха к топливу	
С	млн $^{-1}$ /объемн. доля, %	Концентрация	
$c_{ m d}$	${\rm млн}^{-1}/{\rm объемн.}$ доля, %	Концентрация на сухой основе	
$c_{ m w}$	${\rm млн}^{-1}/{\rm объемн.}$ доля, %	Концентрация на влажной основе	
c_b	${\rm млн}^{-1}/{\rm объемн.}$ доля, %	Фоновая концентрация	
$C_{ m d}$	_	Коэффициент расхода SSV	
d	M	Диаметр	
$d_{ m V}$	M	Диаметр сужения трубки Вентури	
D_0	M^3/c	Отрезок, отсекаемый на координатной оси калибровочной функции PDP	
D	_	Коэффициент разбавления	
Δt	c	Промежуток времени	
$e_{ m gas}$	г/кВт·ч	Удельные выбросы газообразных компонентов	
e_{PM}	г/кВт-ч	Удельные выбросы твердых частиц	
e_{p}	г/кВт·ч	Удельные выбросы в процессе регенерации	

Обозначение	Единица измерения	Наименование показателя	
$e_{ m w}$	г/кВт-ч	Взвешенные удельные выбросы	
$E_{\rm CO2}$	%	Сбой анализатора NO_x по CO_2	
$E_{ m E}$	%	Эффективность по этану	
$E_{ m H2O}$	%	Сбой анализатора NO_x по воде	
$E_{ m M}$	%	Эффективность по метану	
$E_{ m NOx}$	%	Эффективность конвертера NO _x	
f	Гц	Частота регистрации данных при отборе проб	
$f_{ m a}$	-	Лабораторный атмосферный коэффициент	
$F_{\rm s}$	_	Стехиометрический коэффициент	
$H_{\rm a}$	г/кг	Абсолютная влажность воздуха на впуске	
$H_{ m d}$	г/кг	Абсолютная влажность разбавляющего воздуха	
i	_	Нижний индекс, обозначающий замер мгновенного значения (например, 1 Гц)	
k_c	_	Удельный коэффициент углерода	
$k_{f,d}$	$M^3/$ кг топл.	Дополнительный объем сухих выбросов в результате сгорания	
$k_{ m f,w}$	$M^3/$ кг топл.	Дополнительный объем влажных выбросов в результате сгорания	
$k_{ m h,D}$	-	Поправочный коэффициент на влажность для NO_x двигателей с воспламенением от сжатия	
$k_{ m h,G}$	_	Поправочный коэффициент на влажность для NO_x двигателей с принудительным зажиганием	
$k_{\rm r}$	_	Коэффициент регенерации	
$k_{ m w,a}$	_	Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске	
$k_{ m w,d}$	_	Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха	

Обозначение	Единица измерения	Наименование показателя	
$k_{ m w,e}$	-	Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов	
$k_{ m w,r}$	-	Поправочный коэффициент при переходе из сухого состояния во влажное для первичных отработавших газов	
$K_{ m V}$	_	Калибровочная функция CFV	
λ	_	Коэффициент избытка воздуха	
$m_{ m d}$	КГ	Масса пробы разбавляющего воздуха, прошедшего через фильтры для отбора проб твердых частиц	
$m_{ m ed}$	ΚΓ	Суммарная масса разбавленных отработавших газов за цикл	
$m_{ m edf}$	КΓ	Масса эквивалентных разбавленных отработавших газов за испытательный цикл	
m_{ew}	КΓ	Суммарная масса отработавших газов за цикл	
$m_{ m f}$	МΓ	Уловленная масса проб твердых частиц	
$m_{ m f,d}$	МΓ	Уловленная масса проб твердых частиц в разбавляющем воздухе	
$m_{ m gas}$	Γ	Масса газообразных выбросов за испытательный цикл	
m_{PM}	Γ	Масса выбросов твердых частиц за испытательный цикл	
$m_{\rm se}$	КГ	Масса проб отработавших газов за испытательный цикл	
$m_{ m sed}$	ΚΓ	Масса разбавленных отработавших газов, прошедших через смесительный канал	
$m_{ m sep}$	ΚΓ	Масса разбавленных отработавших газов, прошедших через фильтры для отбора твердых частиц	
$m_{\rm ssd}$	КГ	Масса вторичного разбавляющего воздуха	

Обозначение	Единица измерения	Наименование показателя	
M	Нм	Крутящий момент	
$M_{\rm a}$	г/моль	Молярная масса воздуха на впуске	
$M_{ m e}$	г/моль	Молярная масса отработавших газов	
$M_{ m gas}$	г/моль	Молярная масса газообразных компонентов	
n	_	Число замеров	
n_r	_	Число замеров в процессе регенерации	
n	MWH^{-1}	Частота вращения двигателя	
$n_{ m hi}$	MWH^{-1}	Высокая частота вращения двигателя	
n_{lo}	MWH^{-1}	Низкая частота вращения двигателя	
n_{pref}	MUH^{-1}	Предпочтительная частота вращения двигателя	
$n_{\rm p}$	об/с	Частота вращения насоса PDP	
p_{a}	кПа	Давление насыщенных паров на впуске воздуха в двигатель	
$p_{ m b}$	кПа	Общее атмосферное давление	
$p_{ m d}$	кПа	Давление насыщенных паров разбавляющего воздуха	
p_{p}	кПа	Абсолютное давление	
$p_{ m r}$	кПа	Давление водяных паров после охлаждающей ванны	
p_{s}	кПа	Сухое атмосферное давление	
P	кВт	Мощность	
q_{mad}	кг/с	Массовый расход воздуха на впуске в сухом состоянии	
q_{maw}	кг/с	Массовый расход воздуха на впуске во влажном состоянии	
q_m Ce	кг/с	Массовый расход углерода в первичных отработавших газах	
$q_{m\mathrm{Cf}}$	кг/с	Массовый расход углерода в двигателе	
$q_{m\mathrm{Cp}}$	кг/с	Массовый расход углерода в системе частичного разбавления потока	

Обозначение	Единица измерения	Наименование показателя	
$q_{m\text{dew}}$	кг/с	Массовый расход разбавленных отработавших газов на влажной основе	
$q_{m{ m dw}}$	кг/с	Массовый расход разбавляющего воздуха на влажной основе	
$q_{m\mathrm{edf}}$	кг/с	Эквивалентный массовый расход разбавленных отработавших газов на влажной основе	
$q_{m\mathrm{ew}}$	кг/с	Массовый расход отработавших газов на влажной основе	
$q_{m ext{ex}}$	кг/с	Массовый расход пробы, прошедшей через смесительный канал	
$q_{m\mathrm{f}}$	кг/с	Массовый расход топлива	
$q_{m\mathrm{p}}$	кг/с	Расход пробы отработавших газов, поступающих в систему частичного разбавления потока	
$q_{v{ m CVS}}$	M^3/C	Объемный показатель CVS	
$q_{v{ m s}}$	дм ³ /мин.	Расход системы анализатора отработавших газов	
$q_{ m vt}$	см ³ /мин.	Расход индикаторного газа	
$r_{ m d}$	_	Коэффициент разбавления	
r_{D}	_	Соотношение диаметров SSV	
$r_{ m h}$	_	Коэффициент чувствительности FID на углеводороды	
$r_{ m m}$	-	Коэффициент чувствительности FID на метанол	
$r_{ m p}$	_	Соотношение давлений SSV	
$r_{\rm s}$	_	Средний показатель отбора проб	
ρ	$\mathrm{K}\Gamma/\mathrm{M}^3$	Плотность	
$ ho_{ m e}$	$\mathrm{K}\Gamma/\mathrm{M}^3$	Плотность отработавших газов	
σ	_	Стандартное отклонение	
T	K	Абсолютная температура	
$T_{\rm a}$	K	Абсолютная температура воздуха на впуске	
t	c	Время	

Обозначение	Единица измерения	Наименование показателя
t ₁₀	c	Время между начальным моментом и моментом, в который показания достигают 10% от конечных показаний
<i>t</i> ₅₀	c	Время между начальным моментом и моментом, в который показания достигают 50% от конечных показаний
<i>t</i> ₉₀	c	Время между начальным моментом и моментом, в который показания достигают 90% от конечных показаний
и	-	Отношение плотности газообразного компонента к плотности отработавших газов
V_0	м ³ /об	Объем газа, нагнетаемого за один оборот вала PDP
$V_{ m s}$	ДМ ³	Объем системы анализатора отработавших газов
$W_{ m act}$	кВт∙ч	Фактическая работа за испытательный цикл
$W_{ m ref}$	кВт∙ч	Исходная работа за испытательный цикл
X_0	м ³ /об	Калибровочная функция PDP

3.3 Обозначения и сокращения состава топлива

$W_{ m ALF}$	содержание водорода в топливе в % от массы	
$W_{ m BET}$	содержание углерода в топливе в % от массы	
W_{GAM}	содержание серы в топливе в % от массы	
$W_{ m DEL}$	содержание азота в топливе в % от массы	
$W_{ m EPS}$	содержание кислорода в топливе в % от массы	
α	молярная доля водорода (Н/С)	
γ	молярная доля серы (S/C)	
δ	молярная доля азота (N/C)	
\mathcal{E}	молярная доля кислорода (О/С)	
по отношению к топливу $\mathrm{CH}_{\alpha}\mathrm{O}_{\varepsilon}\mathrm{N}_{\delta}\mathrm{S}_{\gamma}$.		

3.4 Обозначения и сокращения химических компонентов

С1 Углеводороды, эквивалентные углероду 1

 ${
m CH_4} \ {
m Meтан} \ {
m C_2H_6} \ {
m Этан} \ {
m C_3H_8} \ {
m Пропан}$

СО Оксид углерода
 СО₂ Диоксид углерода
 DOP Диоктилфталат
 HC Углеводороды

Н2О Вода

NMHC Углеводороды, не содержащие метан

 NOx
 Оксиды азота

 NO
 Оксид азота

 NO2
 Диоксид азота

РМ Твердые частицы (ТЧ)

3.5 Сокращения

CFV Трубка Вентури с критическим расходом

CLD Хемилюминесцентный детектор CVS Отбор проб при постоянном объеме deNO $_{\rm x}$ Система последующей обработки NO $_{\rm x}$ EGR Рециркуляция отработавших газов

FID Плазменно-ионизационный детектор

GC Газовый хроматограф

HCLD Нагреваемый хемилюминесцентный детектор

HFID Нагреваемый плазменно-ионизационный детектор

LPG Сжиженный нефтяной газ (СНГ)

NDIR Недисперсионный инфракрасный анализатор

NG Природный газ (ПГ)

NMC Отделитель неметановых фракций PDP Насос с объемным регулированием

% FS Процент полной шкалы PFS Система частичного потока

SSV Трубка Вентури для дозвуковых потоков

VGT Турбина с изменяемой геометрией

4. ОБЩИЕ ТРЕБОВАНИЯ

Система двигателя должна быть сконструирована, изготовлена и смонтирована таким образом, чтобы в условиях нормальной эксплуатации двигатель соответствовал положениям настоящих гтп в ходе всего срока службы, как он определен в настоящих Правилах, в том числе после установки на транспортном средстве.

5. ТРЕБОВАНИЯ К ЭКСПЛУАТАЦИОННЫМ ПОКАЗАТЕЛЯМ

При осуществлении процедуры испытания, предусмотренной в настоящих гтп, в рамках своего национального законодательства Договаривающимся сторонам Соглашения 1998 года рекомендуется использовать предельные величины, которые соответствуют по крайней мере такому же уровню жесткости, как и в их действующих правилах, пока Исполнительный комитет (АС.3) Соглашения 1998 года не разработает на более позднем этапе согласованные предельные величины для включения в гтп.

5.1 Выбросы загрязняющих газообразных веществ и твердых частиц

Выбросы загрязняющих газообразных веществ и твердых частиц двигателем определяются на основе испытательных циклов ВСПЦ и ВСУЦ, описанных в пункте 7. Системы измерения должны удовлетворять требованиям линейности, изложенным в пункте 9.2, и спецификациям пункта 9.3 (замеры газообразных выбросов), пункта 9.4 (измерение твердых частиц) и приложении 3.

Компетентный орган, предоставляющий официальное утверждение типа или производящий сертификацию, может разрешить использование других систем или анализаторов, если будет установлено, что они обеспечивают эквивалентные результаты в соответствии с пунктом 5.1.1.

5.1.1 Эквивалентность

Эквивалентность системы определяется на основе корреляционного анализа параметров рассматриваемой системы и одной из систем, указанных в настоящих гтп, с использованием семи (или более) пар проб.

"Результаты" означают взвешенные значения выбросов в ходе конкретного цикла. Испытание на предмет корреляционного анализа должно проводиться

на одной и той же станции, в одной и той же испытательной камере, на одном и том же двигателе и предпочтительно в одно и то же время. Эквивалентность средних значений отдельных пар проб определяется с помощью статистических критериев F и t по процедуре, описанной в пункте A.4.3 приложения 4, значения которых получены в испытательной камере станции при характеристиках двигателя, описанных выше. Резко отклоняющиеся значения определяются в соответствии с ISO 5725 и исключаются из базы данных. Используемые системы корреляции результатов испытания подлежат утверждению компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию.

5.2 Семейство двигателей

5.2.1 Обшие положения

Семейство двигателей характеризуется соответствующими конструктивными параметрами. Они должны быть общими для всех двигателей, входящих в данное семейство. Изготовитель двигателя может устанавливать, какие двигатели относятся к тому или иному семейству двигателей, на основе соблюдения критериев принадлежности к данной категории, перечисленных в пункте 5.2.3. Семейство двигателей подлежит утверждению компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию. Изготовитель должен представить органу, предоставляющему официальное утверждение типа или проводящему сертификацию, соответствующую информацию, касающуюся уровней выбросов двигателями, относящимися к данному семейству.

5.2.2 Особые случаи

В некоторых случаях между параметрами может существовать определенная взаимосвязь. Этот момент следует учитывать, с тем чтобы обеспечивать включение в одно и то же семейство только двигателей с аналогичными характеристиками, в том что касается выбросов отработавших газов. Такие случаи определяются изготовителем и доводятся до сведения компетентного органа, предоставляющего официальное утверждение типа или проводящего сертификацию. После этого они принимаются во внимание в качестве одного из критериев формирования нового семейства двигателей.

В случае устройств или особенностей, которые не перечислены в пункте 5.2.3 и которые оказывают существенное влияние на уровень выбросов, это оборудование определяется изготовителем на основе проверенной технической практики и соответствующая информация доводится до сведения

компетентного органа, предоставляющего официальное утверждение типа или проводящего сертификацию. После этого они принимаются во внимание в качестве одного из критериев формирования нового семейства двигателей.

В дополнение к параметрам, перечисленным в пункте 5.2.3, изготовитель может вводить дополнительные критерии определения семейств, более ограниченных по размеру. Эти параметры необязательно являются параметрами, которые оказывают воздействие на уровень выбросов.

- 5.2.3 Параметры, определяющие семейство двигателей
- 5.2.3.1 Рабочий шикл:
 - а) 2-тактный цикл,
 - b) 4-тактный цикл,
 - с) роторный двигатель,
 - d) прочие.
- 5.2.3.2 Конфигурация цилиндров
- 5.2.3.2.1 Расположение цилиндров в блоке:
 - а) V-образное,
 - b) в ряд,
 - с) радиальное,
 - d) прочие (по типу свободнопоршневого, W-образное и т. д.).
- 5.2.3.2.2 Относительное расположение цилиндров

Двигатели с одним и тем же блоком могут принадлежать к одному и тому же семейству при условии одинакового межцентрового расстояния между цилиндрами.

- 5.2.3.3 Основная охлаждающая субстанция:
 - а) воздух,
 - b) вода,
 - с) масло.
- 5.2.3.4 Рабочий объем отдельного цилиндра
- 5.2.3.4.1 Двигатель с рабочим объемом единичного цилиндра \geq 0,75 дм 3

Для того чтобы двигатели с объемом единичного цилиндра $\geq 0.75~{\rm дm}^3$ можно было рассматривать на предмет включения в одно и то же семейство двигателей, разброс значений рабочего объема отдельных цилиндров не должен превышать 15% от наибольшего значения объема отдельного цилиндра в пределах данного семейства.

5.2.3.4.2 Двигатель с рабочим объемом единичного цилиндра $< 0.75 \text{ дм}^3$

Для того чтобы двигатели с объемом единичного цилиндра < 0,75 дм³ можно было рассматривать на предмет включения в одно и то же семейство двигателей, разброс значений рабочего объема отдельных цилиндров не должен превышать 30% от наибольшего значения объема отдельного цилиндра в пределах данного семейства.

5.2.3.4.3 Двигатель с иными предельными значениями рабочего объема единичного цилиндра

Двигатели с рабочим объемом отдельного цилиндра, который превышает предельные значения, указанные в пунктах 5.2.3.4.1 и 5.2.3.4.2, могут рассматриваться на предмет включения в одно и то же семейство при условии утверждения компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию. Официальное утверждение производится на основе технических элементов (расчетов, моделирования, экспериментальных результатов и т. д.), подтверждающих, что превышение предельных значений не оказывает существенного воздействия на выбросы отработавших газов.

5.2.3.5 Метод всасывания воздуха:

- а) без наддува,
- b) с наддувом,
- с) с наддувом и охладителем нагнетаемого воздуха.

5.2.3.6 Тип топлива:

- а) дизельное,
- b) природный газ (ПГ),
- с) сжиженный нефтяной газ (СНГ),
- d) этанол.

5.2.3.7	Тип к	самеры	сгорания:

- а) открытая,
- b) разделенная,
- с) иные типы.

5.2.3.8 Тип зажигания:

- а) принудительное зажигание,
- b) воспламенение от сжатия.

5.2.3.9 Клапаны и гнезда клапанов

- а) конфигурация,
- b) число клапанов на один цилиндр.

5.2.3.10 Тип подачи топлива:

- а) тип подачи жидкого топлива
 - і) насос и магистраль (высокого давления) и инжектор,
 - іі) рядный или распределительный насос,
 - ііі) отдельный насос или насос-форсунка,
 - iv) общий нагнетательный трубопровод,
 - v) карбюратор(ы),
 - vi) прочее;

b) тип подачи газового топлива

- і) газообразное,
- іі) жидкое,
- ііі) через смесительный блок,
- iv) прочее;
- с) иные типы.

5.2.3.11 Различные устройства:

- а) рециркуляция отработавших газов (РОГ),
- b) впрыск воды,
- с) нагнетание воздуха,
- d) прочее.

5.2.3.12 Метод электронного управления

Наличие или отсутствие электронного управляющего блока (ЭУБ) на двигателе рассматривается в качестве одного из основных параметров семейства.

В случае двигателей, оснащенных системой электронного регулирования, изготовитель представляет технические элементы с разъяснением принципов объединения этих двигателей в одно и то же семейство, т. е. причин, по которым эти двигатели должны, как ожидается, удовлетворять одинаковым требованиям в отношении выбросов отработавших газов.

К таким элементам могут относиться расчеты, моделирование, оценки, описание параметров впрыска, результаты экспериментов и т. д.

Примеры регулируемых функций:

- а) момент впрыска,
- b) давление впрыска,
- с) многоточечный впрыск,
- d) давление наддува,
- е) турбина с изменяемой геометрией,
- f) рециркуляция отработавших газов.

5.2.3.13 Системы последующей обработки отработавших газов

В качестве критериев включения двигателей в соответствующее семейство рассматриваются функции и сочетание следующих устройств:

- а) окислительный каталитический нейтрализатор,
- b) трехкомпонентный каталитический нейтрализатор,
- с) система $deNO_x$ с селективным снижением уровня NO_x (добавка реагентавосстановителя),
- d) прочие системы $deNO_x$,
- е) сажеуловитель с пассивной регенерацией,
- f) сажеуловитель с активной регенерацией,
- g) прочие сажеуловители,
- h) прочие устройства.

Если двигатель сертифицирован без системы последующей обработки - либо в качестве базового двигателя, либо в качестве двигателя, относящегося к данному семейству, - то тогда этот двигатель, в случае его оснащения

окислительным каталитическим нейтрализатором, может быть включен в то же семейство двигателей, если это не требует изменения характеристик топлива.

Если же это требует использования топлива с конкретными характеристиками (например, при наличии сажеуловителя, когда для обеспечения процесса регенерации необходимы специальные добавки в топливо), то решение включить его в одно и то же семейство принимается на основе технических элементов, представляемых изготовителем. Эти элементы должны указывать, что ожидаемый уровень выбросов отработавших газов двигателем, оснащенным таким образом, соответствует тем же предельным величинам, что и в случае неоснащенного двигателя.

Если двигатель сертифицирован с системой последующей обработки - либо в качестве базового двигателя, либо в качестве двигателя, включенного в соответствующее семейство, в случае которого базовый двигатель оснащен той же системой последующей обработки, - то тогда этот двигатель, если он не оснащен системой последующей обработки, не должен включаться в то же самое семейство.

5.2.4 Выбор базового двигателя

5.2.4.1 Двигатели с воспламенением от сжатия

После того как компетентный орган, предоставляющий официальное утверждение типа или проводящий сертификацию, подтверждает семейство двигателей, выбирается базовый двигатель данного семейства с использованием первичного критерия, каковым является наибольшая подача топлива за один такт при заявленной частоте вращения, соответствующей максимальному крутящему моменту. Если же этому первичному критерию отвечают два или более двигателей, то базовый двигатель выбирается с использованием вторичного критерия, каковым является наибольшая подача топлива за один такт при номинальной частоте вращения.

5.2.4.2 Двигатели с принудительным зажиганием

После того как компетентный орган, предоставляющий официальное утверждение типа или проводящий сертификацию, подтверждает семейство двигателей, выбирается базовый двигатель данного семейства с использованием первичного критерия, каковым является наибольший рабочий объем цилиндров. Если же этому первичному критерию отвечают два или более двигателей, то базовый двигатель выбирается с использованием вторичного критерия в следующем порядке приоритетности:

- а) наибольшая подача топлива за один такт при частоте вращения, соответствующей заявленной номинальной мощности;
- b) наибольший угол опережения зажигания;
- с) наименьшая степень РОГ.

5.2.4.3 Замечания относительно выбора базового двигателя

Орган, предоставляющий официальное утверждение типа или проводящий сертификацию, может прийти к выводу о том, что наименее благоприятный случай выбросов загрязняющих веществ двигателями данного семейства может быть наилучшим образом определен путем испытания дополнительных двигателей. В этом случае изготовитель двигателя представляет соответствующую информацию для выявления тех двигателей семейства, для которых может быть характерен наиболее высокий уровень выбросов.

Если у двигателей данного семейства имеются другие особенности, которые, как считается, могут влиять на выбросы отработавших газов, то эти особенности также должны быть определены и учтены при выборе базового двигателя.

Если двигатели, относящиеся к данному семейству, имеют одни и те же значения выбросов в течение различных сроков службы, то при выборе базового двигателя этот момент необходимо принимать во внимание.

6. УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ

6.1 Условия проведения испытаний на станции

Измеряются абсолютная температура (T_a) нагнетаемого в двигатель воздуха, выраженная в градусах Кельвина, и сухое атмосферное давление (p_s), выраженное в кПа, и определяется параметр f_a в соответствии с ниже следующими положениями. В многоцилиндровых двигателях, оснащенных отдельными группами впускных коллекторов, например в случае V-образных двигателей, измеряется средняя температура в каждой группе. Параметр f_a указывается в протоколе испытаний. Для обеспечения лучшей повторяемости и воспроизводимости результатов испытаний рекомендуется, чтобы параметр f_a находился в следующих пределах: $0.93 \le f_a \le 1.07$. Договаривающиеся стороны могут ввести требование об обязательном использовании параметра f_a .

а) Двигатели с воспламенением от сжатия:

Двигатели без наддува и с механическим наддувом:

$$f_{\mathbf{a}} = \left(\frac{99}{p_{\mathbf{s}}}\right) \times \left(\frac{T_{\mathbf{a}}}{298}\right)^{0.7} \tag{1}$$

Двигатели с турбонаддувом (с охлаждением нагнетаемого воздуха или без охлаждения):

$$f_{\rm a} = \left(\frac{99}{p_{\rm s}}\right)^{0.7} \times \left(\frac{T_{\rm a}}{298}\right)^{1.5} \tag{2}$$

b) Двигатели с принудительным зажиганием:

$$f_{a} = \left(\frac{99}{p_{s}}\right)^{1,2} \times \left(\frac{T_{a}}{298}\right)^{0,6} \tag{3}$$

6.2 Двигатели с охлаждением воздушного заряда

Регистрируется температура воздушного заряда, которая при номинальной частоте вращения и полной нагрузке должна составлять \pm 5 K от максимальной температуры впускного воздуха, указанной изготовителем. Температура охлаждающей субстанции должна быть не менее 293 K (20° C).

Если используется система испытательной станции или внешний вентилятор, то расход охлаждающей субстанции должен быть таким, чтобы обеспечивалась температура воздушного заряда ±5 К от максимальной температуры впускного воздуха, указанной изготовителем для номинальной частоты вращения и полной нагрузки. Температура охлаждающей субстанции и ее расход в воздухоохладителе в указанной выше точке не должны изменяться в течение всего цикла испытаний, если только это не приводит к нерепрезентативному переохлаждению воздушного заряда. Объем нагнетаемого воздуха в целях охлаждения определяется на основе проверенной технической практики и должен быть репрезентативным для установки, используемой при производстве двигателя. Система испытательной станции должна быть сконструирована таким образом, чтобы сводилось к минимуму скопление конденсата. Любой скопившийся конденсат должен удаляться, и все дренажные каналы должны быть герметично закрыты до проведения испытаний на выбросы.

Если изготовитель двигателя указывает пределы падения давления в системе охлаждения воздушного заряда, то необходимо обеспечить, чтобы величины падения давления в системе охлаждения воздушного заряда при указанных изготовителем условиях функционирования двигателя не выходили за пределы указанного изготовителем значения (указанных изготовителем значений). Величина падения давления измеряется в обозначенных изготовителем местах.

6.3 Мощность двигателя

Конкретные изменения выбросов проводятся с учетом мощности двигателя и работы за цикл, которые определяются в соответствии с пунктами 6.3.1-6.3.5.

6.3.1 Общая установка двигателя

Двигатель должен испытываться вместе со вспомогательным оборудованием/устройствами, перечисленными в приложении 7.

Если вспомогательное оборудование/устройства установлены в соответствии с существующими требованиями, то их мощность учитывается согласно пунктам 6.3.2-6.3.5.

6.3.2 Вспомогательное оборудование/устройства, подлежащие установке для проведения испытания на выбросы

Если установка вспомогательного оборудования/устройств, требующихся согласно приложению 7, на испытательном стенде представляется нецелесообразной, то потребляемая ими мощность должна определяться и вычитаться из мощности двигателя (исходной и фактической), измеряемой во всем диапазоне частоты вращения двигателя ВСПЦ и испытательной частоты вращения ВСУЦ.

6.3.3 Вспомогательное оборудование/устройства, демонтируемые на время проведения испытания

В тех случаях, когда нельзя демонтировать вспомогательное оборудование/устройства, которые не требуются в соответствии с приложением 7, потребляемая ими мощность может определяться и добавляться к мощности двигателя (исходной и фактической), измеряемой во всем диапазоне частоты вращения двигателя ВСПЦ и испытательной частоты

вращения ВСУЦ. Если это значение превышает 3% максимальной мощности при испытательной частоте вращения, то это должно быть указано органу, предоставляющему официальное утверждение типа или проводящему сертификацию.

6.3.4 Определение мощности, потребляемой вспомогательным оборудованием

Мощность, потребляемую вспомогательным оборудованием/устройствами, нужно определять только в том случае, если

а) вспомогательное оборудование/устройства, требующиеся на основании приложения 7, не установлены на двигателе;

и/или

b) вспомогательное оборудование/устройства, не требующиеся в соответствии с приложением 7, установлены на двигателе.

Значения мощности вспомогательного оборудования и метод измерения/расчета, используемый для определения мощности вспомогательного оборудования, представляется изготовителем двигателя в контексте всех его рабочих характеристик в испытательных циклах и утверждается органом, предоставляющим официальное утверждение или проводящим сертификацию.

6.3.5 Цикл работы двигателя

Расчет работы в условиях исходного цикла и фактической работы за цикл (см. пункты 7.4.8 и 7.8.6) производится на основе мощности двигателя согласно пункту 6.3.1. В этом случае значения $P_{\rm a}$ и $P_{\rm b}$ в уравнении 4 равняются нулю, а P равняется $P_{\rm m}$.

Если вспомогательное оборудование/устройство установлены в соответствии с пунктом 6.3.2 и/или 6.3.3, то потребляемая ими мощность используется для корректировки каждого мгновенного значения $P_{\rm m,i}$ мощности в цикле следующим образом:

$$P_{i} = P_{m,i} - P_{a,i} + P_{b,i} \tag{4},$$

где:

 $P_{\rm m,i}$ — измеренная мощность двигателя в кВт,

- $P_{\rm a,i}$ мощность, потребленная вспомогательным оборудованием/устройствами, которые должны быть установлены, в кВт,
- $P_{\mathrm{b,i}}$ мощность, потребленная вспомогательным оборудованием/устройствами, которые должны быть демонтированы, в кВт.

6.4 Система впуска воздуха в двигатель

Должна использоваться система впуска воздуха в двигатель или система испытательной станции, обеспечивающая ограничение подачи воздуха в пределах \pm 300 Па от максимального значения, указанного изготовителем устройства очистки воздуха при номинальной частоте вращения и полной нагрузке. Соответствующий перепад статического давления должен измеряться в месте, указанном изготовителем.

6.5 Система выпуска двигателя

Должна использоваться система выпуска двигателя или система испытательной станции, обеспечивающая противодавление отработавших газов в пределах 80-100% от максимального значения, указанного изготовителем, при номинальной частоте вращения и полной нагрузке. Если максимальное ограничение составляет не более 5 кПа, то установочная точка должна составлять не менее 1,0 кПа от максимума. Система выпуска должна отвечать требованиям в отношении отбора проб отработавших газов, изложенным в пунктах 9.3.10 и 9.3.11.

6.6 Двигатель, оснащенный системой последующей обработки отработавших газов

Если двигатель оснащен системой последующей обработки отработавших газов, то выпускная труба должна иметь тот же диаметр, что и трубы, используемые в процессе эксплуатации, либо же, как указано изготовителем, диаметр, равный по меньшей мере четырем диаметрам трубы, направленной против потока отработавших газов и примыкающей к расширительному патрубку, содержащему устройство последующей обработки. Расстояние от

фланса выпускного коллектора или выхода из турбонагнетателя до системы последующей обработки отработавших газов должно быть таким же, как и в конструкции транспортного средства, либо в пределах расстояния, указанного в спецификациях изготовителя. Противодавление или ограничение выпуска должно соответствовать изложенным выше критериям и может регулироваться с помощью клапана. В случае устройств последующей обработки с изменяющимися ограничениями максимальное ограничение выпуска определяется при условии последующей обработки (уровень притирки/старения и регенерации/загрязнения), указанном изготовителем. Если максимальное ограничение не превышает 5 кПа, то установочная точка должна быть не менее 1,0 кПа от максимума. В ходе холостых испытаний и в процессе снятия данных для построения карты характеристик двигателя контейнер с устройством последующей обработки может быть демонтирован и заменен эквивалентным контейнером с неактивным носителем катализатора.

Выбросы, измеренные в ходе испытательного цикла, должны быть репрезентативными для выбросов, получаемых в условиях эксплуатации. Если двигатель оснащен системой последующей обработки отработавших газов, для которых требуется соответствующий реагент, то изготовитель указывает этот реагент, который используется в ходе всех испытаний.

Двигатели, оснащенные системами последующей обработки отработавших газов с непрерывной регенерацией, в специальной процедуре испытаний не нуждаются, однако процесс регенерации должен быть продемонстрирован в соответствии с пунктом 6.6.1.

В случае двигателей, оснащенных системами последующей обработки отработавших газов, которые подвергаются периодической регенерации, как указано в пункте 6.6.2, результаты замеров выбросов следует корректировать с учетом циклов регенерации. В этом случае средний уровень выбросов зависит от частоты циклов регенерации, который выражается в виде соответствующей доли испытательных циклов, в процессе которых происходит регенерация.

6.6.1 Непрерывная регенерация

В целях обеспечения повторяемости параметров выбросов замер выбросов производится на системе последующей обработки в стабилизированном состоянии. В ходе испытания ВСПЦ в условиях запуска двигателя в прогретом состоянии процесс регенерации должен происходить не менее одного раза и

изготовитель указывает нормальные условия, в которых происходит регенерация (количество сажи, температура, противодавление отработавших газов и т.д.).

Для подтверждения непрерывности процесса регенерации проводится не менее трех испытаний ВСПЦ в условиях запуска двигателя в прогретом состоянии. Для целей данного подтверждения двигатель разогревается в соответствии с пунктом 7.4.1, подвергается процедуре прогрева в соответствии с пунктом 7.6.3 и проводится первое испытание ВСПЦ в условиях запуска двигателя в прогретом состоянии. Последующие испытания в условиях запуска двигателя в прогретом состоянии проводятся после процедуры прогрева в соответствии с пунктом 7.6.3. В ходе этих испытаний регистрируются температура и давление отработавших газов (температура на входе и выходе системы последующей обработки, противодавление отработавших газов и т.д.).

Если в ходе испытаний обеспечиваются условия, указанные изготовителем, и расхождения между результатами трех (или более) испытаний ВСПЦ при запуске двигателя в прогретом состоянии составляют не более \pm 25% или 0.005~г/кВт·ч - в зависимости от того, какое из этих значений выше, - то система последующей обработки считается относящейся к типу непрерывной регенерации и применяются общие предписания, касающиеся испытания, которые указаны в пункте 7.6 (ВСПЦ) и пункте 7.7 (ВСУЦ).

Если система последующей обработки отработавших газов предусматривает использование режима безопасности, который переходит в режим периодической регенерации, то ее проверка проводится в соответствии с положениями пункта 6.6.2. В этом конкретном случае применимые значения выбросов могут быть превышены и взвешиванию не подлежат.

6.6.2 Периодическая регенерация

В случае последующей обработки отработавших газов с использованием процесса периодической регенерации замер выбросов производится в ходе не менее трех испытаний ВСПЦ в условиях запуска двигателя в прогретом состоянии (одного - в процессе регенерации и двух - вне этого процесса) на стабилизированной системе последующей обработки и полученные результаты подвергаются взвешиванию в соответствии с уравнением 5.

В ходе испытания ВСПЦ в условиях запуска двигателя в прогретом состоянии процесс регенерации должен происходить не менее одного раза. Двигатель может быть оборудован устройством, позволяющим блокировать или задействовать процесс регенерации, при условии, что эта операция не влияет на первоначальную регулировку двигателя.

Изготовитель указывает параметры в обычных условиях, в которых происходит процесс регенерации (количество сажи, температура, противодавление отработавших газов и т.д.) и его продолжительность. Изготовитель также сообщает о частотности регенерации, указывая число испытаний, в ходе которых происходит регенерация, в сравнении с числом испытаний, при которых регенерации не происходит. Точная процедура определения этой частотности должна основываться на данных об эксплуатируемых двигателях, а также на надлежащем техническом заключении и должна быть согласована с компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию.

Изготовитель предоставляет систему последующей обработки в снаряженном состоянии в целях обеспечения процесса регенерации в ходе испытания ВСПЦ. Для целей этого испытания двигатель разогревается в соответствии с пунктом 7.4.1, подвергается процедуре прогрева в соответствии с пунктом 7.6.3, и начинается проведение испытания ВСПЦ с запуском двигателя в прогретом состоянии. В процессе прогрева двигателя регенерация происходить не должна.

Средняя конкретная величина выбросов между этапами регенерации определяется путем расчета среднего арифметического результатов (г/кВт·ч) нескольких испытаний ВСПЦ на двигателе в условиях запуска в прогретом состоянии, проводимых через приблизительно одинаковые промежутки времени. Проводится по меньшей мере одно испытание ВСПЦ с запуском двигателя в прогретом состоянии как можно ближе к моменту испытания на регенерацию и одно испытание ВСПЦ с запуском двигателя в прогретом состоянии сразу же после испытания на регенерацию. В качестве альтернативы изготовитель может представить данные, подтверждающие, что величина выбросов между этапами регенерации остается постоянной (± 25% или 0,005 г/кВт·ч - в зависимости от того, какой из этих показателей выше). В этом случае можно использовать результаты замера выбросов, полученные в ходе только одного испытания в ВСПЦ с запуском двигателя в прогретом состоянии.

В ходе испытания на регенерацию регистрируются все данные, необходимые для обнаружения процесса регенерации (выбросы СО или NO_x, температура на выходе и входе системы последующей обработки, противодавление отработавших газов и т.д.).

Во время испытания на регенерацию применимые предельные значения выбросов могут быть превышены.

Данная процедура испытаний схематически показана на рис. 2.

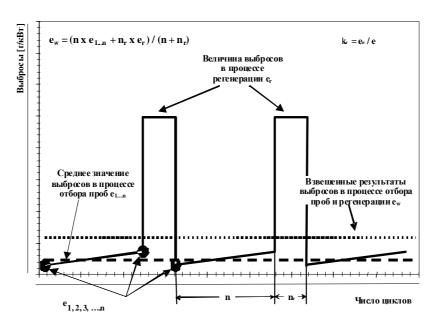


Рис. 2: Схема периодической регенерации

Выбросы в ходе испытания ВСПЦ в условиях запуска двигателя в прогретом состоянии взвешиваются следующим образом:

$$e_{w} = \frac{n \times e + n_{r} \times e_{r}}{n + n_{r}}$$
 (5),

где:

- n количество испытаний ВСПЦ в условиях запуска в прогретом состоянии без регенерации,
- ${\rm n_r}$ число испытаний ВСПЦ в условиях запуска в прогретом состоянии с регенерацией (минимум одно испытание),

e среднее значение удельных выбросов без регенерации в г/кBт \cdot ч,

 $e_{\rm r}$ среднее значение удельных выбросов с регенерацией в г/кВт·ч.

Для определения $\overline{e_{\rm r}}$ применяются следующие положения:

- а) Если для регенерации требуется более одного запуска двигателя в прогретом состоянии ВСПЦ, то проводятся последовательные полные испытания ВСПЦ с запуском двигателя в прогретом состоянии и продолжается непрерывное измерение выбросов без процедуры прогрева двигателя и без его отключения до завершения регенерации, причем рассчитываются средние результаты испытаний ВСПЦ с запуском в прогретом состоянии.
- b) Если полная регенерация происходит в ходе любого запуска в прогретом состоянии ВСПЦ, то испытания продолжаются в течение всего цикла.

По согласованию с органом, предоставляющим официальное утверждение типа или проводящим сертификацию, могут применяться мультипликативный с) или аддитивный d) регенерационный корректировочный коэффициент на основе признанных технических правил.

с) Мультипликативные корректировочные коэффициенты рассчитываются следующим образом:

$$k_{\rm r,u} = \frac{e_{\rm w}}{e} \text{ (BBepx)} \tag{6}$$

$$k_{\rm r,d} = \frac{e_{\rm w}}{e_{\rm r}}$$
 (вниз) (ба)

d) Аддитивные корректировочные коэффициенты рассчитываются следующим образом:

$$k_{\text{r.u}} = e_{\text{w}} - e \text{ (BBepx)} \tag{7}$$

$$k_{\rm r,d} = e_{\rm W} - e_{\rm r}$$
 (вниз) (8)

Со ссылкой на расчеты удельных выбросов, упомянутые в пункте 8.6.3, регенеративные корректировочные коэффициенты применяются следующим образом:

- е) в случае испытания без регенерации коэффициент $k_{r,u}$ умножается на значение удельных выбросов e в уравнениях 69, 70а или 70b либо прибавляется к этому значению,
- f) в случае испытания с регенерацией коэффициент $k_{\rm r,d}$ умножается на значение удельных выбросов в уравнениях 69, 70а или 70b либо вычитается из этого значения.

По просьбе изготовителя регенерационные корректировочные коэффициенты

- g) могут распространяться на другие двигатели того же семейства;
- h) могут распространяться на другие семейства двигателей, использующих ту же систему последующей обработки, при условии предварительного одобрения этого решения компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию, на основании технических данных, подлежащих представлению изготовителем и подтверждающих, что выбросы являются аналогичными.

6.7 Система охлаждения

Необходимо использовать систему охлаждения, объем которой достаточен для поддержания нормальной рабочей температуры двигателя, предписанной изготовителем.

6.8 Смазочное масло

Смазочное масло должно указываться изготовителем и должно быть репрезентативным по отношению к смазочному маслу, имеющемуся в системе сбыта; технические требования к смазочному маслу, используемому для испытания, регистрируются и представляются вместе с результатами испытания.

6.9 Технические требования к эталонному топливу

Использование одного унифицированного эталонного топлива всегда считалось идеальным условием для обеспечения воспроизводимости результатов предписанного правилами испытания на выбросы, и Договаривающимся сторонам настоятельно рекомендуется использовать такое топливо при проведении испытаний на соответствие установленным требованиям. Однако до введения в настоящие гтп предписаний в отношении эффективности (т.е. предельных величин) Договаривающимся сторонам Соглашения 1998 года разрешается применять собственное эталонное топливо в рамках их национального законодательства, с тем чтобы учитывать ситуацию на рынке топлива, предназначенного для эксплуатируемых транспортных средств.

В ходе испытаний рекомендуется использовать надлежащие виды эталонного дизельного топлива Европейского союза, Соединенных Штатов Америки и Японии, перечисленные в приложении 2. Поскольку характеристики топлива влияют на уровень выбросов выхлопных газов из двигателя, характеристики используемого в ходе испытания топлива определяются, регистрируются и объявляются вместе с результатами испытаний.

Температура топлива должна соответствовать рекомендациям изготовителя.

6.10 Выбросы картерных газов

Не должно происходить выброса картерных газов непосредственно в окружающую среду во всех случаях, за исключением двигателей, оснащенных системами турбонаддува, нагнетательными насосами, компрессорами или нагнетателями для всасывания воздуха, которые могут выбрасывать картерные газы в окружающую среду, если объем этих выбросов прибавляется к объему выбросов отработавших газов (как физически, так и математически) в ходе всех испытаний на выбросы. Изготовители, пользующиеся этим исключением, должны устанавливать двигатели таким образом, чтобы все выбросы картерных газов могли направляться в систему пробоотборников выбросов.

Для целей настоящего пункта выбросы картерных газов, направляемые в выпускную трубу, примыкающую к верхней части устройства последующей обработки отработавших газов в процессе всей процедуры, не считаются выбрасываемыми непосредственно в окружающую среду.

Система направления картерных газов в выхлопную систему для измерения выбросов должна отвечать следующим требованиям:

- а) материалы, используемые для изготовления трубопроводов, должны иметь гладкое покрытие, должны быть электропроводящим и не должны вступать в реакцию с выбросами картерных газов. Длина патрубков должна быть минимальной:
- b) число изгибов в патрубках, используемых в лаборатории для сбора картерных газов, должно быть минимальным, и если без изгиба обойтись нельзя, то его радиус должен быть максимальным;
- с) патрубки, используемые в лаборатории для сбора выхлопа картерных газов, должны подогреваться, должны быть тонкостенными или должны быть изолированы, а также должны соответствовать указаниям изготовителя транспортного средства в отношении обратного давления в картере;
- d) патрубки, используемые для сбора выхлопа картерного газа, должны быть подсоединены к устройству улавливания первичного выхлопа газов перед любой системой последующей обработки, перед любым устройством, создающим встречное давление, и на достаточном расстоянии после любых пробоотборников для обеспечения его полного смешивания с выхлопом из двигателя до отбора проб. Патрубок, через который проходит выхлоп картерного газа, должен достигать свободного потока выхлопа во избежание воздействия пограничного слоя и для стимулирования смешивания газов. Отверстие патрубка, через который проходит выхлоп картерного газа, может быть ориентировано в любом направлении по отношению к потоку первичного выхлопа.

7. ПРОЦЕДУРЫ ИСПЫТАНИЙ

7.1 Принципы измерения выбросов

Для измерения удельных выбросов двигатель должен функционировать в циклах испытаний, определенных в пунктах 7.2.1 и 7.2.2. Для измерения удельных выбросов требуется определить массу компонентов выхлопа и соответствующую работу двигателя за цикл. Эти компоненты определяются при помощи методов отбора проб, описанных в пунктах 7.1.1 и 7.1.2.

7.1.1 Непрерывный отбор проб

При непрерывном отборе проб концентрация компонентов измеряется непрерывно на основе первичного или разбавленного выхлопа. Эта концентрация умножается на показатель постоянного расхода (первичного или разбавленного) выхлопа в месте отбора проб выбросов для определения расхода массы данного компонента. Выбросы компонента непрерывно учитываются в ходе всего испытательного цикла. Полученная сумма представляет собой общую массу выделяемого компонента.

7.1.2 Отбор проб из партии

При отборе проб из партии производится непрерывный отбор проб из первичного или разбавленного выхлопа, которые сохраняются для последующего измерения. Пробы должны отбираться пропорционально расходу первичного или разбавленного выхлопа. Примерами метода отбора проб из партии служит сбор разбавленных газообразных компонентов в мешок и сбор твердых частиц (ТЧ) на фильтре. Концентрации отобранных из партии проб умножаются на общий показатель массы выхлопа или массы расхода (в первичном или разбавленном состоянии), из которой они вычитались в ходе цикла испытания. Полученный результат представляет собой общую массу или массу расхода выбрасываемого компонента. Для расчета концентрации ТЧ масса ТЧ, отложенных на фильтре, из пропорционально взятого выхлопа делится на количество отфильтрованного выхлопа.

7.1.3 Процедуры измерения

В настоящих гтп предусмотрены две процедуры измерения, которые являются эквивалентными с функциональной точки зрения. Обе процедуры могут использоваться для проведения испытательных циклов как ВСПЦ, так и ВСУЦ:

- а) отбор проб газообразных компонентов производится в потоке первичных отработавших газов, а выбросы твердых частиц определяются с использованием системы частичного разбавления потока;
- b) газообразные компоненты и твердые частицы определяются с использованием системы полного разбавления потока (системы CVS).

Допускается любая комбинация указанных двух принципов (например, измерение газообразных компонентов в первичном потоке твердых частиц в условиях полного разбавления).

7.2 Циклы испытаний

7.2.1 Цикл испытаний в переходных режимах (ВСПЦ)

Цикл испытаний в переходных режимах (ВСПЦ) охарактеризован в приложении 1 в виде указанной в разбивке по секундам последовательности приведенных значений частоты вращения и крутящего момента. В целях проведения испытаний на двигателе в испытательном боксе приведенные значения преобразуются в реальные значения для данного двигателя, подвергаемого испытанию, на основе картографического отображения характеристик двигателя. Преобразование представляется собой замену приведенных значений на реальные, а развернутый таким образом цикл испытаний — исходный цикл двигателя, подлежащего испытанию. Цикл проводится в испытательном боксе на основе указанных исходных значений частоты вращения и крутящего момента с регистрацией фактических значений частоты вращения, крутящего момента и мощности. В целях подтверждения правильности результатов испытания после его завершения производится регрессивный анализ исходных и фактических значений частоты вращения, крутящего момента и мощности.

Для расчета удельных выбросов при торможении фактическая работа за цикл рассчитывается путем интегрирования фактической мощности двигателя в течение всего цикла. Для признания достоверности цикла фактическая работа за цикл должна быть в пределах предписанных значений работы, соответствующей исходному циклу.

В случае газообразных загрязнителей может применяться непрерывный отбор проб (первичного или разбавленного газа в выхлопе) либо отбор проб из партии (разбавленный газ в выхлопе). Проба твердых частиц разбавляется кондиционированным разбавителем (таким, как окружающий воздух) и собирается на одном подходящем фильтре. Цикл ВСПЦ схематически показан на рис. 3.

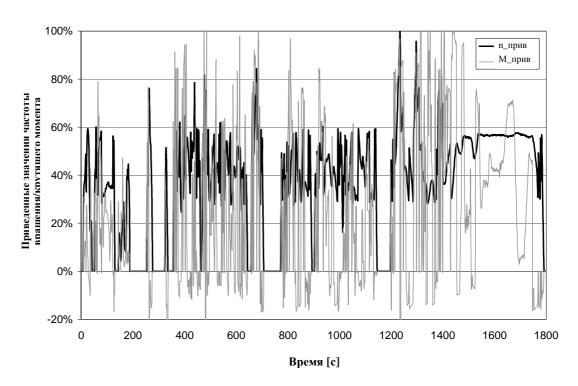


Рис.3: Испытательный цикл ВСПЦ

7.2.2 Ступенчатый цикл испытаний в установившихся режимах (ВСУЦ)

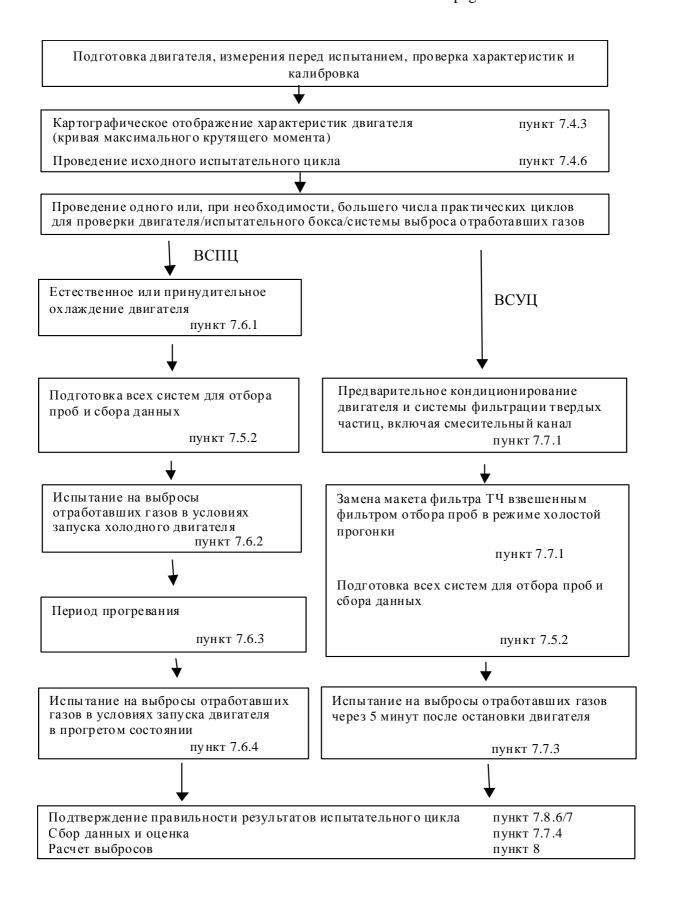
Ступенчатый цикл испытаний в установившихся режимах (ВСУЦ) состоит из ряда режимов с приведенными значениями частоты вращения и нагрузки, которые преобразуются в исходные значения для данного двигателя в рамках испытания на основе карты мощности двигателя. Двигатель работает предписанное время в каждом режиме, причем частота вращения двигателя и нагрузка изменяется линейно в течение 20 ± 1 секунд. В целях подтверждения правильности результатов испытания после его завершения проводится регрессионный анализ исходных и фактических значений частоты вращения, крутящего момента и мощности.

Определяется концентрация каждого газообразного загрязнителя, интенсивность потока выхлопа и выходная мощность по всему циклу испытания. Газообразные загрязнители могут регистрироваться непрерывно или отбираться в мешок для отбора проб. Проба твердых частиц разбавляется кондиционированным разбавителем (таким, как окружающий воздух). В течение всей процедуры испытания отбирается одна проба, которая собирается на одном подходящем фильтре.

Для расчета удельных выбросов при торможении фактическая работа за цикл рассчитывается путем интегрирования фактической мощности двигателя в течение всего пикла.

Цикл ВСУЦ показан в таблице 1. За исключением режима 1 начало реализации каждого режима определяется в качестве начала перехода от предыдущего режима.

	Приведенная	Приведенный	Продолжительность
Режим	частота вращения	крутящий момент	режима (с) включая
	(%)	(%)	20 с перехода
1	0	0	210
2	55	100	50
3	55	25	250
4	55	70	75
5	35	100	50
6	25	25	200
7	45	70	75
8	45	25	150
9	55	50	125
10	75	100	50
11	35	50	200
12	35	25	250
13	0	0	210
Итого			1 895


Таблица 1. Испытательный цикл ВСУЦ

7.3 Общая последовательность испытания

На приведенной ниже диаграмме изложены общие указания, которых необходимо придерживаться в ходе испытания. Детальное описание каждого этапа приводится в соответствующих пунктах. В случае необходимости допускаются некоторые отклонения от этих указаний, однако конкретные требования, изложенные в соответствующих пунктах, являются обязательными.

Для ВСПЦ процедура испытания включает запуск холодного двигателя, а затем период либо естественного, либо принудительного охлаждения двигателя, периода выдерживания при повышенной температуре и испытание в условиях запуска в прогретом состоянии. Выбор в отношении процедуры выдерживания при повышенной температуре и коэффициента взвешивания в период между испытаниями в условиях запуска в холодном и разогретом состоянии делают Договаривающиеся стороны.

Для ВСУЦ процедура испытания включает запуск прогретого двигателя с последующим предварительным кондиционированием в режиме 9 ВСУЦ.

7.4 Картографическое отображение характеристик двигателя и исходный цикл

До процедуры построения карты характеристик двигателя в соответствии с общей последовательностью испытания, указанной в пункте 7.3, на этапе до испытания производятся замеры на двигателе, проверки характеристик двигателя и калибровки систем.

В качестве основы для реализации исходных циклов ВСПЦ и ВСУЦ производится картографирование характеристик двигателя при функционировании в условиях полной нагрузки для построения кривых зависимости частоты вращения от максимального крутящего момента и частоты вращения от максимальной мощности. Карта характеристик используется для получения реальной частоты вращения двигателя (пункт 7.4.6) и крутящего момента двигателя (пункт 7.4.6).

7.4.1 Прогрев двигателя

Двигатель прогревается в режиме 75-100% от его максимальной мощности в соответствии с рекомендациями изготовителя и признанной технической практикой. В конце периода прогрева он должен функционировать таким образом, чтобы температуры охлаждающей жидкости и смазочного масла находились в пределах $\pm 2\%$ от средних значений в течение не менее двух минут либо до того момента, когда термостат двигателя отрегулирует температуру двигателя.

7.4.2 Определение диапазона частот вращения для построения карты характеристик

Минимальная и минимальная частоты вращения для построения карты определяются следующим образом:

Минимальная частота вращения для построения карты

частота вращения холостого хода;

Максимальная частота вращения для построения карты

 n_{hi} х 1,02, или частота вращения, при которой значение крутящего момента и полной нагрузки падает до нуля, в зависимости от того, какое из этих значений меньше.

7.4.3 Построение карты мощности двигателя

После стабилизации двигателя в соответствии с пунктом 7.4.1 строится карта его характеристик с соблюдением следующей процедуры:

- а) с двигателя снимают нагрузку и обеспечивают его работу на холостом ходу;
- b) двигатель работает с учетом максимального запроса оператора при минимальной частоте вращения для построения карты;
- с) частота вращения двигателя увеличивается со средней интенсивностью 8 ± 1 мин $^{-1}$ /с в диапазоне от минимальной до максимальной отображаемой на карте частоты вращения либо с постоянной интенсивностью, с тем чтобы от минимальной до максимальной частоты вращения, отображенной на карте, потребовалось от 4 до 6 мин. Точки карты, соответствующие конкретным сочетаниям частоты вращения двигателя и крутящего момента, регистрируются с частотой измерений не менее одной точки в секунду.

При выборе варианта b) в пункте 7.4.7 для определения отрицательных исходных значений крутящего момента картографическая кривая может быть непосредственно продолжена (с учетом минимального запроса оператора) от максимальной до минимальной частоты вращения, отображенной на карте.

7.4.4 Альтернативное построение карты

Если изготовитель считает, что вышеописанная методика построения карты ненадежна или не является репрезентативной для любого данного двигателя, то могут использоваться альтернативные методы построения карты. Эти альтернативные методы должны отвечать цели конкретных процедур картографического отображения, состоящей в определении максимального развиваемого двигателем крутящего момента при всех частотах вращения в ходе испытательных циклов. Отклонения от методов картографирования, указанных в настоящем пункте, продиктованные соображениями надежности или репрезентативности, вместе с обоснованием их применения подлежат одобрению компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию. Однако в случае двигателей с регулятором или тубронаддувом снижение частоты вращения двигателя для построения кривой крутящего момента ни в коем случае не допускается.

7.4.5 Повторные испытания

В построении карты характеристик двигателя перед каждым испытательным циклом нет необходимости. Повторное картографирование перед испытательным циклом проводится в том случае, если:

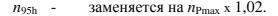
- а) согласно надлежащему техническому заключению с момента снятия последней карты прошло слишком много времени; или
- b) двигатель был подвергнут физическим изменениям либо повторным калибровкам, которые потенциально могли отразиться на его характеристиках.

7.4.6 Получение реальной частоты вращения двигателя

Для реализации исходных циклов приведенные частоты вращения, предусмотренные в приложении 1 (ВСПЦ) и в таблице 1 (ВСУЦ), преобразуются в реальные с помощью следующего уравнения:

$$n_{\text{ref}} = n_{\text{norm}} \times (0.45 \times n_{\text{lo}} + 0.45 \times n_{\text{pref}} + 0.1 \times n_{\text{hi}} - n_{\text{idle}}) \times 2.0327 + n_{\text{idle}}$$
 (9)

Для определения n_{pref} рассчитывается интеграл максимального крутящего момента от n_{idle} до $n_{95\text{h}}$ на основе картографического изображения характеристик двигателя в соответствии с пунктом 7.4.3.


Частоты вращения двигателя на рисунках 4 и 5 определяются следующим образом:

- $n_{\rm lo}$ наименьшая частота вращения, при которой мощность составляет 55% от максимальной мощности;
- n_{pref} частота вращения двигателя, при которой интеграл максимального крутящего момента, отображенного на карте, составляет 51% от полного интеграла в пределах от n_{idle} до $n_{95\text{h}}$;
- $n_{\rm hi}$ наибольшая частота вращения, при которой мощность составляет 70% от максимальной мощности;

- n_{idle} частота вращения холостого хода;
- $n_{95\text{h}}$ наибольшая частота вращения, при которой мощность составляет 95% от максимальной мощности.

В случае двигателей (главным образом с принудительным зажиганием) с кривой, указывающей на резкое снижение характеристик регулятора (когда при отключении подачи топлива двигатель не в состоянии функционировать в режиме до $n_{\rm hi}$ или $n_{\rm 95h}$), применяются следующие положения:

 $n_{\rm hi}$ - в уравнении 9 заменяется на $n_{\rm Pmax}$ х 1,02;

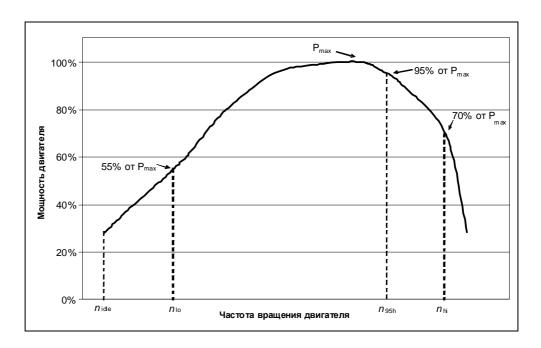
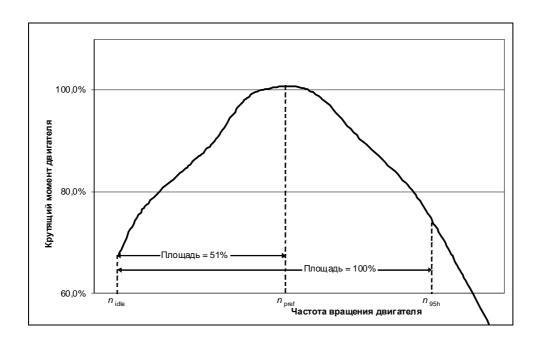



Рис. 4: Определение частот вращения для целей испытаний

<u>Рис. 5</u>: Определение n_{pref}

7.4.7 Получение реального крутящего момента двигателя

Приведенный крутящий момент, значения которого указаны в программе задания режима работы двигателя на динамометре, охарактеризованной в приложении 1 (ВСПЦ) и в таблице 1 (ВСУЦ), определяется по максимальному крутящему моменту при соответствующей частоте вращения. Для реализации исходных циклов значения приведенного крутящего момента по каждому индивидуальному исходному показателю вращения, как это указано в пункте 7.4.6, преобразуются в реальные значения с использованием кривой характеристик, построенной в соответствии с пунктом 7.4.3, следующим образом:

$$M_{\text{ref,i}} = \frac{M_{\text{norm,i}}}{100} \times M_{\text{max},i} + M_{\text{a,i}} - M_{\text{b,i}}$$
 (10),

где:

 $M_{\rm norm,i}$ - приведенный крутящий момент в %;

 $M_{
m max,i}$ - максимальный крутящий момент на кривой характеристик в ${
m H.m.}$:

- $M_{\rm a,i}$ крутящий момент, приходящийся на вспомогательное оборудование/устройства, которые надлежит установить, в H.м;
- $M_{\rm b,i}$ крутящий момент, приходящийся на вспомогательное оборудование/устройства, которые надлежит демонтировать, в Н.м.

Если вспомогательное оборудование/ устройства установлены в соответствии с пунктом 6.3.1 и приложением 7, то M_a и M_b равняются нулю.

Для целей реализации исходного цикла отрицательные значения крутящего момента в точках, где происходит прокрутка двигателя ("m" в приложении 1), представляют собой исходные значения, определяемые в соответствии с одним из следующих методов:

- а) отрицательное 40-процентное значение положительного крутящего момента в точке, соответствующей данной частоте вращения;
- b) картографическое отражение отрицательных значений крутящего момента, требующихся для перевода двигателя из максимального в минимальный режим вращения, отраженный на карте;
- с) определение отрицательного значения крутящего момента, необходимого для перевода двигателя в режим холостого хода и $n_{\rm hi}$, а также линейная интерполяция между этими двумя точками.

7.4.8 Расчет работы в условиях исходного цикла

Работа в условиях исходного цикла определяется на протяжении всего цикла испытаний посредством синхронного расчета мгновенных значений мощности двигателя, полученных в исходном режиме вращения и при исходном крутящем моменте, как это указано в пунктах 7.4.6 и 7.4.7. Мгновенные значения мощности двигателя интегрируются в ходе всего цикла испытаний для расчета работы в условиях исходного цикла W_{ref} (кВт·ч). Если вспомогательное оборудование не установлено в соответствии с пунктом 6.3.1, то мгновенные значения мощности корректируются с использованием уравнения (4), содержащегося в пункте 6.3.5.

Такая же методология должна использоваться для получения интегральных значений как исходной, так и фактической мощности двигателя. Если необходимо определить значения параметров между смежными исходными или смежными измеренными величинами, то используется метод линейной интерполяции. При интегрировании фактической работы за цикл любые отрицательные значения крутящего момента приравниваются к нулю и учитываются. Если интегрирование производится с частой менее 5 Гц и если в течение данного отрезка времени значение крутящего момента изменяется с положительного на отрицательное или с отрицательного на положительное, то отрицательная часть при вычислениях приравнивается к нулю. Положительная часть учитывается в интегрированном значении.

7.5 Процедуры, предшествующие испытаниям

7.5.1 Установка измерительного оборудования

Приборы и пробоотборники устанавливаются в соответствии с предъявляемыми требованиями. В случае использования системы полного разбавления потока к ней подсоединяется выпускная труба.

7.5.2 Подготовка измерительного оборудования к отбору проб

Перед началом отбора проб выбросов предпринимаются следующие шаги:

- а) в пределах 8 часов до отбора проб выбросов в соответствии с пунктом 9.3.4 проводится проверка на герметизацию;
- b) при отборе проб из партии подсоединяются чистые приспособления для хранения выбросов, например пустые мешки для газа;
- с) все измерительные приборы должны быть приведены в действие в соответствии с инструкциями изготовителя и с надлежащим техническим заключением;
- d) должны быть приведены в действие системы разбавления, насосы, охлаждающие вентиляторы, а также система сбора данных;
- е) если это необходимо, то расход проб регулируется с учетом требующихся уровней при помощи обходного контура;

- f) должно быть произведено предварительное нагревание или предварительное охлаждение теплообменников в пределах диапазона их рабочих температур для проведения испытания;
- g) допускается стабилизация таких нагреваемых или охлаждаемых компонентов, как пробоотборные магистрали, фильтры, охладители и насосы, в пределах их рабочих температур;
- h) поток из системы разбавления выхлопа должен поступать по меньшей мере за 10 минут до начала цикла испытаний;
- i) перед началом любого отрезка времени между испытаниями все устройства электронного интегрирования должны устанавливаться на нулевое значение или перезагружаться по нулевому значению.

7.5.3 Проверка газоанализаторов

Должны отбираться диапазоны функционирования газоанализаторов. Допускается использование анализаторов выбросов с автоматическим или ручным переключением диапазона. В ходе цикла испытаний диапазон анализаторов выбросов не должен изменяться. В то же время в ходе цикла испытаний не должны изменяться и характеристики аналогового эксплуатационного усилителя (аналоговых эксплуатационных усилителей) анализатора.

Для всех анализаторов определяется чувствительность к нулю и чувствительность к калибровке с использованием газов, соответствующих международным стандартам и удовлетворяющих предписаниям пункта 9.3.3. Анализаторы FID должны быть эталонированы на основе углерода 1 (С1).

7.5.4 Подготовка фильтра для отбора проб твердых частиц

Не менее чем за час до начала испытания каждый фильтр помещается в чашку Петри, которая предохраняется от попадания пыли и дает возможность проветривания, и устанавливается в целях стабилизации в камеру для взвешивания. По окончании периода стабилизации каждый фильтр взвешивается и регистрируется масса сухого фильтра. Затем фильтр хранится в закрытой чашке Петри или запечатанном фильтродержателе до того момента, пока он не понадобится для испытания. Этот фильтр следует использовать в течение восьми часов после его извлечения из камеры для взвешивания.

7.5.5 Регулировка системы разбавления

Суммарный расход выхлопа газов, проходящих через систему полного разбавления потока, или расход разбавленного выхлопа газов, проходящих через систему частичного разбавления потока, должен быть отрегулирован таким образом, чтобы исключить возможность конденсации воды в системе и обеспечить температуру на поверхности фильтра в пределах 315 К (42° C) – 325 К (52° C).

7.5.6 Пуск системы отбора проб твердых частиц

Система отбор проб твердых частиц приводится в действие и работает по обходной схеме.

Фоновый уровень твердых частиц в разбавителе может определяться путем отбора проб разбавителя на входе отработавших газов в смесительный канал. Этот замер можно произвести до или после испытания. Если замеры произведены в начале и в конце цикла, то полученные значения можно усреднить. Если для измерения фоновой концентрации используется иная система отбора проб, то измерения производятся по ходу испытания.

7.6 Реализация цикла ВСПЦ

7.6.1 Охлаждение двигателя

Может применяться естественный или принудительный способ охлаждения. В случае принудительного охлаждения для регулировки систем обдува двигателя охлаждающим воздухом, подачи охлажденного масла в систему смазки двигателя, отбора тепла и охлаждающей субстанции, циркулирующей в системе охлаждения двигателя, и отбора тепла от системы последующей обработки отработавших газов следует руководствоваться надлежащим техническим заключением. В случае принудительного охлаждения системы последующей обработки охлаждающий воздух направляется в систему последующей обработки только после того, как она остыла до температуры ниже ее каталитической активации. Никакая процедура охлаждения, приводящая к нерепрезентативным выбросам, не допускается.

7.6.2 Испытание в условиях запуска холодного двигателя

Испытание в условиях запуска холодного двигателя начинается при температуре смазочного масла и охлаждающей жидкости двигателя и систем

последующей обработки в пределах 293–303 К (20–30° С). Запуск двигателя производится одним из следующих методов:

- а) двигатель запускается, как это рекомендовано в руководстве по эксплуатации, с использованием серийного стартера и должным образом заряженной аккумуляторной батареи или соответствующего источника электроэнергии; или
- b) двигатель запускается с использованием динамометра. Прокрутка двигателя осуществляется с частотой вращения ± 25% от характерной частоты проворачивания коленчатого вала в условиях эксплуатации. Проворачивание прекращается в течение 1 секунды после того, как двигатель был запущен. Если после 15-секундного проворачивания коленчатого вала двигатель не заводится, то проворачивание прекращается и выясняются причины неспособности запустить двигатель, если только в руководстве по эксплуатации или в руководстве по обслуживанию и ремонту не указывается, что более длительное проворачивание коленчатого вала соответствует норме.

7.6.3 Период прогревания

Сразу же после завершения испытания в условиях запуска в холодном состоянии двигатель подготавливается к испытанию на запуск в разогретом состоянии при помощи одного из следующих методов:

- а) прогревание в течение 5 ± 1 минуты;
- b) прогревание в течение 20 ± 1 минуты.

Соответствующий вариант выбирается Договаривающимися Сторонами.

7.6.4 Испытание в условиях запуска двигателя в разогретом состоянии

Двигатель запускается в конце периода прогревания, указанного в пункте 7.6.3, с использованием методов запуска, указанных в пункте 7.6.2.

7.6.5 Последовательность проведения испытания

Последовательность проведения испытания в условиях запуска как в холодном, так и прогретом состоянии начинается с запуска двигателя. После запуска

двигателя инициируется контроль за циклом таким образом, чтобы характер функционирования двигателя соответствовал первой установочной точке шикла.

ВСПЦ реализуется в соответствии с исходным циклом, описанным в пункте 7.4. Частота выдачи команд на установку частоты вращения и крутящего момента двигателя составляет не менее 5 Гц (рекомендуется 10 Гц). Установочные точки рассчитываются методом линейной интерполяции по установочным точкам исходного цикла с шагом 1 Гц. Значения реальной частоты вращения и реального крутящего момента двигателя регистрируется не реже одного раза в секунду на протяжении испытательного цикла (1 Гц), а поступающие сигналы могут пропускаться через электронный фильтр.

7.6.6 Сбор данных, имеющих отношение к выбросам

В начале последовательности проведения испытаний приводится в действие измерительное оборудование в условиях синхронного начала следующих операций:

- а) отбора проб или анализа разбавляющего воздуха, если используется система полного разбавления потока;
- b) отбора проб или анализа первичных либо разбавленных отработавших газов в зависимости от используемого метода;
- с) измерения количества разбавленных отработавших газов и задаваемых значений температуры и давления;
- d) регистрации расхода отработавших газов по массе, если используется метод анализа первичных отработавших газов;
- е) регистрации данных обратной связи о частоте вращения и крутящем моменте, снимаемых с динамометра.

Если используется метод замера первичных отработавших газов, то измерение концентрации выбросов ((NM)HC, CO и NO_x) и массового расхода отработавших газов производится непрерывно и полученные результаты регистрируются компьютером через интервалы не менее $2 \, \Gamma$ ц. Все остальные данные могут регистрироваться с частотой отбора проб, составляющей не

менее 1 Гц. В случае аналоговых анализаторов показания регистрируются и в процессе оценки калибровочные данные можно применять в режиме "онлайн" или "офлайн".

Если используется система полного разбавления потока, то замер НС и NO_х производится непрерывно в смесительном канале с частотой не менее 2 Гц. Средние значения концентраций определяются путем интегрирования сигналов анализатора на протяжении испытательного цикла. Время задержки срабатывания системы не должно превышать 20 секунд и при необходимости должно быть согласовано с колебаниями потока CVS и отклонениями времени отбора проб/циклов испытания. Концентрации CO, CO₂ и NMHC могут определяться интегрированием непрерывных сигналов измерения или методом анализа концентраций этих веществ, накопившихся в мешке для отбора проб в течение цикла. Концентрации газообразных загрязнителей в разбавителе должны определяться до того момента, когда выбросы поступают в смесительный канал, посредством интегрирования или накопления в мешке. Все другие параметры, подлежащие измерению, регистрируются не реже одного раза в секунду (1 Гц).

7.6.7 Отбор проб твердых частиц

В начале последовательности испытания система отбора проб твердых частиц переключается с обходной схемы на режим накопления твердых частиц.

Если используется система частичного разбавления потока, то насос(ы) пробоотборника должен (должны) быть отрегулирован(ы) таким образом, чтобы расход потока, проходящего через пробоотборник твердых частиц или передаточную трубу, оставался пропорциональным расходу отработавших газов по массе, как это определено в соответствии с пунктом 9.4.6.1.

Если используется система полного разбавления потока, то насос(ы) пробоотборника должен (должны) быть отрегулирован(ы) таким образом, чтобы расход потока, проходящего через пробоотборник твердых частиц или передаточную трубу, поддерживался в пределах \pm 2,5% от установленного расхода. При наличии компенсации потока (т.е. пропорциональном управлении потоком проб) необходимо продемонстрировать, что отношение потока, идущего по основному каналу, к потоку проб твердых частиц отклоняется не более чем на \pm 2,5% от установленной величины (за исключением первых 10 секунд процесса отбора проб). Регистрируются

средние значения температуры и давления на входе потока в газовый счетчик (газовые счетчики) или измерительную аппаратуру. Если из-за интенсивных отложений частиц на фильтре поддерживать заданный расход на всем протяжении цикла в пределах $\pm 2,5\%$ невозможно, то результаты испытания признаются недействительными. В таком случае испытание повторяется с использованием более низкого значения расхода.

7.6.8 Остановка двигателя и неполадки в работе оборудования

Если в какой-либо момент в ходе испытания в условиях холодного запуска двигатель глохнет, то испытание признается недействительным. В этом случае двигатель подвергается предварительному кондиционированию и снова запускается в соответствии с требованиями пункта 7.6.2, а испытание повторяется.

Если в какой-либо момент в ходе испытания в условиях запуска в прогретом состоянии двигатель глохнет, то испытание в условиях запуска в прогретом состоянии признается недействительным. Двигатель прогревается в соответствии с предписаниями пункта 7.6.3, и испытание двигателя в условиях запуска в прогретом состоянии повторяется. В этом случае повторное испытание в условиях запуска холодного двигателя можно не проводить.

Если в ходе реализации цикла испытания возникают неполадки в работе какого-либо требуемого испытательного оборудования, то испытание признается недействительным и проводится повторное испытание в соответствии с вышеизложенными положениями.

7.7 Реализация цикла ВСПЦ

7.7.1 Предварительное кондиционирование системы разбавления и двигателя

Система разбавления и двигатель запускаются и прогреваются в соответствии с пунктом 7.4.1. После прогревания двигатель и система отбора проб подвергаются предварительному кондиционированию путем перевода двигателя в режим 9 (см. пункт 7.2.2, таблица 1) минимум на 10 минут с одновременным функционированием системы разбавления. Может быть произведен условный отбор проб выбросов твердых частиц. Стабилизировать или взвешивать эти фильтры для отбора проб не нужно, их можно отбраковать. Расход устанавливается приблизительно в соответствии с расходом, выбранным для проведения испытания. После предварительного кондиционирования двигатель может быть отключен.

7.7.2 Запуск двигателя

Через 5 ± 1 минут после завершения периода предварительного кондиционирования в режиме 9, как это указано в пункте 7.7.1, двигатель запускается в соответствии с рекомендациями изготовителя относительно порядка запуска, содержащимися в руководстве по эксплуатации, с использованием либо серийного стартера, либо динамометра в соответствии с пунктом 7.6.2.

7.7.3 Последовательность проведения испытания

Испытание начинается после запуска двигателя и в течение одной минуты после выявления того, что он функционирует в соответствии с первым режимом цикла (холостой ход).

ВСПЦ реализуется в соответствии с порядком использования режимов испытания, указанных в таблице 1, содержащейся в пункте 7.2.2.

7.7.4 Сбор данных, касающихся выбросов

В начале последовательности проведения испытаний приводится в действие измерительное оборудование в условиях синхронного начала следующих операций:

- а) отбора проб или анализа разбавляющего воздуха, если используется система полного разбавления потока;
- b) отбора проб или анализа первичных либо разбавленных отработавших газов в зависимости от используемого метода;
- с) измерения количества разбавленных отработавших газов и задаваемых значений температуры и давления;
- d) регистрации расхода отработавших газов по массе, если используется метод анализа первичных отработавших газов;
- е) регистрации данных обратной связи о частоте вращения и крутящем моменте, снимаемых с динамометра.

Если используется метод замера первичных отработавших газов, то измерение концентрации выбросов ((NM)HC, CO и NO_x) и массового расхода отработавших газов производится непрерывно и полученные результаты регистрируются компьютером через интервалы не менее $2\ \Gamma$ ц. Все остальные данные могут регистрироваться с частотой отбора проб, составляющей не менее $1\ \Gamma$ ц. В случае аналоговых анализаторов показания регистрируются, и в процессе оценки калибровочные данные можно применять в режиме "онлайн" или "офлайн".

Если используется система полного разбавления потока, то замер НС и NO_х производится непрерывно в смесительном канале с частотой не менее 2 Гц. Среднее значение концентраций определяется путем интегрирования сигналов анализатора на протяжении испытательного цикла. Время задержки срабатывания системы не должно превышать 20 секунд и при необходимости должно быть согласовано с колебаниями потоков CVS и отклонениями времени отбора проб/циклов испытания. Концентрации CO, CO₂ и NMHC могут определяться интегрированием непрерывных сигналов измерения или методом анализа концентраций этих веществ, накопившихся в мешке для отбора проб в течение цикла. Концентрации газообразных загрязнителей в разбавителе определяются до того момента, когда выхлоп поступает в смесительный канал, интегрированием или накоплением в мешке. Все другие параметры, подлежащие измерению, регистрируются не реже одного раза в секунду (1 Гц).

7.7.5 Отбор проб твердых частиц

В начале последовательности испытаний система отбора проб твердых частиц переключается с обходной схемы на режим сбора твердых частиц. Если используется система частичного разбавления потока, то насос(ы) пробоотборника должен (должны) быть отрегулирован(ы) таким образом, чтобы расход потока, проходящего через пробоотборник твердых частиц или передаточную трубу, оставался пропорциональным расходу отработавших газов по массе, как это определено в соответствии с пунктом 9.4.6.1.

Если используется система полного разбавления потока, то насос(ы) пробоотборника должен (должны) быть отрегулирован(ы) таким образом, чтобы расход потока, проходящего через пробоотборник твердых частиц или передаточную трубу, поддерживался в пределах \pm 2,5% от установленного расхода. При наличии компенсации потока (т.е. пропорциональном

управлении потоком проб) необходимо продемонстрировать, что отношение потока, идущего по основному каналу, к потоку проб твердых частиц отклоняется не более чем на \pm 2,5% от установленной величины (за исключением первых 10 секунд процесса отбора проб). Регистрируются средние значения температуры и давления на входе потока в газовый счетчик (газовые счетчики) или измерительную аппаратуру. Если из-за интенсивных отложений частиц на фильтре поддерживать заданный расход на всем протяжении цикла в пределах \pm 2,5% невозможно, то результаты испытания признаются недействительными. В таком случае испытание повторяется с использованием более низкого значения расхода.

7.7.6 Остановка двигателя и неполадки в работе оборудования

Если в какой-либо момент цикла испытания двигатель заглох, то испытание признается недействительным. В этом случае двигатель подвергается предварительному кондиционированию в соответствии с пунктом 7.7.1 и снова запускается в соответствии с пунктом 7.7.2, а испытание повторяется.

Если в ходе реализации цикла испытания возникают неполадки в работе любого требуемого испытательного оборудования, то испытание признается недействительным и проводится повторное испытание в соответствии с изложенными выше положениями.

7.8 Процедуры, применяющиеся после испытания

7.8.1 Операции, применяющиеся после испытания

По завершении испытания прекращается измерение массового расхода отработавших газов, объема разбавленных отработавших газов и потока газа, направляемого в накопительные мешки, а также останавливается насос для отбора проб твердых частиц. В случае интегрирующей системы анализатора отбор проб продолжается до момента перекрытия времени срабатывания системы.

7.8.2 Проверка процедуры пропорционального отбора проб

В случае любого пропорционального отбора проб из партии, например проб в мешке или проб ТЧ, производится проверка с целью определения соответствия

процедуры отбора проб положениям пунктов 7.6.7 и 7.7.5. Любая проба, не соответствующая установленным требованиям, считается неприемлемой.

7.8.3 Кондиционирование и взвешивание ТЧ

Фильтры для твердых частиц должны быть помещены в закрываемые крышкой или в герметически закрывающиеся контейнеры либо же держатели контейнеров должны быть закрыты, с тем чтобы фильтры для твердых частиц были защищены от любого загрязнения окружающей среды. После обеспечения такой защиты фильтры возвращаются в камеру для взвешивания. Фильтры выдерживаются в течение не менее одного часа и взвешиваются в соответствии с пунктом 9.4.5. Регистрируется общая масса фильтров.

7.8.4 Проверка дрейфа

Как только это будет возможно, но не позднее чем через 30 минут после окончания испытательного цикла либо в период прогрева определяются чувствительность к нулю и чувствительность к калибровке используемого диапазона характеристик газового анализатора. Для целей настоящего пункта цикл испытания определяется следующим образом:

- а) для ВСПЦ: полная последовательность "запуск холодного двигателя этап прогревания для стабилизации запуск в прогретом состоянии";
- b) для испытания в условиях запуска двигателя в прогретом состоянии (ВСПЦ) (пункт 6.6): последовательность "этап прогревания для стабилизации запуск в прогретом состоянии";
- с) для испытания в условиях запуска двигателя в прогретом состоянии (ВСПЦ) с многократной регенерацией (пункт 6.6): общее число испытаний на запуск двигателя в прогретом состоянии;
- d) для ВСУЦ: цикл испытаний.

В отношении дрейфа анализатора применяются следующие положения:

а) показатели чувствительности к нулю и к калибровке как до испытаний, так и после испытаний могут применяться непосредственно в рамках

положений о расчете дрейфа, изложенных в пункте 8.6.1, без определения самого дрейфа;

- b) если разница между значениями до испытания и после испытания составляет менее 1% полной шкалы, то измеренные концентрации могут использоваться без корректировки или с корректировкой на дрейф в соответствии с пунктом 8.6.1;
- с) если разница между значениями до испытания и после испытания составляет не менее 1% полной шкалы, то испытание считается недействительным либо же измеренные концентрации корректируются на дрейф в соответствии с пунктом 8.6.1.

7.8.5 Анализ проб газа из мешка

Как только это будет возможно, осуществляются следующие процедуры:

- а) пробы газа из мешка анализируются не позднее чем через 30 минут после завершения испытания в условиях запуска в прогретом состоянии либо в период прогревания для испытания на запуск в холодном состоянии,
- b) фоновые пробы анализируются не позднее чем через 60 минут после завершения испытания на запуск двигателя в прогретом состоянии.

7.8.6 Подтверждение результатов работы за цикл

До расчета фактической работы за цикл любые точки, зарегистрированные в процессе запуска двигателя, исключаются. Фактическая работа за цикл определяется по всему циклу испытания посредством одновременного использования значений фактической частоты вращения и фактического крутящего момента для расчета мгновенных значений мощности двигателя. Мгновенные значения мощности двигателя интегрируются в ходе всего цикла испытания для расчета фактической работы за цикл $W_{\rm act}$ (кВт·ч). Если вспомогательное оборудование/устройства не установлены в соответствии с пунктом 6.3.1, то мгновенные значения мощности корректируются с использованием уравнения (4), содержащегося в пункте 6.3.5.

Для интегрирования фактической мощности двигателя используется методика, описанная в пункте 7.4.8.

Фактическая работа за цикл W_{act} используется для сопоставления с исходной работой за цикл W_{ref} и для расчета удельных выбросов при торможении (см. пункт 8.6.3).

Показатель W_{act} должен составлять 85-105% W_{ref} .

7.8.7 Статистические критерии подтверждения правильности результатов испытательного цикла

Значения частоты вращения, крутящего момента и мощности проверяются методом линейной регрессии реальных значений по исходным значениям в случае как ВСПЦ, так и ВСУЦ.

В целях сведения к минимуму погрешности, обусловленной задержкой по времени между реальными и исходными значениями цикла, вся последовательность фактических сигналов, отражающих частоту вращения и крутящий момент двигателя, может быть сдвинута по времени вперед или назад по отношению к последовательности исходных значений частоты вращения и крутящего момента. В случае сдвига сигналов реальных значений необходимо сдвинуть в том же направлении и на ту же величину значения частоты вращения и крутящего момента.

При этом используется метод наименьших квадратов с наиболее подходящим уравнением, имеющим следующий вид:

$$y = a_1 x + a_0$$
 (11),

где:

- у реальное значение частоты вращения (мин $^{-1}$), крутящего момента (H · м) или мощности (кВт);
- а₁ наклон линии регрессии;
- x исходное значение частоты вращения (мин $^{-1}$), крутящего момента ($H \cdot M$) или мощности (кBт);
- а₀ отсекаемое на оси у значение линии регрессии.

Для каждой линии регрессии рассчитывается стандартная погрешность оценки (СПО) по осям у и х и коэффициент смешанной корреляции (r^2).

Этот анализ рекомендуется выполнять с частотой 1 Гц. Для того чтобы испытание было признано достоверным, должны соблюдаться критерии, указанные в таблице 2 (ВСПЦ) или таблице 3 (ВСУЦ).

	Частота вращения	Крутящий момент	Мощность
Стандартная	максимум 5%	максимум 10%	максимум 10%
погрешность оценки	максимальной	максимального	максимальной
(СПО) по осям у и х	частоты вращения	крутящего момента	мощности двигателя
		двигателя	
Наклон линии	0,95-1,03	0,83-1,03	0,89-1,03
регрессии а1			
Коэффициент	минимум 0,970	минимум 0,850	минимум 0,910
смешанной			
корреляции г ²			
Отсекаемое на оси у	максимум 10%	±20 H · м или	±4 кВт или
значение линии	частоты вращения	±2% максимального	±2% максимальной
регрессии а0	на холостом ходу	крутящего момента в	мощности в
		зависимости от того,	зависимости от того,
		какое из этих значений	какое из этих
		больше	значений больше

Таблица 2. Допустимые отклонения линии регрессии для ВСПЦ

	Частота вращения	Крутящий момент	Мощность
Стандартная	максимум 1%	максимум 2%	максимум 2%
погрешность оценки	максимальной	максимального	максимальной
(СПО) по осям у и х	частоты вращения	крутящего момента	мощности двигателя
		двигателя	
Наклон линии	0,99-1,01	0,98-1,02	0,98-1,02
регрессии а1			
Коэффициент	минимум 0,990	минимум 0,950	минимум 0,950
смешанной			
корреляции r ²			
Отсекаемое на оси у	максимум 1%	± 20 H · м или	± 4 кВт или
значение линии	максимальной	±2% максимального	±2% максимальной
регрессии а0	частоты вращения	крутящего момента в	мощности в
		зависимости от того,	зависимости от того,
		какое из этих	какое из этих
		значений больше	значений больше

Таблица 3. Допустимые отклонения линии регрессии для ВСУЦ

Сугубо для целей регрессивного анализа до проведения соответствующих расчетов допускается исключение полученных точек в тех случаях, которые указаны в таблице 4. Однако при расчете работы и выбросов за цикл эти точки исключать нельзя. Метод исключения точек может применяться ко всему циклу или к любой его части.

Действие	Условия	Допустимое исключение точек
Минимальный запрос	$n_{\text{ref}} = 0\%$	частота вращения и мощность
оператора (точка	И	
холостого хода)	$M_{\rm ref} = 0 \%$	
	И	
	$M_{\rm act} > (M_{\rm ref} - 0.02 \ M_{\rm max.\ mapped\ torque})$	
	И	
	$M_{\rm act} < (M_{\rm ref} + 0.02 M_{\rm max. mapped torque})$	
Минимальный запрос	$M_{\rm ref} < 0\%$	мощность и крутящий момент
оператора (точка		
прокрутки двигателя)		
Минимальный запрос	$n_{ m act} \leq 1,02 \; n_{ m ref}$ и $M_{ m act} > M_{ m ref}$	мощность и либо крутящий
оператора	или	момент, либо частота
	$n_{ m act} > n_{ m ref}$ и $M_{ m act} \leq M_{ m ref}$	вращения
	или	
	$n_{\rm act} > 1,02 \; n_{\rm ref}$ и $M_{\rm ref} < M_{\rm act} \le (M_{\rm ref} +$	
	$0.02~M_{\rm max.~mapped~torque})$	
Максимальный запрос	$n_{ m act} < n_{ m ref}$ и $M_{ m act} \ge M_{ m ref}$	мощность и либо крутящий
оператора	или	момент, либо частота
	$n_{ m act} \geq 0,98 \; n_{ m ref}$ и $M_{ m act} < M_{ m ref}$	вращения
	или	
	$n_{ m act} < 0.98 \; n_{ m ref}$ и $M_{ m ref} > M_{ m act} \geq (M_{ m ref}$ -	
	$0.02~M_{\rm max.~mapped~torque})$	

Таблица 4. Точки, которые могут исключаться из регрессивного анализа

8. PACЧЕТ ВЫБРОСОВ

Окончательные результаты испытания округляются до такого числа знаков после запятой, которое предусмотрено применимым стандартом на выбросы, плюс один дополнительный знак, не равный 0 в соответствии с ASTM Е 29-06В. Округление промежуточных значений, используемых для расчета конченого результата удельных выбросов в режиме торможения, не допускается.

Примеры процедур расчета приведены в приложении 6.

Расчет выбросов на молярной основе в соответствии с приложением 7 к гтп № [xx] (ВДПТ) допускается при условии получения предварительного согласия на это со стороны органа, предоставляющего официальное утверждение типа или проводящего сертификацию.

8.1 Поправка на сухое/влажное состояние

Если замер выбросов производился на сухой основе, то измеренная концентрация преобразуется в концентрацию на влажной основе при помощи следующего уравнения:

$$c_{\rm w} = k_{\rm w} \cdot c_{\rm d} \tag{12},$$

 $c_{\rm d}$ концентрация в сухом состоянии в млн⁻¹ или в % объема;

 k_{w} поправочный коэффициент на сухое/влажное состояние ($k_{w,a}$, $k_{w,e}$ или $k_{w,d}$ в зависимости от соответствующего уравнения, которое используется).

8.1.1 Первичные отработавшие газы

$$k_{\text{w,a}} = \left(1 - \frac{1,2442 \times H_{\text{a}} + 111,19 \times w_{\text{ALF}} \times \frac{q_{\text{mf,i}}}{q_{\text{mad,i}}}}{773,4 + 1,2442 \times H_{\text{a}} + \frac{q_{\text{mf,i}}}{q_{\text{mad,i}}} \times k_{\text{f}} \times 1000}\right) \times 1,008$$
(13)

или

$$k_{\text{w,a}} = \left(1 - \frac{1,2442 \times H_{\text{a}} + 111,19 \times w_{\text{ALF}} \times \frac{q_{\text{mf,i}}}{q_{\text{mad,i}}}}{773,4 + 1,2442 \times H_{\text{a}} + \frac{q_{\text{mf,i}}}{q_{\text{mad,i}}} \times k_{\text{f}} \times 1000}\right) / \left(1 - \frac{P_{\text{r}}}{P_{\text{b}}}\right)$$
(14)

ИЛИ

$$k_{\text{w,a}} = \left(1 - \frac{1}{1 + a \times 0.005 \times (c_{\text{CO2}} + c_{\text{CO}})} - k_{\text{w1}}\right) \times 1,008$$
 (15)

при этом

$$k_{\text{fw}} = 0.055594 \times W_{\text{ALF}} + 0.0080021 \times W_{\text{DEL}} + 0.0070046 \times W_{\text{EPS}}$$
 (16)

И

$$k_{w1} = \frac{1,608 \times H_{a}}{1000 + (1,608 \times H_{a})}$$
 (17),

 $H_{\rm a}$ - влажность воздуха на впуске в г воды на кг сухого воздуха;

 $w_{\rm ALF}$ - содержание водорода в топливе в % от массы;

 $q_{\rm mf.i}$ - мгновенное значение массового расхода топлива в кг/с;

 $q_{\rm mad,i}$ - мгновенное значение массового расхода воздуха на впуске на сухой основе в кг/с;

 $p_{\rm r}$ - давление водяных паров после охлаждающей ванны в кПа;

 $p_{\rm b}$ - общее барометрическое давление в кПа;

 $w_{\rm DEL}$ - содержание азота в топливе в % от массы;

 $w_{\rm EPS}$ - содержание кислорода в топливе в % от массы;

 α - молярная доля водорода, содержащегося в топливе;

 c_{CO2} - концентрация CO_2 на сухой основе в %;

 $c_{\rm CO}$ - концентрация CO на сухой основе в %.

Уравнения 13 и 14 в принципе идентичны, причем коэффициент 1,008 в уравнениях 13 и 15 представляет собой приближенное значение более точной величины знаменателя в уравнении 14.

8.1.2 Разбавленные отработавшие газы

$$k_{w,e} = \left[\left(1 - \frac{a \times c_{\text{CO2w}}}{200} \right) - k_{w2} \right] \times 1,008$$
 (18)

или

$$k_{w,e} = \left[\left(\frac{1 - k_{w2}}{1 + \frac{a \times c_{\text{CO2d}}}{200}} \right) \right] \times 1,008$$
 (19)

при этом

$$k_{w2} = \frac{1,608 \times \left[H_d \times \left(1 - \frac{1}{D} \right) + H_a \times \left(\frac{1}{D} \right) \right]}{1000 + \left\{ 1,608 \times \left[H_d \times \left(1 - \frac{1}{D} \right) + H_a \times \left(\frac{1}{D} \right) \right] \right\}}$$
(20),

 α - молярная доля водорода, содержащегося в топливе;

 $c_{\rm CO2w}$ - концентрация ${\rm CO_2}$ на влажной основе в %;

 $c_{\rm CO2d}$ - концентрация ${\rm CO_2}$ на сухой основе в %;

 $H_{\rm d}$ - влажность разбавляющего воздуха в г воды на кг сухого воздуха;

 $H_{\rm a}$ - влажность воздуха на впуске в г воды на кг сухого воздуха;

D - коэффициент разбавления (см. пункт 8.5.2.3.2).

8.1.3 Разбавляющий воздух

$$k_{w,d} = (1 - k_{w3}) \times 1,008$$
 (21)

при этом

$$k_{w3} = \frac{1,608 \times H_{\rm d}}{1\,000 + (1,608 \times H_{\rm d})} \tag{22},$$

где:

 $H_{
m d}$ - влажность разбавляющего воздуха в г воды на кг сухого воздуха.

8.2 <u>Поправка на влажность NO_x </u>

Поскольку выбросы NO_x зависят от состояния окружающего воздуха, концентрация NO_x должна быть скорректирована на влажность с использование коэффициентов, приведенных в пунктах 8.2.1 или 8.2.2. Влажность воздуха на впуске (H_a) может быть рассчитана на основе измерения относительной влажности, определения точки росы, измерения давления паров или измерения по шарику сухого/влажного термометра с использованием общепринятых уравнений.

8.2.1 Двигатели с воспламенением от сжатия

$$k_{\rm h,D} = \frac{15,698 \times H_a}{1,000} + 0,832 \tag{23},$$

где:

 $H_{\rm a}\,$ - влажность воздуха на впуске в г воды на кг сухого воздуха.

8.2.2 Двигатели с принудительным зажиганием

$$k_{\text{h.G}} = 0.6272 + 44,030 \times 10^{-3} \times H_{\text{a}} - 0.862 \times 10^{-3} \times H_{\text{a}}^{2}$$
 (24),

где:

 $H_{\rm a}\,$ - влажность воздуха на впуске в г воды на кг сухого воздуха.

8.3 Поправка на статическое давление фильтра для твердых частиц

Плотность фильтра для отбора проб корректируется на взвешивание его в воздухе. Поправка на статическое давление зависит от плотности фильтра для отбора проб, плотности воздуха и плотности калибровочного груза и не учитывается при взвешивании в воздухе самих ТЧ. Поправка на статическое давление применяется к массе фильтра как нетто, так и брутто.

Если плотность материала, из которого изготовлен фильтр неизвестна, то используются следующие значения плотности:

- а) стекловолоконный фильтр с тефлоновым покрытием: $2\,300\,\mathrm{kg/m}^3$,
- b) тефлоновый фильтр мембранного типа: $2 \cdot 144 \text{ кг/м}^3$,
- с) тефлоновый фильтр мембранного типа с опорным кольцом из полиметилпентена: 912 кг/м³.

В случае калибровочных грузов из нержавеющей стали используется показатель плотности, равный $8\,000\,\mathrm{kr/m}^3$. Если калибровочный груз изготовлен из другого материала, то его плотность должна быть известна.

Используется следующее уравнение:

$$m_{\rm f} = m_{\rm uncor} \times \left(\frac{1 - \frac{\rho_{\rm a}}{\rho_{\rm w}}}{1 - \frac{\rho_{\rm a}}{\rho_{\rm f}}} \right) \tag{25}$$

при этом

$$\rho_{\rm a} = \frac{p_{\rm b} \times 28,836}{8,3144 \times T_{\rm a}} \tag{26},$$

 $m_{\rm uncor}$ нескорректированная масса пробы твердых частиц в мг,

 $\rho_{\rm a}$ плотность воздуха в кг/м³,

 $\rho_{\rm w}$ плотность калибровочного груза в кг/м³,

 $\rho_{\rm f}$ плотность фильтра для отбора проб твердых частиц в кг/м³,

 $p_{\rm b}$ общее атмосферное давление в кПа, $T_{\rm a}$ температура воздуха вокруг весов в K,

28,836 молярная масса воздуха при исходной влажности (282,5 К) в г/моль,

8,3144 молярная газовая постоянная.

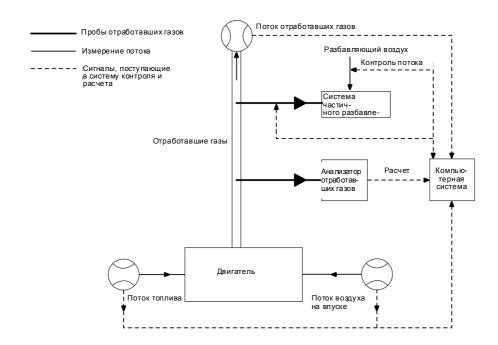
Масса проб твердых частиц (m_p) , указанная в пунктах 8.4.3 и 8.5.3, рассчитывается следующим образом:

$$m_{\rm p} = m_{\rm f,G} - m_{\rm f,T}$$
 (27),

где:

 $m_{\mathrm{f,G}}$ масса-брутто фильтра для твердых частиц с поправкой на

статическое давление в мг;


 $m_{\rm f,T}$ масса-нетто фильтра для твердых частиц с поправкой на

статическое давление в мг.

8.4 <u>Частичное разбавление потока (PFS) и замер первичных газообразных</u> компонентов

Для расчета массы выбросов используются значения сигналов мгновенной концентрации газообразных компонентов, которые умножаются на мгновенную величину массового расхода отработавших газов. Массовый расход отработавших газов можно либо измерить непосредственно, либо рассчитать с помощью метода измерения параметров воздуха на впуске и расхода топлива, метода использования индикаторного газа или измерения параметров воздуха на впуске и соотношения воздух/топливо. Особое внимание должно быть обращено на время срабатывания различных приборов. Эти различия должны учитываться при синхронизации сигналов. В случае

твердых частиц для регулирования системы частичного разбавления потока в целях отбора пробы, пропорциональной расходу отработавших газов по массе, используются сигналы, показывающие массовый расход отработавших газов. Степень пропорциональности проверяется с помощью регрессивного анализа пробы и потока отработавших газов в соответствии с пунктом 9.4.6.1. Полная схема испытания показана на рис. 6.

<u>Рис. 6</u>: Принципиальная схема системы измерения первичного/ частично разбавленного потока

8.4.1 Определение массового расхода отработавших газов

8.4.1.1 Введение

Для расчета выбросов веществ, содержащихся в первичных отработавших газах, и контроля системы частичного разбавления потока необходимо знать массовый расход отработавших газов. Для определения массового расхода отработавших газов можно использовать любой из методов, изложенных в пунктах 8.4.1.3-8.4.1.7.

8.4.1.2 Время срабатывания

В целях расчета выбросов время срабатывания по каждому методу, изложенному в пунктах 8.4.1.3-8.4.1.7, не должно превышать время

срабатывания анализатора, составляющее ≤ 10 с, как это требуется в пункте 9.3.5.

Для целей контроля системы частичного разбавления потока требуется более быстрое время срабатывания. В случае систем частичного разбавления потока, работающих в режиме контроля "онлайн", время срабатывания должно составлять ≤ 0.3 с. В случае систем частичного разбавления потока с прогностическим алгоритмом управления на основе предварительно записанных параметров испытания время срабатывания системы измерения расхода отработавших газов должно составлять ≤ 5 с, а время восстановления - ≤ 1 с. Время срабатывания системы указывается изготовителем прибора. Требования в отношении общего времени срабатывания системы измерения расхода отработавших газов и системы частичного разбавления потока указаны в пункте 9.4.6.1.

8.4.1.3 Непосредственный метод измерения

Непосредственное измерение мгновенных значений расхода отработавших газов производится с помощью таких систем, как:

- а) дифференциальное устройство измерения давления, например мерное сопло (более подробно см. ISO 5167),
- b) ультразвуковой расходомер,
- с) вихревой расходомер.

Во избежание погрешностей измерения, которые могут привести к ошибочным значениям выбросов, необходимо принять соответствующие меры предосторожности. Такие меры предосторожности включают тщательную установку измерительного устройства в системе выпуска отработавших газов двигателя в соответствии с рекомендациями изготовителя прибора и проверенной технической практикой. Особое внимание необходимо обращать на то, чтобы установка устройства не оказала отрицательного воздействия на характеристики двигателя и параметры выбросов.

Расходомеры должны отвечать требованиям линейности, указанным в пункте 9.2.

8.4.1.4 Метод измерения расхода воздуха и топлива

Этот метод предполагает измерение расхода воздуха и топлива с помощью подходящих расходомеров. Расчет мгновенных значений расхода отработавших газов производится по следующей формуле:

$$q_{\text{mew,i}} = q_{\text{maw,i}} + q_{\text{mf,i}} \tag{28},$$

гле:

 $q_{\text{mew,i}}$ мгновенное значение массового расхода отработавших газов в кг/с,

 $q_{\text{maw,i}}$ мгновенное значение массового расхода воздуха на впуске в кг/с,

 $q_{mf,i}$ мгновенное значение массового расхода топлива в кг/с.

Расходомеры должны отвечать требованиям линейности, указанным в пункте 9.2, однако должны быть достаточно точными, с тем чтобы отвечать также требованиям линейности параметров потока отработавших газов.

8.4.1.5 Метод измерения с помощью индикаторного газа

Этот метод предполагает измерение концентрации индикаторного газа в отработавших газах.

В поток отработавших газов в качестве индикаторного газа вводится известное количество инертного газа (например, чистого гелия). Этот газ смешивается и разбавляется с помощью отработавших газов, однако в контакт с выхлопной трубой он вступать не должен. Затем концентрация данного газа измеряется в пробе отработавших газов.

В целях обеспечения полного смешивания индикаторного газа пробоотборник отработавших газов должен устанавливаться на расстоянии не менее 1 м или на расстоянии, соответствующем 30-кратному диаметру выхлопной трубы, в зависимости от того, какая из этих величин больше, ниже точки ввода индикаторного газа. Пробоотборник может устанавливаться ближе к точке ввода в том случае, если при вводе индикаторного газа на впуске двигателя полнота смешивания подтверждается путем сопоставления концентрации индикаторного газа с исходной концентрацией.

Расход индикаторного газа регулируется таким образом, чтобы концентрация индикаторного газа на холостых оборотах двигателя после смешивания была меньше пределов шкалы измерения анализатора индикаторного газа.

Расчет расхода отработавших газов производится по следующей формуле:

$$q_{\text{mew,i}} = \frac{q_{\text{vt}} \times \rho_{\text{e}}}{60 \times (c_{\text{mix,i}} - c_{\text{b}})}$$
(29),

гле:

 $q_{\text{mew,i}}$ мгновенное значение массового расхода отработавших газов в кг/с,

 q_{vt} расход индикаторного газа в см³/мин,

 $c_{
m mix,i}$ мгновенное значение концентрации индикаторного газа после

смешивания в млн⁻¹,

 $\rho_{\rm e}$ плотность отработавших газов в кг/м³ (см. табл. 4),

 $c_{\rm b}$ фоновая концентрация индикаторного газа в воздухе на впуске в

 $MЛH^{-1}$.

Фоновая концентрация индикаторного газа (c_b) может определяться путем усреднения значений фоновой концентрации, измеряемых непосредственно перед испытанием и после испытания.

Когда фоновая концентрация составляет менее 1% от концентрации индикаторного газа после смешивания ($c_{\text{mix,i}}$) в условиях максимального потока отработавших газов, фоновой концентрацией можно пренебречь.

Вся система должна отвечать требованиям линейности параметров потока отработавших газов, указанным в пункте 9.2.

8.4.1.6 Метод измерения расхода воздуха и отношения воздуха к топливу

Этот метод предполагает расчет массы отработавших газов на основании расхода воздуха и отношения воздуха к топливу. Расчет мгновенных значений массового расхода отработавших газов производится по следующей формуле:

$$q_{\text{mew,i}} = q_{\text{maw,i}} \times \left(1 + \frac{1}{A/F_{\text{st}} \times \lambda_{i}}\right)$$
(30)

при этом

$$A/F_{\rm st} = \frac{138,0 \times \left(1 + \frac{\alpha}{4} - \frac{\varepsilon}{2} + \gamma\right)}{12,011 + 1,00794 \times \alpha + 15,9994 \times \varepsilon + 14,0067 \times \delta + 32,065 \times \gamma}$$
(31)

$$\lambda_{\rm i} = \frac{\left(100 - \frac{c_{\rm cod} \times 10^{-4}}{2} - c_{\rm HCw} \times 10^{-4}\right) + \left(\frac{\alpha}{4} \times \frac{1 - \frac{2 \times c_{\rm cod} \times 10^{-4}}{3.5 \times c_{\rm co2d}}}{1 + \frac{c_{\rm co} \times 10^{-4}}{3.5 \times c_{\rm co2d}}} - \frac{\varepsilon}{2} - \frac{\delta}{2}\right) \times \left(c_{\rm co2d} + c_{\rm cod} \times 10^{-4}\right)}{4.764 \times \left(1 + \frac{\alpha}{4} - \frac{\varepsilon}{2} + \gamma\right) \times \left(c_{\rm co2d} + c_{\rm cod} \times 10^{-4} + c_{\rm HCw} \times 10^{-4}\right)}$$
(32),

где:

 $q_{
m maw,i}$ - мгновенное значение массового расхода воздуха на

впуске в кг/с,

 $A/F_{\rm st}$ - стехиометрическое отношение воздуха к топливу

в кг/кг,

 λ_{i} - мгновенное значение коэффициента избытка воздуха,

 $c_{\rm CO2d}$ - концентрация ${\rm CO_2}$ на сухой основе в процентах,

 c_{COd} - концентрация CO_2 на сухой основе в млн⁻¹,

 $c_{\rm HCw}$ - концентрация HC на влажной основе в млн⁻¹.

Расходомер воздуха и анализаторы должны отвечать требованиям линейности, указанным в пункте 9.2, а вся система должна отвечать требованиям линейности параметров потока отработавших газов, указанным в пункте 9.2.

Если для измерения коэффициента избытка воздуха используется оборудование для измерения отношения воздуха к топливу, например циркониевый датчик, то такое оборудование должно отвечать техническим требованиям, указанным в пункте 9.3.2.7.

8.4.1.7 Метод углеродного баланса

Этот метод предполагает расчет массы отработавших газов на основе расхода топлива и газообразных компонентов в выхлопе, включая углерод. Расчет мгновенных значений массового расхода отработавших газов производится по следующему уравнению:

$$q_{\text{mew,i}} = q_{\text{mf,i}} \times \left(\frac{w_{\text{BET}}^2 \times 1,4}{(1,0828 \times w_{\text{BET}} + k_{\text{fd}} \times k_{\text{c}}) \times k_{\text{c}}} \left(1 + \frac{H_{\text{a}}}{1\,000} \right) + 1 \right)$$
(33)

при этом

$$k_{\rm c} = (c_{\rm CO2d} - c_{\rm CO2d,a}) \times 0.5441 + \frac{c_{\rm COd}}{18.522} + \frac{c_{\rm HCw}}{17.355}$$
 (34)

И

$$k_{\rm fd} = -0.055594 \times w_{\rm ALF} + 0.0080021 \times w_{\rm DEL} + 0.0070046 \times w_{\rm EPS}$$
 (35)

где:

 $q_{
m mf,i}$ - мгновенный массовый расход топлива в кг/с,

 $H_{\rm a}$ - влажность воздуха на впуске в г воды на кг сухого

воздуха,

 $w_{\rm BET}$ - содержание углерода в топливе в процентах от массы, $w_{\rm ALF}$ - содержание водорода в топливе в процентах от массы,

 $w_{\rm DEL}$ - содержание азота в топливе в процентах от массы,

 $w_{\rm EPS}$ - содержание кислорода в топливе в процентах от массы,

 $c_{\rm CO2d}$ - концентрация ${\rm CO_2}$ на сухой основе в процентах,

 $c_{\text{CO2d,a}}$ - концентрация CO_2 во всасываемом воздухе в процентах,

 $c_{\rm CO}$ - концентрация CO на сухой основе в млн $^{-1}$, $c_{\rm HCw}$ - концентрация HC на влажной основе в млн $^{-1}$.

8.4.2 Определение содержания газообразных компонентов

8.4.2.1 Введение

Газообразные компоненты в первичных отработавших газах, выбрасываемых двигателем, представленным на испытание, измеряются с помощью систем измерения и отбора проб, описанных в пункте 9.3 и в приложении 3. Процедура оценки данных изложена в пункте 8.4.2.2.

В пунктах 8.4.2.3 и 8.4.2.4 описываются два метода расчета, которые эквивалентны для эталонного топлива, указанного в приложении 2. Порядок расчета, изложенный в пункте 8.4.2.3, более прост, так как он предусматривает использование табличных значений *и*, отражающих отношение плотности

газообразного компонента к плотности отработавших газов. Порядок, изложенный в пункте 8.4.2.4, более точен для определения качества топлива, которое не соответствует техническим требованиям приложения 2, однако он предполагает необходимость элементарного анализа состава топлива.

8.4.2.2 Оценка данных

Данные, касающиеся выбросов, регистрируются и хранятся в соответствии с пунктом 7.6.6.

Для расчета массы выбросов газообразных компонентов следовые значения зарегистрированных концентраций и следовые значения массового расхода отработавших газов синхронизируются с учетом времени перехода, определенного в пункте 3.1.30. В этой связи время срабатывания каждого анализатора газообразных выбросов и системы измерения массового расхода отработавших газов определяется согласно пунктам 8.4.1.2 и 9.3.5, соответственно, и регистрируется.

8.4.2.3 Расчет массы выбросов на основе табличных значений

Масса загрязнителей (г/испытание) определяется методом расчета мгновенных значений массы выбросов на основе концентраций загрязняющих веществ в первичных отработавших газах и расхода отработавших газов по массе, синхронизированных с учетом времени перехода, определенного в соответствии с пунктом 8.4.2.2, интегрирования мгновенных значений по всему циклу и умножения интегрированных значений на значения *и*, взятые из таблицы 5. В случае измерения на сухой основе до проведения любых дальнейших расчетов мгновенные значения концентрации корректируются на сухое/влажное состояние в соответствии с пунктом 8.1.

Для расчета NO_x масса выбросов умножается на поправочный коэффициент на влажность $k_{h,D}$ или $k_{h,G}$, определяемый в соответствии с пунктом 8.2.

Для расчета используется следующее уравнение:

$$m_{\rm gas} = u_{\rm gas} \times \sum_{i=1}^{i=n} c_{\rm gas,i} \times q_{\rm mew,i} \times \frac{1}{f}$$
 (в г/испытание) (36)

где:

 u_{gas} - отношение плотности компонента отработавших газов к плотности отработавших газов,

 $c_{gas,i}$ - мгновенное значение концентрации компонента в отработавших газах в млн $^{-1}$.

 $q_{mew,i}$ - мгновенное значение массового расхода отработавших газов в кг/с,

f - частота регистрации данных при отборе проб в Γ ц,

n - число замеров.

		Газ					
Топливо	$ ho_{ m e}$	NO_x	CO	HC	CO_2	O_2	CH ₄
		$ ho_{ m gas}[{ m K}{ m \Gamma}/{ m M}^3]$					
		2,053	1,250	a)	1,9636	1,4277	0,716
		$u_{\rm gas}^{ b)}$					
Дизельно	1,2943	0,00158	0,000966	0,000479	0,001517	0,001103	0,000553
Этанол	1,2757	0,00160	0,000980	0,000805	0,001539	0,001119	0,000561
$C\Pi\Gamma^{c)}$	1,2661	0,00162	0,000987	$0,000528^{d}$	0,001551	0,001128	0,000565
Пропан	1,2805	0,00160	0,000976	0,000512	0,001533	0,001115	0,000559
Бутан	1,2832	0,00160	0,000974	0,000505	0,001530	0,001113	0,000558
CHΓ ^{e)}	1,2811	0,00160	0,000976	0,000510	0,001533	0,001115	0,000559

- а) в зависимости от топлива
- b) при $\lambda = 2$, сухом воздухе, 273 K, 101,3 кПа
- с) u с точностью 0,2% по массовому составу: C = 66-76%; H = 22-25%; N = 0-12%
- d) NMHC на основе $CH_{2,93}$ (применительно к общему количеству HC для CH_4 используется коэффициент $u_{\rm gas}$)
- u с точностью 0,2% по массовому составу: C3 = 70-90%; C4 = 10-30%

<u>Таблица 5</u>. Значения коэффициента *и* и плотности компонентов первичных отработавших газов

8.4.2.4 Расчет массы выбросов на основе точных уравнений

Масса загрязняющих веществ (г/испытание) определяется методом расчета мгновенных значений массы выбросов на основе концентраций загрязняющих веществ в первичных отработавших газах, значения *и* и массового расхода отработавших газов, синхронизированных с учетом времени перехода, определенного в соответствии с пунктом 8.4.2.2, и интегрирования мгновенных значений по всему циклу. В случае измерения на сухой основе до проведения

любых дальнейших расчетов мгновенные значения концентрации следует скорректировать на сухое/влажное состояние в соответствии с пунктом 8.1.

Для расчета NO_x масса выбросов умножается на поправочный коэффициент на влажность $k_{h,D}$ или $k_{h,G}$, определяемый в соответствии с пунктом 8.2.

Для расчета используется следующее уравнение:

$$m_{\text{gas}} = \sum_{i=1}^{i=n} u_{\text{gas,i}} \times c_{\text{gas,i}} \times q_{\text{mew,i}} \times \frac{1}{f}$$
 (в г/испытание) (37),

где:

 $u_{\rm gas,i}$ - мгновенное отношение плотности компонента отработавших газов к плотности отработавших газов,

 $c_{{
m gas},{
m i}}$ - мгновенное значение концентрации компонента в отработавших газах в млн $^{-1}$,

 $q_{\text{mew,i}}$ - мгновенное значение массового расхода отработавших газов в кг/с,

f - частота регистрации данных при отборе проб в Γ ц,

n - число замеров.

Мгновенные значения u рассчитываются при помощи следующего уравнения:

$$u_{\text{gas,i}} = M_{\text{gas}} / (M_{\text{e,i}} \times 1000)$$
 (38)

или

$$u_{\text{gas,i}} = \rho_{\text{gas}} / (\rho_{\text{e,i}} \times 1000)$$
 (39)

при этом

$$\rho_{\text{gas}} = M_{\text{gas}} / 22,414$$
 (40),

где:

 $M_{\rm gas}$ - молярная масса компонента газа в г/моль (см. приложение 6),

 $M_{\rm e,i}$ - мгновенное значение молярной массы отработавших газов в г/моль,

 ρ_{gas} - плотность компонента газа в кг/м³,

 $\rho_{\rm e,i}$ - мгновенное значение плотности отработавших газов в кг/м³.

Молярная масса отработавших газов M_e определяется на основе общего состава топлива $\mathrm{CH}_a\mathrm{O}_{\mathcal{E}}\mathrm{N}_\delta\,\mathrm{S}_y$ в предположении его полного сжигания по следующей формуле:

$$M_{e,i} = \frac{1 + \frac{q_{mf,i}}{q_{maw,i}}}{\frac{q_{mf,i}}{q_{maw,i}} \times \frac{\frac{\alpha}{4} + \frac{\varepsilon}{2} + \frac{\delta}{2}}{12,011 + 1,00794 \times \alpha + 15,9994 \times \varepsilon + 14,0067 \times \delta + 32,065 \times \gamma} + \frac{\frac{H_a \times 10^{-3}}{2 \times 1,00794 + 15,9994} + \frac{1}{M_a}}{1 + H_a \times 10^{-3}}}$$

$$(41),$$

где:

 $q_{\text{maw,i}}$ - мгновенное значение массового расхода воздуха на впуске на влажной основе в кг/с,

 $q_{mf,i}$ - мгновенное значение массового расхода топлива в кг/с,

 $H_{\rm a}$ - влажность воздуха на впуске в г воды на кг сухого воздуха,

 $M_{\rm a}$ - молярная масса сухого воздуха на впуске (= 28,965 г/моль).

Плотность отработавших газов $\rho_{\rm e}$ определяется по следующей формуле:

$$\rho_{e,i} = \frac{1000 + H_a + 1000 \times (q_{mf,i}/q_{mad,i})}{773,4 + 1,2434 \times H_a + k_{fw} \times 1000 \times (q_{mf,i}/q_{mad,i})}$$
(42),

где:

 $q_{\rm mad,i}$ - мгновенное значение массового расхода воздуха на впуске на сухой основе в кг/с,

 $q_{mf,i}$ - мгновенное значение массового расхода топлива в кг/с,

 $H_{\rm a}$ - влажность воздуха на впуске в г воды на кг сухого воздуха,

 $k_{\rm fw}$ - коэффициент, учитывающий удельный вес топлива на влажной основе (уравнение 16) и рассчитываемый в соответствии с пунктом 8.1.1.

8.4.3 Определение содержания твердых частиц

8.4.3.1 Оценка данных

Масса твердых частиц рассчитывается в соответствии с уравнением 27, содержащимся в пункте 8.3. Для оценки концентрации твердых частиц регистрируется суммарная масса пробы (m_{sep}), прошедшей через фильтры за весь испытательный цикл.

С предварительного одобрения компетентным органом, предоставляющим официальное утверждение типа или проводящим сертификацию, масса твердых частиц может быть скорректирована на конкретный уровень разбавляющего воздуха, как это указано в пункте 7.5.6, в соответствии с проверенной технической практикой и конкретными конструктивными особенностями используемой системы измерения твердых частиц.

8.4.3.2 Расчет выбросов

В зависимости от конструкции системы масса твердых частиц (г/испытание) рассчитывается с помощью одного из методов, изложенных в пунктах 8.4.3.2.1 или 8.4.3.2.2, после корректировки массы пробы твердых частиц на статическое давление на фильтре в соответствии с пунктом 8.3.

8.4.3.2.1 Расчет на основе коэффициента отбора

$$m_{\rm PM} = m_{\rm p}/(r_{\rm s} x_1 \ 000)$$
 (43),

где:

 $m_{\rm p}$ - масса твердых частиц, отобранных за цикл, в мг,

 $r_{\rm s}$ - средний коэффициент отбора проб в течение испытательного цикла,

при этом

$$r_{\rm s} = \frac{m_{\rm se}}{m_{\rm ew}} \times \frac{m_{\rm sep}}{m_{\rm sed}} \tag{44},$$

где:

 $m_{\rm se}$ - масса пробы, отобранная за цикл, в кг,

 $m_{\rm ew}$ - суммарная масса отработавших газов за цикл, в кг,

 $m_{\rm sep}$ - масса разбавленных отработавших газов, прошедших через фильтры для осаждения твердых частиц, в кг,

 $m_{\rm sed}$ - масса разбавленных отработавших газов, прошедших через смесительный канал, в кг.

В случае системы общего отбора проб значения m_{sep} и m_{sed} идентичны.

8.4.3.2.2 Расчет на основе коэффициента разбавления

$$m_{\rm PM} = \frac{m_{\rm p}}{m_{\rm sep}} \times \frac{m_{\rm edf}}{1\,000} \tag{45},$$

где:

 $m_{\rm p}$ - масса твердых частиц, отобранных за цикл, в мг,

 $m_{\rm sep}$ - масса разбавленных отработавших газов, прошедших через фильтры для осаждения твердых частиц, в кг,

 $m_{
m edf}$ - масса эквивалентных разбавленных отработавших газов за цикл в кг.

Суммарная масса эквивалентных разбавленных отработавших газов за цикл определяется по следующим формулам:

$$m_{\text{edf}} = \sum_{i=1}^{i=n} q_{\text{medf,i}} \times \frac{1}{f} \tag{46}$$

$$q_{\text{medf,i}} = q_{\text{mew,i}} \times r_{\text{d,i}} \tag{47}$$

$$r_{\rm d,i} = \frac{q_{\rm mdew,i}}{\left(q_{\rm mdew,i} - q_{\rm mdw,i}\right)} \tag{48},$$

где:

 $q_{medf,i}$ - мгновенное значение массового расхода эквивалентных разбавленных отработавших газов в кг/с,

 $q_{mew,i}$ - мгновенное значение массового расхода отработавших газов в кг/с,

 $r_{\rm d,i}$ - мгновенное значение коэффициента разбавления,

 $q_{m ext{dew,i}}$ - мгновенное значение массового расхода разбавленных

отработавших газов в кг/с,

 $q_{mdw,i}$ - мгновенное значение массового расхода разбавляющего воздуха

в кг/с,

f - частота регистрации данных при отборе проб в Γ ц,

n - число замеров.

8.5 <u>Измерение в условиях полного разбавленного потока (CVS)</u>

Для расчета массы выбросов используются значения сигналов концентрации газообразных компонентов, полученные на основе интегрирования по всему циклу или методом отбора проб в мешки для отбора, которые умножаются на величину массового расхода разбавленных отработавших газов. Массовый расход отработавших газов измеряется с помощью системы отбора проб постоянного объема (CVS), в которой может использоваться насос с объемным регулированием (PDP), трубка Вентури с критическим расходом (CFV) или трубка Вентури для дозвуковых потоков (SSV) с компенсацией потока или без нее.

В случае отбора проб в мешок и отбора проб твердых частиц производится отбор пропорциональной пробы разбавленных отработавших газов с помощью системы CVS. В случае системы без компенсации потока отношение потока проб к потоку CVS не должно отличаться более чем на $\pm 2,5\%$ от установленного значения для испытания. В случае системы с компенсацией потока каждое отдельное значение расхода должно оставаться постоянным в пределах $\pm 2,5\%$ соответствующего целевого значения расхода.

Полная схема испытания показана на рис. 7.

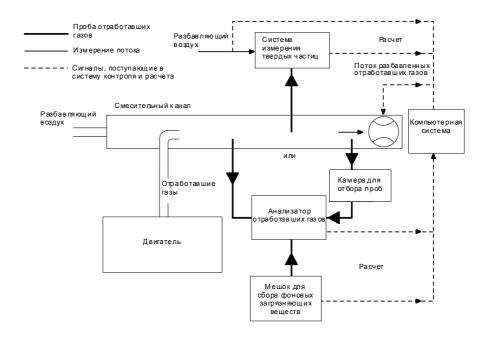


Рис. 7: Принципиальная схема системы измерения с полным разбавлением потока

8.5.1 Определение расхода разбавленных отработавших газов

8.5.1.1 Введение

Для расчета выбросов веществ, содержащихся в разбавленных отработавших газах, необходимо знать массовый расход разбавленных отработавших газов. Суммарных расход разбавленных отработавших газов за цикл (кг/испытание) рассчитывается на основе значений, измеренных в течение цикла, и соответствующих данных калибровки устройства измерения расхода (V_0 для PDP, K_v для CFV, C_d для SSV) с помощью одного из методов, изложенных в пунктах 8.5.1.2-8.5.1.4. Если суммарная масса пробы твердых частиц ($m_{\rm sep}$) превышает 0,5% суммарного значения массы потока CVS ($m_{\rm ed}$), то поток CVS корректируется по $m_{\rm sep}$ или же поток твердых частиц, идущий на отбор проб, до его прохождения через устройство измерения возвращается в поток CVS.

8.5.1.2 Система PDP- CVS

Если температура разбавленных отработавших газов поддерживается в течение цикла с помощью теплообменников в пределах \pm 6 K, то расчет массы потока за цикл производится по следующей формуле:

$$m_{\rm ed} = 1,293 \times V_0 \times n_{\rm p} \times p_{\rm p} \times 273/(101,3 \times T)$$
 (49),

где:

 V_0 - объем газа, нагнетаемого насосом за один оборот в условиях испытания, в ${\rm m}^3$ /об,

 $n_{\rm p}$ - суммарное число оборотов вала насоса за испытание,

 $p_{\rm p}$ - абсолютное давление на входе в насос в кПа,

T - средняя температура разбавленных отработавших газов на входе в насос в K.

Если используется система с компенсацией расхода (т.е. без теплообменника), то необходимо рассчитать мгновенные значения массы выбросов и проинтегрировать их за весь цикл. В этом случае мгновенное значение массы разбавленных отработавших газов рассчитывается по следующей формуле:

$$m_{\text{ed,i}} = 1,293 \times V_0 \times n_{\text{P,i}} \times p_{\text{p}} \times 273/(101,3 \times T)$$
 (50),

где:

 $n_{\rm P,i}$ - суммарное число оборотов вала насоса за соответствующий временной интервал.

8.5.1.3 Система CFV-CVS

Если температура разбавленных отработавших газов поддерживается в течение цикла с помощью теплообменника в пределах ± 11 K, то расчет массы потока за цикл производится по следующей формуле:

$$m_{\rm ed} = 1{,}293 \times t \times K_{\rm v} \times p_{\rm p} / T^{0.5}$$
 (51),

где:

t - продолжительность цикла в c,

 $K_{\rm v}$ - коэффициент калибровки трубки Вентури с критическим расходом при стандартных условиях,

 $p_{\rm p}$ - абсолютное давление на входе в трубку Вентури в кПа,

T - абсолютная температура на входе в трубку Вентури в К.

Если используется система с компенсацией расхода (т.е. без теплообменника), то необходимо рассчитать мгновенные значения массы выбросов и проинтегрировать их за весь цикл. В этом случае мгновенное значение массы разбавленных отработавших газов рассчитывается по следующей формуле:

$$m_{\rm ed,i} = 1,293 \times \Delta t_{\rm i} \times K_{\rm v} \times p_{\rm p} / T^{0.5}$$
 (52),

где:

 $\Delta t_{\rm i}$ - временной интервал в с.

8.5.1.4 Система SSV-CVS

Если температура разбавленных отработавших газов поддерживается в течение цикла с помощью теплообменника в пределах \pm 11 K, то расчет массы потока за цикл производится по следующей формуле:

$$m_{\rm ed} = 1{,}293 \times Q_{\rm SSV}$$
 (53),

при этом

$$Q_{ssv} = A_0 d_v^2 C_d p_p \sqrt{\left[\frac{1}{T} \left(r_p^{1,4286} - r_p^{1,7143}\right) \cdot \left(\frac{1}{1 - r_D^4 r_p^{1,4286}}\right)\right]}$$
(54),

где:

$$A_0$$
 - 0,006111 в единицах СИ $\left(\frac{\mathit{M}^3}{\mathit{мин}}\right) \left(\frac{\mathit{K}^{\frac{1}{2}}}{\mathit{к}\mathit{\Pi}a}\right) \left(\frac{1}{\mathit{мм}^2}\right)$,

 $d_{\rm v}$ - диаметр сужения SSV в м,

 $C_{\rm d}$ - коэффициент расхода SSV,

 $p_{\rm p}$ - абсолютное давление на входе в трубку Вентури в кПа,

T - температура на входе в трубку Вентури в K,

 $r_{\rm p}$ - отношение давления на сужении SSV к абсолютному статистическому

давлению на входе
$$1 - \frac{\Delta p}{p_a}$$
;

 $r_{\rm D}$ - отношение диаметра сужения SSV d к внутреннему диаметру D входной трубы.

Если используется система с компенсацией расхода (т.е. без теплообменника), то необходимо рассчитать мгновенные значения массы выброса и проинтегрировать их за весь цикл. В этом случае мгновенное значение массы разбавленных отработавших газов рассчитывается по следующей формуле:

$$m_{\rm ed} = 1,293 \times Q_{\rm SSV} \times \Delta t_{\rm i} \tag{55},$$

где:

 $\Delta t_{\rm i}$ - временной интервал в с.

Расчет в реальном масштабе времени начинается либо со значения $C_{\rm d}$ в разумных пределах, например 0,98, или значения $Q_{\rm ssv}$ в разумных пределах. Если расчеты начинаются с $Q_{\rm ssv}$, то для подсчета числа Рейнольдса используется первоначальное значение $Q_{\rm ssv}$.

В ходе всех испытаний на выбросы число Рейнольдса при данном диаметре сужения SSV должно находиться в диапазоне чисел Рейнольдса, используемых для построения калибровочной кривой в соответствии с пунктом 9.5.4.

8.5.2 Определение газообразных компонентов

8.5.2.1 Введение

Газообразные компоненты в разбавленных отработавших газах, выбрасываемых двигателем, представленным на испытание, измеряются с помощью методов, описанных в приложении 3. Разбавление отработавших газов производится с помощью отфильтрованного окружающего воздуха, синтетического воздуха или азота. Пропускная способность системы с полным разбавлением потока должна быть достаточной для полного устранения конденсации воды в системах разбавления и отбора проб. Процедуры оценки данных и расчетов изложены в пунктах 8.5.2.2 и 8.5.2.3.

8.5.2.2 Оценка данных

Данные, касающиеся выбросов, регистрируются и хранятся в соответствии с пунктом 7.6.6.

8.5.2.3 Расчет массы выбросов

8.5.2.3.1 Система с постоянным массовым расходом

В случае систем с теплообменником масса загрязняющих веществ определяется при помощи следующего уравнения:

$$m_{\rm gas} = u_{\rm gas} \times c_{\rm gas} \times m_{\rm ed}$$
 (в г/испытание) (56),

где:

 $u_{\rm gas}$ - отношение плотности компонента отработавших газов к плотности воздуха,

 $c_{\rm gas}$ - средняя концентрация компонента, скорректированная по фону, в млн⁻¹,

 $m_{\rm ed}$ - суммарная масса разбавленных отработавших газов за цикл в кг.

В случае измерения на сухой основе производится корректировка на сухое/влажное состояние в соответствии с пунктом 8.1.

Для расчета NO_x масса выбросов умножается, если это применимо, на правочный коэффициент на влажность $k_{h,D}$ или $k_{h,G}$, определяемый в соответствии с пунктом 8.2.

Значения u приводятся в таблице 6. Для расчета значений $u_{\rm gas}$ плотность разбавленных отработавших газов принимается равной плотности воздуха. В этой связи значения $u_{\rm gas}$ идентичны для отдельных газовых компонентов, но различны для HC.

	$ ho_{ ext{de}}$	Газ					
Топливо		NO_x	CO	HC	CO_2	O_2	CH_4
		$ ho_{ m gas} \ _{ m [\kappa\Gamma/M}^3]$					
		2,053	1,250	a)	1,9636	1,4277	0,716
		$u_{ m gas}^{ m \ b)}$					
Дизельное	1,293	0,001588	0,000967	0,000480	0,001519	0,001104	0,000553
Этанол	1,293	0,001588	0,000967	0,000795	0,001519	0,001104	0,000553
$C\Pi\Gamma^{c)}$	1,293	0,001588	0,000967	$0,000517^{d}$	0,001519	0,001104	0,000553
Пропан	1,293	0,001588	0,000967	0,000507	0,001519	0,001104	0,000553
Бутан	1,293	0,001588	0,000967	0,000501	0,001519	0,001104	0,000553
$CH\Gamma^{e)}$	1,293	0,001588	0,000967	0,000505	0,001519	0,001104	0,000553

- а) в зависимости от топлива
- b) при $\lambda = 2$, сухом воздухе, 273 K, 101,3 кПа
- c) u с точностью 0,2% по массовому составу: C = 66-76%; H = 22-25%; N = 0-12%
- d) NMHC на основе $CH_{2,93}$ (применительно к общему количеству HC для CH_4 используется коэффициент u_{gas})
- e) u с точностью 0,2% по массовому составу: C3 = 70-90%; C4 = 10-30%

<u>Таблица 6</u>. Значения коэффициента *и* и плотности компонентов разбавленного отработавшего газа

В альтернативном случае значения u могут быть рассчитаны с использованием метода точных расчетов, который в целом охарактеризован в пункте 8.4.2.4, следующим образом:

$$u_{\text{gas}} = \frac{M_{\text{gas}}}{M_{\text{d}} \times \left(1 - \frac{1}{D}\right) + M_{\text{e}} \times \left(\frac{1}{D}\right)}$$
(57),

где:

 $M_{\rm gas}$ - молярная масса компонента газа в г/моль (см. приложение 6),

 $M_{\rm e}$ - молярная масса отработавших газов в г/моль,

 $M_{\rm d}$ - молярная масса разбавляющего воздуха = 28,965 г/моль,

коэффициент разбавления (см. пункт 8.5.2.3.2).

8.5.2.3.2 Определение концентраций, скорректированных по фону

Для получения чистых концентраций загрязняющих веществ средняя фоновая концентрация газообразных загрязняющих веществ в разбавляющем воздухе вычитается из измеренных концентраций. Среднее значение фоновых

концентраций можно определить либо с помощью накопительного мешка, либо методом непрерывного измерения с последующим интегрированием. Для расчета используется следующее уравнение:

$$c_{\text{gas}} = c_{\text{gas,e}} - c_{\text{d}} \times (1 - (1/D))$$
 (58),

где:

 $c_{\rm gas,e}$ - концентрация компонента, измеренная в разбавленных отработавших газах, в млн $^{-1}$,

 $c_{
m d}$ - концентрация компонента, измеренная в разбавляющем воздухе, в млн $^{-1}$,

D - коэффициент разбавления.

Коэффициент разбавления рассчитывается следующим образом:

а) для дизельных двигателей и газовых двигателей, работающих на СНГ

$$D = \frac{F_{\rm S}}{c_{\rm CO2,e} + (c_{\rm HC,e} + c_{\rm CO,e}) \times 10^{-4}}$$
 (59)

b) для газовых двигателей, работающих на ПГ

$$D = \frac{F_{\rm S}}{c_{\rm CO2,e} + (c_{\rm NMHC,e} + c_{\rm CO,e}) \times 10^{-4}}$$
 (60),

где:

 $c_{\text{CO2,e}}$ - концентрация CO_2 на влажной основе в разбавленных отработавших газах, объемная доля, в %,

 $c_{HC,e}$ - концентрация HC на влажной основе в разбавленных отработавших газах в млн $^{-1}$ C1,

 $c_{\text{NMHC,e}}$ - концентрация NMHC на влажной основе в разбавленных отработавших газах в млн $^{-1}$ C1,

 $c_{\rm CO,e}$ - концентрация CO на влажной основе в разбавленных отработавших газах в млн $^{-1}$,

 $F_{\rm S}$ - стехиометрический коэффициент.

Стехиометрический коэффициент рассчитывается по следующей формуле:

$$F_{\rm S} = 100 \times \frac{1}{1 + \frac{\alpha}{2} + 3,76 \times \left(1 + \frac{\alpha}{4}\right)} \tag{61},$$

где:

 α - молярная доля водорода в топливе (H/C).

С другой стороны, если состав топлива неизвестен, то в качестве альтернативы можно использовать следующие стехиометрические коэффициенты:

 F_S (дизельное топливо) = 13,4; F_S (СНГ) = 11,6; F_S (ПГ) = 9,5.

8.5.2.3.3 Система с компенсацией расхода

В случае систем без теплообменника масса загрязняющих веществ (г/испытание) определяется на основе расчета мгновенных значений массы выбросов и интегрирования этих мгновенных значений по всему циклу. Кроме того, необходимо выполнить фоновую коррекцию, которая производится непосредственно по мгновенным значениям концентрации. Расчет производится по следующей формуле:

$$m_{\text{gas}} = \sum_{i=1}^{n} \left[\left(m_{\text{ed,i}} \times c_{\text{gas,e}} \times u_{\text{gas}} \right) \right] - \left[\left(m_{\text{ed}} \times c_{\text{d}} \times \left(1 - 1/D \right) \times u_{\text{gas}} \right) \right]$$
(62),

где:

 $c_{
m gas,e}$ - концентрация компонента, измеренная в разбавленных отработавших газах, в млн $^{-1}$,

 $c_{\sf d}$ - концентрация компонента, измеренная в разбавляющем воздухе, в млн $^{-1}$,

 $m_{\rm ed,i}$ - мгновенное значение массы разбавленных отработавших газов в кг,

 $m_{\rm ed}$ - суммарное значение массы разбавленных отработавших газов за цикл в кг,

 $u_{\rm gas}$ - табличное значение, выбираемое из таблицы 6,

коэффициент разбавления.

8.5.3 Определение содержания твердых частиц

8.5.3.1 Расчет массы выбросов

Масса твердых частиц (г/испытание) рассчитывается после корректировки массы пробы твердых частиц на фильтре на статистическое давление в соответствии с пунктом 8.3 следующим образом:

$$m_{\rm PM} = \frac{m_{\rm p}}{m_{\rm sep}} \times \frac{m_{\rm ed}}{1\,000}$$
 (63),

где:

 $m_{\rm p}$ - масса твердых частиц, отобранных за цикл, в мг,

 m_{sep} - масса разбавленных отработавших газов, прошедших через фильтры для осаждения твердых частиц, в кг,

 $m_{\rm ed}$ - масса разбавленных отработавших газов за цикл в кг,

при этом

$$m_{\text{sep}} = m_{\text{set}} - m_{\text{ssd}}$$
 (64),

где:

 m_{set} - масса отработавших газов, подвергнутых двойному разбавлению, которые прошли через фильтр для осаждения твердых частиц, в кг,

 $m_{\rm ssd}$ - масса вторичного разбавляющего воздуха в кг.

Если фоновый уровень твердых частиц в разбавляющем воздухе определен в соответствии с пунктом 7.5.6, то массу твердых частиц можно скорректировать по фону. В этом случае масса твердых частиц (г/испытание) рассчитывается по следующей формуле:

$$m_{\rm PM} = \left[\frac{m_{\rm p}}{m_{\rm sep}} - \left(\frac{m_{\rm b}}{m_{\rm sd}} \times \left(1 - \frac{1}{D} \right) \right) \right] \times \frac{m_{\rm ed}}{1000} \tag{65},$$

где:

 $m_{\rm sep}$ - масса разбавленных отработавших газов, прошедших через фильтры для осаждения твердых частиц, в кг,

 $m_{\rm ed}$ - масса разбавленных отработавших газов за цикл в кг,

 $m_{\rm sd}$ - масса разбавляющего воздуха, пропущенного через фоновый пробоотборник твердых частиц, в кг,

 $m_{\rm b}$ - масса собранных фоновых твердых частиц в разбавляющем воздухе в кг,

коэффициент разбавления, определенный в соответствии с пунктом 8.5.2.3.2.

8.6 Общие расчеты

8.6.1 Корректировка на дрейф

Что касается корректировки на дрейф, упомянутой в пункте 7.8.4, то скорректированное значение концентрации рассчитывается следующим образом:

$$c_{\text{cor}} = c_{\text{ref,z}} + \left(c_{\text{ref,s}} - c_{\text{ref,z}}\right) \left(\frac{2 \cdot c_{\text{gas}} - \left(c_{\text{pre,z}} + c_{\text{post,z}}\right)}{\left(c_{\text{pre,s}} + c_{\text{post,s}}\right) - \left(c_{\text{pre,z}} + c_{\text{post,z}}\right)}\right)$$
(66),

где:

 $c_{\rm ref,z}$ - исходная концентрация нулевого газа (равная обычно нулю) в млн $^{-1}$,

 $c_{\text{ref,s}}$ - исходная концентрация поверочного газа в млн⁻¹,

 $c_{\rm pre,z}$ - концентрация нулевого газа, измеренная при помощи анализатора, до проведения испытания в млн $^{-1}$,

 $c_{\rm pre,s}$ - концентрация поверочного газа, измеренная при помощи анализатора, до проведения испытания в млн $^{-1}$,

 $c_{
m post,z}$ - концентрация нулевого газа, измеренная при помощи анализатора, после проведения испытания в млн $^{-1}$,

 $c_{
m post,s}$ - концентрация поверочного газа, измеренная при помощи анализатора, после проведения испытания в млн $^{-1}$,

 $c_{\it gas}$ - концентрация газа, отобранного в качестве пробы, в млн $^{-1}$.

В соответствии с пунктом 8.6.3 для каждого компонента рассчитываются два набора результатов удельных выбросов после любой другой необходимой корректировки. Один из этих наборов рассчитывается с использованием концентраций без корректировки, а другой - с использованием концентраций, скорректированных на дрейф, в соответствии с уравнением 66.

В зависимости от системы измерения и метода проведения расчетов нескорректированные результаты выбросов рассчитываются при помощи уравнений 36, 37, 56, 57 или 62, соответственно. Для расчета скорректированных значений выбросов показатель $c_{\rm gas}$ в уравнениях 36, 37, 56, 57 или 62, соответственно, заменяется показателем $c_{\rm cor}$ из уравнения 66. Если в соответствующем уравнении используются мгновенные значения концентрации $c_{\rm gas,i}$, то в качестве мгновенного значения $c_{\rm cor,i}$ также применяется скорректированный показатель. В уравнении 57 скорректированное значение должно быть использовано в отношении как измеренной концентрации, так и фоновой концентрации.

Сопоставление производится на основе процентной доли нескорректированных результатов. Различия между нескорректированными и скорректированными значениями удельных выбросов на стенде должны оставаться в пределах \pm 4% нескорректированных значений удельных выбросов на стенде либо в рамках \pm 4% соответствующего предельного значения - в зависимости от того, какой из этих показателей выше. Если дрейф превышает 4%, то испытание считается недействительным.

Если применяется корректировка на дрейф, то в отчете о результатах испытания на выбросы указываются только значения выбросов, скорректированные на дрейф.

8.6.2 Pacчет NMHC и CH₄

Расчет NMHC и CH₄ зависит от используемого метода калибровки. Для измерения без NMC (нижняя часть на рисунке 11 в приложении 3) FID калибруется при помощи пропана. Для калибровки FID последовательно с NMC (верхняя часть рисунка 11 в приложении 3) допускается использование следующих методов:

- а) калибровочный газ пропан; пропан идет в обход NMC,
- b) калибровочный газ метан; метан проходит через NMC.

Что касается подпункта а), то концентрация NMHC и CH_4 рассчитывается следующим образом:

$$C_{NMHC} = \frac{c_{HC(w/NMC)} - c_{HC(w/oNMC)} \times (1 - E_E)}{r_h \times (E_E - E_M)}$$
(67)

$$C_{CH4} = \frac{c_{HC(w/oNMC)} \times (1 - E_M) - c_{HC(w/NMC)}}{E_E - E_M}$$
(68)

Что касается подпункта b), то концентрация NMHC и CH_4 рассчитывается следующим образом:

$$C_{NMHC} = \frac{c_{HC(w/oNMC)} \times (1 - E_M) - c_{HC(w/NMC)} \times r_h \times (1 - E_M)}{E_E - E_M}$$
(67a)

$$C_{CH4} = \frac{c_{HC(w/NMC)} \times r_h \times (1 - E_M) - c_{HC(w/oNMC)} \times (1 - E_E)}{r_h \times (E_E - E_M)}$$
(68a),

где:

 $c_{
m HC(w/NMC)}$ - концентрация HC в пробе газа, проходящего через NMC, в млн $^{-1}$,

 $c_{\text{HC(w/oNMC)}}$ - концентрация HC в пробе газа, идущего в обход NMC, в млн $^{-1}$,

 $r_{\rm h}$ - коэффициент чувствительности метана, определяемый в соответствии с пунктом 9.3.7.2,

 $E_{\rm M}$ - эффективность по метану, определяемая в соответствии с пунктом 9.3.8.1,

 $E_{\rm E}$ - эффективность по этану, определяемая в соответствии с пунктом 9.3.8.2.

Если r_h < 1,05, то в уравнениях 67, 67 a) и 68 a) этот коэффициент можно опустить.

8.6.3 Расчет удельных выбросов

Расчет удельных выбросов $e_{\rm gas}$ или $e_{\rm PM}$ (г/кВт·ч) по каждому отдельному компоненту в зависимости от типа испытательного цикла производится следующим образом.

Для ВСУЦ, ВСПЦ в условиях запуска в прогретом состоянии или ВСПЦ в условиях запуска холодного двигателя применяется следующая формула:

$$e = \frac{m}{W_{\text{out}}} \tag{69},$$

где:

m - масса выбросов данного компонента в г/испытание,

 $W_{\rm act}$ - фактическая работа за цикл, определяемая в соответствии с пунктом 7.8.6, в кВт.

Для ВСПЦ окончательный результат испытаний представляет собой взвешенное среднее значений, полученных по итогам испытаний в условиях запуска холодного двигателя и испытаний в условиях запуска в прогретом состоянии при помощи одной из следующих формул:

$$e = \frac{(0.14 \times m_{\text{cold}}) + (0.86 \times m_{\text{hot}})}{(0.14 \times W_{\text{act,cold}}) + (0.86 \times W_{\text{act,hot}})}$$
(70a)

$$e = \frac{(0.1 \times m_{\text{cold}}) + (0.9 \times m_{\text{hot}})}{(0.1 \times W_{\text{act,cold}}) + (0.9 \times W_{\text{act,hot}})}$$
(70b)

Соответствующая формула выбирается Договаривающимися сторонами.

9. СПЕЦИФИКАЦИЯ И ПРОВЕРКА ОБОРУДОВАНИЯ

В настоящих гтп не содержится детального описания аппаратуры или системы для измерения расхода, давления и температуры. Вместо этого в пункте 9.2 указываются только требования к линейности такой аппаратуры или таких систем, которые необходимы для проведения испытаний на выбросы.

9.1 Спецификация динамометра

Для проведения соответствующего испытательного цикла, описанного в пунктах 7.2.1 и 7.2.2, используется динамометр для двигателя, имеющий надлежащие характеристики.

Приборы для измерения крутящего момента и частоты вращения должны позволять производить измерения мощности на валу с погрешностью, необходимой для соблюдения критериев подтверждения достоверности результатов цикла. В этой связи может потребоваться проведение дополнительных расчетов. Погрешность измерительной температуры должна обеспечивать соблюдение требований к линейности, указанных в таблице 7 пункта 9.2.

9.2 Требования к линейности

Калибровка всех измерительных приборов и систем производится в соответствии с национальными (международными) стандартами. Измерительные приборы и системы должны отвечать указанным в таблице 7 требованиям, предъявляемым к линейности. В случае газоанализаторов проверка линейности в соответствии с пунктом 9.2.1 проводится не реже одного раза в три месяца или всякий раз, когда производятся работы по ремонту или модификации системы, которые могут сказаться на калибровке. В случае других приборов и систем проверка линейности проводится изготовителем прибора согласно требованиям, установленным внутренними правилами проверки, или в соответствии с требованиями ИСО 9000.

Система измерения	$\left x_{\min} \cdot (a_1 - 1) + a_0 \right $	Наклон а ₁	Стандартная погрешность СП	Коэффициент смешанной корреляции r^2
Частота вращения				
двигателя	\leq 0,05% макс.	0,98-1,02	≤ 2% maкc.	\geq 0,990
Крутящий момент				
двигателя	≤ 1% макс.	0,98-1,02	≤ 2% maкc.	\geq 0,990
Расход топлива	≤ 1% макс.	0,98-1,02	≤ 2% макс.	\geq 0,990
Расход воздуха	≤ 1% макс.	0,98-1,02	≤ 2% макс.	\geq 0,990
Расход отработавших газов	≤ 1% макс.	0,98-1,02	≤ 2% макс.	≥ 0,990
Расход разбавляющего	≤ 1% макс.	0,98-1,02	≤ 2% макс.	≥ 0,990
воздуха				
Расход разбавленных	≤ 1% макс.	0,98-1,02	≤ 2% макс.	≥ 0,990
отработавших газов				

Система измерения	$\left x_{\min}\cdot(a_1-1)+a_0\right $	Наклон а ₁	Стандартная погрешность СП	Коэффициент смешанной корреляции r^2
Расход проб	≤ 1% макс.	0,98-1,02	≤ 2% макс.	\geq 0,990
Газоанализаторы	≤ 0,5% макс.	0,99-1,01	≤ 1% макс.	\geq 0,998
Газовые сепараторы	≤ 0,5% maкc.	0,98-1,02	≤ 2% maкc.	\geq 0,990
Температура	≤ 1% макс.	0,99-1,01	≤ 1% макс.	≥ 0,998
Давление	≤ 1% макс.	0,99-1,01	≤ 1% макс.	≥ 0,998
Баланс ТЧ	≤ 1% макс.	0,99-1,01	≤ 1% макс.	≥ 0,998

<u>Таблица 7</u>. Требования к линейности, предъявляемые к приборам и системам измерения

9.2.1 Проверка линейности

9.2.1.1 Введение

Проверка линейности проводится для каждой системы измерения, перечисленной в таблице 7. Измерительная система выставляется минимум по десяти исходным величинам либо в соответствии с другими указаниями, и измеренные значения сопоставляются с исходными с использованием линейной регрессии методом наименьших квадратов согласно уравнению 11. Максимальные предельные значения в таблице 6 означают максимальные значения, которые, как ожидается, могут быть получены в ходе испытания.

9.2.1.2 Общие требования

Измерительные системы прогреваются в соответствии с рекомендациями изготовителя приборов. Измерительная система приводится в действие при указанных значениях температуры, давления и расхода.

9.2.1.3 Процедура

Проверка линейности проводится по каждому обычно используемому диапазону измерения в следующем порядке:

а) прибор устанавливается на нуль путем подачи нулевого сигнала. В случае газоанализаторов чистый синтетический воздух (или азот) подается непосредственно на вход анализатора;

- b) прибор настраивается посредством подачи соответствующего поверочного сигнала. В случае газоанализаторов в соответствующий поверочный газ подается непосредственно на вход анализатора;
- с) процедура установки на нуль, указанная в подпункте а), повторяется.
- d) проверка производится минимум по десяти исходным значениям (включая нуль), которые находятся в пределах шкалы измерения от нуля до максимальной величины, которая, как ожидается, может быть получена в ходе испытаний на выброс. В случае газоанализаторов газ известной концентрации в соответствии с пунктом 9.3.3.2 подается непосредственно на вход анализатора;
- е) исходные величины измеряются, и измеренные значения регистрируются в течение 30 секунд с частотой регистрации не менее 1 Гц;
- f) расчет параметров с использованием линейной регрессии метода наименьших квадратов в соответствии с уравнением 11 в пункте 7.8.7 производится на основе среднеарифметических значений, полученных в течение указанного выше 30-секундного периода;
- g) параметры, рассчитанные методом линейной регрессии, должны отвечать требованиям таблицы 7, указанным в пункте 9.2;
- h) установка на нуль проверяется еще раз, и при необходимости производится повторная проверка.

9.3 Замеры газообразных выбросов и система отбора проб

9.3.1 Технические требования к анализаторам

9.3.1.1 Общие положения

Диапазон измерений и время срабатывания анализаторов должны соответствовать точности, требуемой для измерения концентраций компонентов отработавших газов в условиях переходного и устойчивого состояния.

Электромагнитная совместимость (ЭМС) оборудования должна находиться на уровне, сводящем к минимуму дополнительные ошибки.

9.3.1.2 Погрешность

Погрешность, определяемая как отклонение показаний анализатора от исходного значения, не должна превышать \pm 2% считываемых показаний или \pm 0,3% полной шкалы - в зависимости от того, какое из этих значений больше.

9.3.1.3 Воспроизводимость

Воспроизводимость, определяемая как увеличенная в 2,5 раза среднеквадратичное отклонение 10 повторений реакций на данный калибровочный или поверочный газ, не должна превышать 1% верхнего значения концентрации по полной шкале для любого диапазоны свыше 155 млн⁻¹ (или млн⁻¹ C) либо 2% для любого диапазона ниже 155 млн⁻¹ (или млн⁻¹ C).

9.3.1.4 Помехи

Чувствительность анализатора по полному размаху показаний к нулевому, калибровочному или поверочному газу в течение любого 10-секундного периода не должна превышать 2% полной шкалы на всех использованных диапазонах измерений.

9.3.1.5 Дрейф нуля

Дрейф чувствительности к нулю указывается изготовителем приборов.

9.3.1.6 Дрейф калибровки

Дрейф чувствительности к калибровке указывается изготовителем приборов.

9.3.1.7 Время восстановления

Время восстановления анализатора, установленного в измерительной системе, не должно превышать 2,5 с.

9.3.1.8 Сушка газа

Замер отработавших газов может производиться на влажной или сухой основе. Осушитель газа, если он используется, должен оказывать минимальное влияние на состав измеряемых газов. Химические осушители для удаления воды из пробы не подходят.

9.3.2 Газоанализаторы

9.3.2.1 Введение

В пунктах 9.3.2.2-9.2.3.7 изложены принципы приемлемых методов измерения. Детальное описание систем измерения приводится в приложении 3. Газы, подлежащие замеру, анализируются с помощью перечисленных ниже приборов. Для нелинейных анализаторов допускается использование контуров линеаризации.

9.3.2.2 Анализ содержания оксида углерода (СО)

Для анализа содержания оксида углерода используется недисперсионный инфракрасный анализатор (NDIR) абсорбционного типа.

9.3.2.3 Анализ содержания диоксида углерода (СО₂)

Для анализа содержания диоксида углерода используется недисперсионный инфракрасный анализатор (NDIR) абсорбционного типа.

9.3.2.4 Анализ содержания углеводородов (НС).

Для анализа содержания углеводорода в качестве анализатора используется нагреваемый плазменно-ионизационный детектор (HFID) с датчиком, клапанами, системой трубопроводов и т.п., нагреваемыми таким образом, чтобы поддерживать температуру газа на уровне $463~\mathrm{K}\pm10~\mathrm{K}~(190\pm10~\mathrm{^{\circ}C})$. В случае двигателей, работающих на ПГ, и двигателей с принудительным зажиганием в качестве анализатора углеводородов может использоваться, в зависимости от применяемого метода, ненагреваемый плазменно-ионизационный детектор (FID) (см. пункт A.3.1.3 приложения 3).

9.3.2.5 Анализ содержания метана (СН₄) и неметановых углеводородов (NMHC)

Фракция метана и неметановых углеводородов определяется с помощью прогретого отделителя неметановых фракций (NMC) и двух FID в соответствии с пунктами А.3.1.4 и А.3.1.5 приложения 3. Концентрация компонентов определяется в соответствии с пунктом 8.6.2.

9.3.2.6 Анализ содержания оксидов азота (NO_x)

Для измерения NO_x предусмотрено два измерительных прибора, причем каждый из них может использоваться в том случае, если он соответствует критериям, изложенным в пункте 9.3.2.6.1 или 9.3.2.6.2 соответственно. Для определения соответствия альтернативной процедуры измерения согласно пункту 5.1.1 допускается использование только CLD.

9.3.2.6.1 Хемилюминесцентный детектор (CLD)

В случае измерения на сухой основе для анализа содержания оксидов азота в качестве анализатора используется хемилюминесцентный детектор (CLD) или нагреваемый хемилюминесцентный детектор (HCLD) с конвертером NO₂/NO. В случае измерения на влажной основе используется детектор HCLD с конвертером при температуре, поддерживаемой на уровне свыше 328 К (55° C), и при условии соблюдения критериев проверки на сбой по воде (см. пункт 9.3.9.2.2). Как для CLD, так и для HCLD температура стенки канала отбора проб должна поддерживаться в пределах 328 К - 473 К (55° C - 200° C) вплоть до конвертера в случае замеров на сухой основе и до анализатора в случае замеров на влажной основе.

9.3.2.6.2 Недисперсионный ультрафиолетовый детектор (NDUV)

Для измерения концентрации NO_x используется недисперсионный ультрафиолетовый (NDUV) анализатор. Если анализатор NDUV измеряет только NO_x , то перед анализатором NDUV устанавливается конвертер NO_2/NO . Температура анализатора должна поддерживаться на таком уровне, чтобы исключалась возможность образования водного конденсата, если перед конвертером NO_2/NO (в случае его использования) либо перед анализатором не установлен осущитель для проб.

9.3.2.7 Измерение отношения воздуха к топливу

Аппаратура для измерения отношения воздуха к топливу, которая используется для определения расхода отработавших газов в соответствии с указаниями, содержащимися в пункте 8.3.1.6, представляет собой широкополосный датчик состава смеси или кислородный датчик циркониевого типа. Датчик устанавливается непосредственно на выхлопной трубе в том месте, где температура отработавших газов достаточно высока и позволяет устранить конденсацию водяных паров.

Погрешность датчика со встроенной электронной схемой должна быть в следующих пределах:

```
\pm 3% показаний при \lambda < 2;
```

- \pm 5% показаний при 2 \leq λ < 5;
- ± 10 % показаний $5 \le \lambda$.

Для того чтобы датчик удовлетворял указанным выше пределам погрешности, его необходимо подвергнуть калибровке в соответствии с инструкцией изготовителя прибора.

9.3.3 Газы

Используются газы с неистекшим сроком годности.

9.3.3.1 Химически чистые газы

Требуемая чистота газов зависит от предельного содержания примесей, указанных ниже. Для проведения испытаний необходимо иметь в наличии следующие газы:

а) В случае первичных отработавших газов

Чистый азот

```
(Примеси: \leq 1 млн<sup>-1</sup> C1, \leq 1 млн<sup>-1</sup> CO, \leq 400 млн<sup>-1</sup> CO<sub>2</sub>, \leq 0,1 млн<sup>-1</sup> NO)
```

Чистый кислород

(Чистота: объемная доля $O_2 > 99,5\%$)

Смесь водорода и гелия (топливная горелка FID)

 $(40 \pm 1\%$ - водород, остальное - гелий)

(Примеси: ≤ 1 млн⁻¹ C1, ≤ 400 млн⁻¹ CO₂)

Чистый синтетический воздух

(Примеси: ≤ 1 млн⁻¹ C1, ≤ 1 млн⁻¹ CO, ≤ 400 млн⁻¹ CO₂, $\leq 0,1$ млн⁻¹ NO) (Содержание кислорода: 18-21%).

b) В случае разбавленного отработавшего газа (факультативно в случае первичного отработавшего газа)

Чистый азот

(Примеси: $\leq 0.5 \text{ млн}^{-1} \text{ C1}, \leq 1 \text{ млн}^{-1} \text{ CO}, \leq 10 \text{ млн}^{-1} \text{ CO}_2, \leq 0.02 \text{ млн}^{-1} \text{ NO}$)

Чистый кислород

(Чистота: объемная доля $O_2 > 99,5\%$)

Смесь водорода и гелия (топливная горелка FID)

 $(40 \pm 1\%$ - водород, остальное - гелий)

(Примеси: $\leq 0.05 \text{ млн}^{-1} \text{ C1}, \leq 10 \text{ млн}^{-1} \text{ CO}_2$)

Чистый синтетический воздух

(Примеси: $\leq 0,05$ млн⁻¹ C1, ≤ 1 млн⁻¹ CO, ≤ 10 млн⁻¹ CO₂, $\leq 0,02$ млн⁻¹ NO) (Содержание кислорода: объемная доля 20,5 - 21,5%).

Если могут быть представлены доказательства наличия указанных выше объемов примесей, то вместо газовых баллонов может использоваться газоочиститель.

9.3.3.2 Калибровочные и проверочные газы

Если это применимо, то в наличии должны иметься смеси газов, состоящие из нижеследующих химических соединений. Допускаются также другие комбинации газов при условии, что газы, составляющие комбинацию, не вступают между собой в реакцию. Срок истечения годности калибровочных газов, указанный изготовителем, регистрируется.

 C_3H_8 и чистый синтетический воздух (см. пункт 9.3.3.1);

ECE/TRANS/WP.29/2009/121 page 104

СО и чистый азот;

NO и чистый азот;

NO₂ и чистый синтетический воздух;

CO₂ и чистый азот;

СН₄ и чистый синтетический воздух;

 C_2H_6 и чистый синтетический воздух.

Реальная концентрация калибровочного и поверочного газа должна находиться в пределах $\pm 1\%$ номинального значения и должна соответствовать национальным или международным стандартам. Все концентрации калибровочного газа указываются в объемных долях (% или млн $^{-1}$).

9.3.3.3 Газовые сепараторы

Газы, применяемые для калибровки и тарирования, можно также получить с помощью газовых сепараторов (прецизионных смесителей), используя в качестве разбавляющей субстанции чистый N_2 или чистый синтетический воздух. Точность, обеспечиваемая газовым сепаратором, должна быть такой, чтобы концентрацию смешанных калибровочных газов можно было определять с погрешностью, не превышающей $\pm 2\%$. Данная погрешность означает, что содержание первичных газов смеси должно быть известно с точностью не менее $\pm 1\%$ в соответствии с национальными или международными стандартами на газ. Проверка производится в диапазоне 15-50% полной шкалы для каждой операции калибровки с использованием газового сепаратора. Если первая проверка дала отрицательные результаты, то можно произвести дополнительную проверку с использованием другого калибровочного газа.

При желании смеситель можно проверить при помощи прибора, который по своему характеру является линейным, например CLD с использованием NO. Пределы измерений прибора регулируются с помощью поверочного газа, непосредственно направляемого в прибор. Газовый сепаратор применяется при данных параметрах настройки, и номинальное значение сопоставляется с

концентрацией, замеренной прибором. Разность в показаниях в каждой точке должна находиться в пределах \pm 1% номинального значения.

В случае проверки линейности в соответствии с пунктом 9.2.1 погрешность газового сепаратора должна находиться в пределах $\pm 1\%$.

9.3.3.4 Газы для проверки кислородной интерференции

Газы для проверки кислородной интерференции представляют собой смесь пропана, кислорода и азота. Они должны содержать пропан с 350 млн⁻¹ С ± 75 млн⁻¹ С углеводорода. Значение концентрации определяется по допускам на калибровочный газ путем хроматографического анализа общего состава углеводорода плюс примесей или методом динамического смешивания. Концентрации кислорода, требуемые в случае испытания двигателей с принудительным зажиганием и с воспламенением от сжатия, перечислены в таблице 8 с учетом того, что оставшуюся газовую фракцию должен составлять чистый азот.

Тип двигателя	Концентрация О2 (в %)
Воспламенение от сжатия	21 (20-22)
Воспламенение от сжатия и принудительное зажигание	10 (9-11)
Воспламенение от сжатия и принудительное зажигание	5 (4-6)
Принудительное зажигание	0 (0-1)

Таблица 8. Газы для проверки кислородной интерференции

9.3.4 Проверка герметичности

Система подвергается проверке на герметичность. Для этого пробоотборник отсоединяется от системы выпуска, а его входное отверстие закрывается пробкой. Включается насос анализатора. После первоначального периода стабилизации все расходомеры будут показывать приблизительно нулевое значение при отсутствии утечки. Если этого не происходит, то проводится проверка пробоотборных магистралей и неполадка устраняется.

Предельно допустимая степень утечки со стороны разряжения должна составлять 0,5% реального расхода в проверяемой части системы. Допускается определение значения реального расхода по расходам потоков, идущих через анализатор и по обходному контуру.

В качестве альтернативы газы из системы могут откачиваться до вакуумного давления не менее 20 кПа (абсолютное давление - 80 кПа). После первоначального периода стабилизации скорость нарастания давления Δp (кПа/мин.) в системе не должна превышать:

$$\Delta p = p / V_{\rm s} \times 0.005 \times q_{\rm vs} \tag{71},$$

где:

 $V_{\rm s}$ - объем системы в л,

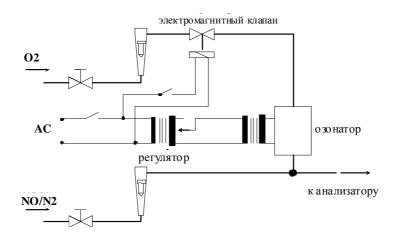
 q_{vs} - расход в системе в л/мин.

Другой метод заключается в ступенчатом изменении концентрации на входе в пробоотборную магистраль путем переключения с нулевого на поверочный газ. Если - в случае правильно калиброванного анализатора - после соответствующего периода времени прибор показывает ≤ 99% по сравнению с введенной концентрацией, то это свидетельствует о наличии утечки, которую необходимо устранить.

9.3.5 Проверка времени срабатывания аналитической системы

Настройка системы на проверку времени срабатывания является точно такой же, как и в случае замера в ходе фактического испытания (т.е. настройка давления, расхода, фильтров анализаторов и всех других параметров, влияющих на время срабатывания). Время срабатывания определяется при помощи переключения газа, который подводится непосредственно к входу пробоотборника. Переключение газа производится менее чем за 0,1 с. Газы, используемые для испытания, должны вызывать изменение концентрации на уровне не менее 60% полной шкалы (FS).

Регистрируется следовая концентрация каждого отдельного газового компонента. Время срабатывания означает разницу во времени между моментом переключения газа и моментом, в который происходит соответствующее изменение регистрируемой концентрации. Время срабатывания системы (t_{90}) состоит из времени задержки измерительного детектора и времени восстановления детектора. Время задержки означает время, исчисляемое с момента изменения (t_0) до момента, в который показания сработавшей системы составляют 10% от конечных показаний (t_{10}) . Время


восстановления означает время в пределах 10-90% конечных показаний времени срабатывания (t_{90} - t_{10}).

Для целей синхронизации сигналов анализатора и сигналов регистрации расхода отработавших газов время перехода означает промежуток времени с момента изменения (t_0) до момента, когда показания сработавшей системы составляют 50% от конечных показаний (t_{50}).

Для всех компонентов, на которые распространяются ограничения (CO, NO_x, HC или NMHC), и всех используемых диапазонов измерений время срабатывания системы должно составлять ≤ 10 с, а время восстановления (в соответствии с пунктом 9.3.1.7) - \leq 2,5 с. При использовании NMC для измерения NMHC время срабатывания системы может превышать 10 с.

9.3.6 Проверка эффективности конвертера NO_x

Проверка эффективности конвертера, используемого для преобразования NO₂ в NO, проводится в соответствии с положениями пунктов 9.3.6.1-9.3.6.8 (см. рис. 8).

<u>Рис. 8</u>: Схема устройства для проверки эффективности конвертера NO₂

9.3.6.1 Испытательная установка

Эффективность конвертера проверяется с помощью озонатора на испытательной установке, схематически показанной на рисунке 8, в соответствии с изложенной ниже процедурой.

9.3.6.2 Калибровка

Детекторы CLD и HCLD калибруются в наиболее часто используемом рабочем диапазоне согласно спецификациям изготовителя с помощь нулевого и поверочного газов (в последнем содержание NO должно соответствовать примерно 80% рабочего диапазона, а концентрация NO_2 в газовой смеси должна составлять менее 5% концентрации NO). Анализатор NO_x должен быть отрегулирован в режиме измерения NO таким образом, чтобы поверочный газ не проходил через конвертер. Показания концентрации регистрируются.

9.3.6.3 Расчет

Эффективность конвертера в процентах рассчитывается следующим образом:

$$E_{\text{NOx}} = \left(1 + \frac{a - b}{c - d}\right) \times 100 \tag{72},$$

где:

a - концентрация NO_x в соответствии с пунктом 9.3.6.6,

b - концентрация NO_x в соответствии с пунктом 9.3.6.7,

с - концентрация NO в соответствии с пунктом 9.3.6.4,

d - концентрация NO в соответствии с пунктом 9.3.6.5.

9.3.6.4 Добавление кислорода

С помощью Т-образного соединения в поток газа непрерывно добавляется кислород или нулевой воздух до момента, пока показания концентрации не будут приблизительно на 20% меньше концентрации калибровки, указанной в пункте 9.3.6.2 (анализатор отрегулирован на режим измерения NO).

Показания концентрации (c) регистрируются. Озонатор в течение всего процесса остается отключенным.

9.3.6.5 Включение озонатора

Озонатор включается для получения озона в количестве, достаточном для снижения концентрации NO приблизительно до 20% (минимум 10%) концентрации калибровки, указанной в пункте 9.3.6.2. Показания

концентрации (d) регистрируются (анализатор отрегулирован на режим измерения NO).

9.3.6.6 Режим измерения NO_x

Анализатор NO переключается в режим измерения NO_x таким образом, чтобы газовая смесь (состоящая из NO, NO_2 , O_2 и N_2) теперь проходила через конвертер. Показания концентрации (*a*) регистрируются (анализатор отрегулирован на режим измерения NO_x).

9.3.6.7 Отключение озонатора

Затем озонатор отключается. Газовая смесь, указанная в пункте 9.3.6.6, проходит через конвертер в детектор. Показания концентрации (b) регистрируются (анализатор отрегулирован на режим измерения NO_x).

9.3.6.8 Режим измерения NO

При отключенном озонаторе производится переключение на режим измерения NO и отключается также подача кислорода или синтетического воздуха. Значение NO_x , показанное анализатором, не должно отклоняться более чем на \pm 5% от величины, измеренной в соответствии с пунктом 9.3.6.2 (анализатор отрегулирован на режим измерения NO).

9.3.6.9 Периодичность проверки

Эффективность конвертера проверяется не реже одного раза в месяц.

9.3.6.10 Требуемая эффективность

Эффективность конвертера E_{NOx} должна составлять не менее 95%.

Если на наиболее часто используемом диапазоне анализатора работа озонатора не дает снижения концентрации с 80% до 20% в соответствии с пунктом 9.3.6.5, то в этом случае используется наивысший диапазон, который обеспечит такое снижение.

9.3.7 Регулировка FID

9.3.7.1 Оптимизация чувствительности детектора

FID должен быть отрегулирован в соответствии с указанием изготовителя прибора. Для оптимизации чувствительности в наиболее часто используемом рабочем диапазоне применяется поверочный газ в виде смеси пропана и воздуха.

После установки показателей расхода топлива и воздуха в соответствии с рекомендациями изготовителя в анализатор подается поверочный газ в концентрации $350 \pm 75 \text{ млн}^{-1} \text{ C}$. Чувствительность при данном расходе топлива определяется по разности между чувствительностью на поверочный газ и чувствительностью на нулевой газ. Расход топлива ступенчато регулируется несколько выше и несколько ниже диапазона значений, указанных в спецификациях изготовителя. Регистрируется чувствительность на поверочный и нулевой газы при этих значениях расхода топлива. Разность между значениями чувствительности на поверочный и нулевой газы наносится на график, а расход топлива корректируется по стороне кривой, соответствующей более богатой смеси. Это - первоначальная регулировка расхода, которую, возможно, необходимо будет оптимизировать дополнительно в зависимости от результатов проверки коэффициентов чувствительности на углеводороды и показателей кислородной интерференции в соответствии с пунктами 9.3.7.2 и 9.3.7.3. Если показатели кислородной интерференции или коэффициенты чувствительности на углеводороды не отвечают нижеследующим требованиям, то расход воздуха ступенчато регулируется несколько выше и несколько ниже диапазона значений, указанных в спецификациях изготовителя, с повторением процедур, предусмотренных в пунктах 9.3.7.2 и 9.3.7.3, для каждого значения расхода.

При желании оптимизацию можно провести с использованием процедур, изложенных в нормативном документе SAE № 770141.

9.3.7.2 Коэффициенты чувствительности на углеводороды

Проверка линейности анализатора проводится с использованием воздушнопропановой смеси и чистого синтетического воздуха в соответствии с пунктом 9.2.1.3.

Коэффициенты чувствительности определяются при включении анализатора и после основных рабочих интервалов. Коэффициент чувствительности (r_h) для

конкретных углеводородов представляет собой отношение показания FID C1 и концентрации газа в цилиндре и выражается в ${\rm млh}^{-1}$ C1.

Концентрация испытательного газа должна находиться на уровне чувствительности, соответствующей приблизительно 80% полной шкалы. Концентрация должна быть известна с точностью до \pm 2% по отношению к гравиметрическому эталону, выраженному в объемных долях. Кроме того, газовый баллон предварительно выдерживается в течение 24 часов при температуре 298 К \pm 5 K (25° C \pm 5° C).

Используемые испытательные газы и диапазоны значений относительного коэффициента чувствительности указаны ниже:

- а) метан и чистый синтетический воздух: $1,00 \le r_h \le 1,15$;
- b) пропилен и чистый синтетический воздух: $0.90 \le r_h \le 1.1$;
- с) толуол и чистый синтетический воздух: $0.90 \le r_h \le 1.1$.

Эти значения даны по отношению к коэффициенту r_h для смеси пропана и чистого синтетического воздуха, приравненному к 1.

9.3.7.3 Проверка кислородной интерференции

Только в случае анализаторов первичных отработавших газов проверка кислородной интерференции проводится при включении анализатора и после основных рабочих интервалов.

Диапазон измерения выбирается таким образом, что концентрация газов, используемых для проверки кислородной интерференции, находилась в пределах 50% верхней части шкалы. Испытание проводится при предписанной температуре воздуха горелки. Спецификации газа, используемого для проверки кислородной интерференции, указаны в пункте 9.3.3.4.

- а) Анализатор устанавливается на нуль.
- b) В случае двигателей с принудительным зажиганием анализатор настраивается с помощью 0-процентной смеси кислорода. Приборы для проверки двигателей с воспламенением от сжатия настраиваются с помощью смеси, содержащей 21% кислорода.

- с) Чувствительность на нулевую концентрацию проверяется еще раз. Если она изменилась более чем на 0,5% полной шкалы, то операции а) и b), указанные в настоящем пункте, повторяются.
- для проверки кислородной интерференции вводятся 5-процентная и 10-процентная смеси газов.
- е) Чувствительность на нулевую концентрацию проверяется еще раз. Если она изменилась более чем на $\pm 1\%$ полной шкалы, то испытание повторяется.
- f) Показатель кислородной интерференции E_{O2} рассчитывается для каждой смеси, используемой при операции d), по следующей формуле:

$$E_{\rm O2} = (c_{\rm ref,d} - c) \times 100/c_{\rm ref,d} \tag{73}$$

при этом чувствительность анализатора рассчитывается по следующей формуле:

$$c = \frac{c_{\text{ref,b}} \times c_{\text{FS,b}}}{c_{\text{m,b}}} \times \frac{c_{\text{m,d}}}{c_{\text{FS,d}}}$$
(74),

где:

 $c_{\text{ref,b}}$ - исходная концентрация НС при операции b) в млн⁻¹ С;

 $c_{
m ref,d}$ - исходная концентрация НС при операции d) в млн $^{-1}$ С;

 $c_{\text{FS,b}}$ - концентрация HC по полной шкале при операции b) в млн⁻¹ C;

 $c_{{
m FS,d}}\,$ - концентрация HC по полной шкале при операции d) в млн $^{\text{-}1}$ C;

 $c_{\rm m,b}$ - измеренная концентрация НС при операции b) в млн⁻¹ С;

 $c_{\rm m,d}$ - измеренная концентрация HC при операции d) в млн⁻¹ C.

- g) До начала испытания показатель кислородной интерференции $E_{\rm O2}$ должен быть меньше \pm 1,5% для всех газов, требуемых для проверки кислородной интерференции.
- h) Если показатель кислородной интерференции $E_{\rm O2}$ больше $\pm 1,5\%$, то можно произвести корректировку посредством ступенчатого

регулирования расхода воздуха несколько выше и несколько ниже диапазона значений, указанных в спецификациях изготовителя, а также расхода топлива и расхода проб.

i) Проверка кислородной интерференции проводится для каждой новой регулировки.

9.3.8 Эффективность отделителя неметановых фракций (NMC)

NMC применяется для удаления из отбираемой пробы газа углеводородов, не содержащих метан, путем окисления всех углеводородов, за исключением метана. В идеале преобразование метана должно составлять 0%, а остальных углеводородов, представленных этаном, - 100%. Для точного измерения NMHC определяются два показателя эффективности, которые используются для расчета массового расхода выбросов NMHC (см. пункт 8.5.2).

9.3.8.1 Эффективность по метану

Содержащий метан калибровочный газ пропускается через FID с прохождением через NMC и в обход его. Оба значения концентрации регистрируются. Эффективность определяется следующим образом:

$$E_{\rm M} = 1 - \frac{c_{\rm HC(w/NMC)}}{c_{\rm HC(w/o NMC)}}$$
(75),

гле:

 $c_{\rm HC(w/NMC)}$ - концентрация HC при CH₄, проходящем через NMC, в млн⁻¹ C, $c_{\rm HC(w/o\ NMC)}$ - концентрация HC при CH₄, идущем в обход NMC, в млн⁻¹ C.

9.3.8.2 Эффективность по этану

Содержащий этан калибровочный газ пропускается через FID с прохождением через NMC и в обход его. Оба значения концентраций регистрируются. Эффективность определяется следующим образом:

$$E_{\rm E} = 1 - \frac{c_{\rm HC(w/NMC)}}{c_{\rm HC(w/o NMC)}}$$
(76),

где:

 $c_{\text{HC(w/NMC)}}$ - концентрация НС при C_2H_6 , проходящем через NMC, в млн $^{-1}$ C, $c_{\text{HC(w/o NMC)}}$ - концентрация НС при C_2H_6 , идущем в обход NMC, в млн $^{-1}$ C.

9.3.9 Влияние на показания анализаторов

Помимо анализируемого газа, на показания приборов могут тем или иным образом влиять и другие газы. Позитивное влияние наблюдается в анализаторах NDIR, если посторонний газ оказывает такое же воздействие, как и замеряемый газ, но в меньшей степени. Негативное влияние в анализаторах NDIR наблюдается тогда, когда посторонний газ расширяет полосу поглощения замеряемого газа, а в детекторах CLD - когда посторонний газ подавляет излучение. Проверки влияния, описываемые в пунктах 9.3.9.1 и 9.3.9.3, проводятся до первоначального использования анализатора и после основных рабочих интервалов.

9.3.9.1 Проверка влияния на показания анализатора СО

Вода и CO_2 могут воздействовать на работу анализатора CO. Поэтому поверочный газ, содержащий CO_2 и имеющий концентрацию 80-100% полной шкалы максимального рабочего диапазона, используемого в ходе испытания, пропускается через воду при комнатной температуре и регистрируется чувствительность анализатора. Чувствительность анализатора не должна превышать 2% средней концентрации CO, которую предполагается выявить в ходе испытания.

Процедуры определения воздействия CO_2 и H_2O могут также осуществляться раздельно. Если используемые уровни CO_2 и H_2O превышают максимальные уровни, которые предполагается выявить в ходе испытания, то каждое из установленных значений воздействия должно снижаться посредством умножения полученного показателя воздействия на соотношение предполагаемой максимальной концентрации и фактического значения, используемого в ходе осуществления этой процедуры. Процедуры определения воздействия концентраций H_2O , которые ниже максимальных уровней, которые предполагается выявить в ходе испытания, могут осуществляться раздельно, однако выявленный показатель воздействия H_2O должен уменьшаться посредством умножения значения выявленного воздействия на соотношение предполагаемой максимальной концентрации H_2O

и фактического значения, используемого в ходе осуществления этой процедуры. Сумма обоих уменьшенных значений воздействия должна соответствовать пределам, указанным в настоящем пункте.

9.3.9.2 Проверки на сбой анализатора NO_x в случае анализатора CLD

К двум газам, которые отрицательно влияют на работу анализаторов CLD (и HCLD), относятся CO_2 и водяной пар. Чувствительность приборов к воздействию этих газов пропорциональна их концентрации, и поэтому требуется испытательное оборудование для определения возможности сбоя при самых высоких предполагаемых концентрациях, которые могут быть выявлены в ходе испытания. Если в анализаторе CLD используются алгоритмы компенсации сбоя, предполагающие задействование оборудования для измерения H_2O и/или CO_2 , то оценка сбоя производится, когда это оборудование функционирует, причем с применением компенсационных алгоритмов.

9.3.9.2.1 Проверка на сбой по CO₂

Поверочный газ, содержащий CO_2 и имеющий концентрацию, соответствующую 80-100% полной шкалы в максимальном рабочем диапазоне, пропускается через анализатор NDIR, и полученное значение для CO_2 регистрируется в качестве A. Затем этот газ разбавляется приблизительно на 50% поверочным газом, содержащим NO, и пропускается через NDIR и CLD, причем полученные значения для CO_2 и NO регистрируются в качестве B и C, соответственно. После этого подача CO_2 прекращается, и через (H)CLD пропускается поверочный газ, содержащий только NO. Значение для NO регистрируется в качестве D.

Сбой (в %) рассчитывается следующим образом:

$$E_{\text{CO2}} = \left[1 - \left(\frac{(C \times A)}{(D \times A) - (D \times B)}\right)\right] \times 100$$
(77),

где:

A - концентрация неразбавленного CO_2 , измеренная с помощью NDIR, в %,

B - концентрация разбавленного CO_2 , измеренная с помощью NDIR, в %,

C - концентрация разбавленного NO, измеренная с помощью (H)CLD, в млн $^{-1}$,

D - концентрация неразбавленного NO, измеренная с помощью (H)CLD, в млн $^{-1}$.

С одобрения компетентного органа, предоставляющего официальное утверждение типа или проводящего сертификацию, допускается использование таких альтернативных методов разбавления и количественного определения значений концентрации поверочных газов, содержащих CO₂ и NO, как динамическое смешивание/добавление присадок.

9.3.9.2.2 Проверка на сбой по воде

Этот метод проверки применяется только к измерению концентрации влажного газа. При расчете вероятности сбоя, вызываемого водой, необходимо учитывать разбавление поверочного газа, содержащего NO, водяным паром и величину концентрации водяного пара в смеси, которая, как ожидается, будет достигнута в ходе испытания.

Поверочный газ, содержащий NO и имеющий концентрацию, соответствующую 80-100% полной шкалы в нормальном рабочем диапазоне, пропускается через (H)CLD, и полученное значение для NO регистрируется в качестве D. Затем этот поверочный газ NO пропускается через воду при комнатной температуре и направляется через (H)CLD, причем полученное значение для NO регистрируется как C. Температура воды также измеряется и регистрируется в качестве F. Кроме того, определяется и регистрируется в качестве G давление насыщенных паров смеси, соответствующее температуре (F) воды в барботёре.

Концентрация водяных паров (в %) в смеси рассчитывается по следующей формуле:

$$H = 100 \text{ x } (G/p_b)$$
 (78)

и регистрируется в качестве H. Предполагаемая концентрация разбавленного поверочного газа NO (в водяных парах) рассчитывается по следующей формуле:

$$D_{\rm e} = D \times (1 - H/100) \tag{79}$$

и регистрируется в качестве $D_{\rm e}$. Для отработавших газов дизельного двигателя максимальная концентрация водяных паров в отработавших газах (в %), ожидаемая в ходе испытания, определяется - при предположении, что соотношение H/C в топливе составляет 1,8/1, - на основе максимальной концентрации CO_2 в отработавших газах A следующим образом:

$$H_{\rm m} = 0.9 \text{ x } A \tag{80}$$

и регистрируется в качестве H_m .

Сбой по воде (в %) рассчитывается по следующей формуле:

$$E_{\rm H2O} = 100 \text{ x } ((D_{\rm e} - C)/D_{\rm e}) \text{ x } (H_{\rm m}/H)$$
 (81),

где:

 $D_{\rm e}$ - предполагаемая концентрация разбавленного NO в млн $^{-1}$,

C - измеренная концентрация разбавленного NOв млн $^{-1}$,

 $H_{\rm m}$ _ максимальная концентрация водяных паров в %,

H - реальная концентрация водяных паров в %.

9.3.9.2.3 Максимально допустимый сбой

Суммарный сбой СО₂ и воды не должен превышать 2% полной шкалы.

9.3.9.3 Проверка сбоя анализатора NO_x для анализатора NDUV

Углеводороды и H_2O могут позитивно воздействовать на анализатор NDUV, вызывая такую же реакцию, как и в случае NO_x . Если в анализаторе NDUV используются компенсационные алгоритмы, предполагающие измерение содержания других газов для проверки этого воздействия, то такие измерения проводятся одновременно для контроля алгоритмов при проверке воздействия на анализатор.

9.3.9.3.1 Процедура

Анализатор NDUV должен быть включен, установлен на нулевое значение, после чего задается его диапазон измерений в соответствии с инструкциями изготовителя оборудования. Для проведения данной проверки рекомендуется

извлечь из двигателя выхлоп. Для определения содержания NO_x в выхлопе используется CLD. В качестве исходного значения должно использоваться время срабатывания CLD. Кроме того, содержание HC измеряется в выхлопе при помощи анализатора FID. Время срабатывания FID используется в качестве исходного значения содержания углеводорода.

Перед любым осушителем для проб, если он используется в ходе испытания, в анализатор NDUV вводится выхлоп двигателя. Отводится время для стабилизации срабатывания анализатора. Период его стабилизации может включать время, необходимое для продувки переходного трубопровода, и время срабатывания анализатора. В процессе измерения всеми анализаторами концентрации проб производится запись (в течение 30 секунд) полученных данных и рассчитываются средние арифметические значения для всех трех анализаторов.

Среднее значение CLD вычитается из среднего значения NDUV. Их разность умножается на соотношение предполагаемой средней концентрации НС и концентрации НС, измеренной в ходе проверки, следующим образом:

$$E_{\text{HC/H2O}} = \left(c_{\text{NOx,CLD}} - c_{\text{NOx,NDUV}}\right) \times \left(\frac{c_{\text{HC,e}}}{c_{\text{HC,m}}}\right)$$
(82),

где:

 $c_{\text{NOx,CLD}}$ - концентрация NO_x , измеренная при помощи CLD, в млн⁻¹, $c_{\text{NOx,NDUV}}$ - концентрация NO_x , измеренная при помощи NDUV, в млн⁻¹, $c_{\text{HC,e}}$ - предполагаемая максимальная концентрация HC в млн⁻¹, измеренная концентрация HC в млн⁻¹.

9.3.9.3.2 Максимально допустимый сбой

Суммарный сбой по HC и по воде не должен превышать 2% концентрации NO_x , которую предполагается выявить в ходе испытания.

9.3.9.4 Осушитель для проб

Осушитель для проб устраняет воду, которая в противном случае может повлиять на измерение содержания $\mathrm{NO}_{\mathrm{x}}.$

9.3.9.4.1 Эффективность осушителя для проб

В случае сухих анализаторов CLD должно быть продемонстрировано, что при наибольшей предполагаемой концентрации водяных паров $H_{\rm m}$ (см. пункт 9.3.9.2.2) осущитель для проб позволяет поддерживать влажность CLD на уровне \leq 5 г воды/кг сухого воздуха (или приблизительно 0,008% H_2 O), что соответствует относительной влажности 100% при 3,9° C и 101,3 кПа. Данный показатель влажности также эквивалентен относительной влажности примерно 25% при 25° C и 101,3 кПа. Это может быть подтверждено путем замера температуры на выходе термического влагопоглотителя или путем измерения влажности в точке непосредственно перед CLD. Влажность отработавших газов, проходящих через CLD, можно также измерить в том случае, если в CLD поступает только поток из влагопоглотителя.

9.3.9.4.2 Воздействие осущителя для проб на NO₂

Вода, сохраняющаяся в осушителе для проб с неэффективной конструкцией, может вытеснять NO_2 из пробы. Если осушитель для проб используется в сочетании с анализатором NDUV и без подключенного перед ним конвертера NO_2/NO , то она, таким образом, может вытеснить NO_2 из пробы до измерения содержания NO_x .

Конструкция осушителя для проб должна допускать измерение содержания не менее 95% общего объема NO_2 при предполагаемой максимальной концентрации NO_2 .

9.3.10 Отбор проб первичных выбросов газообразных веществ, если это применимо

Пробоотборники газообразных выбросов устанавливаются на расстоянии не менее 0,5 м или на расстоянии, равном трем диаметрам выхлопной трубы, в зависимости от того, какая из этих величин больше, перед выпускным отверстием системы выпуска отработавших газов, но достаточно близко к двигателю, с тем чтобы температура отработавших газов в пробоотборнике составляла не менее 343 К (70° C).

В случае многоцилиндрового двигателя с разветвленными выпускными патрубками вход пробоотборника должен располагаться на достаточном удалении по потоку, с тем чтобы проба являлась репрезентативной и отражала средний выброс отработавших газов из всех цилиндров. В случае

многоцилиндровых двигателей с разнесенными группами выпускных патрубков, например V-образных двигателей, рекомендуется объединять патрубки на участке до пробоотборника. Если на практике это сделать невозможно, то разрешается отбирать пробы из группы с самым высоким уровнем выбросов СО₂. Для расчета выбросов веществ, содержащихся в отработавших газах, используется суммарный массовый расход отработавших газов.

Если двигатель оснащен системой последующей обработки отработавших газов, то отбор проб производится на выходе системы последующей обработки отработавших газов.

9.3.11 Отбор проб разбавленных выбросов газообразных веществ, если это применимо

Выпускная труба на участке между двигателем и системой полного разбавления потока должна отвечать требованиям, изложенным в приложении 3. Пробоотборник(и) газообразных выбросов устанавливается (устанавливаются) в смесительном канале в той точке, где разбавляющий воздух и отработавшие газы хорошо смешиваются, и в непосредственной близости от пробоотборника твердых частиц.

Отбор проб обычно может производиться двумя способами:

- а) отбор проб выбросов производится в мешок для отбора проб в течение всего цикла, и их количество замеряется после завершения испытания; в случае HC мешок для отбора проб нагревается до $464 \pm 11 \; \text{K}$ (191 \pm 11° C), а в случае NO_x температура мешка для отбора проб должна быть выше температуры точки росы;
- b) отбор проб выбросов производится непрерывно, и полученные значения интегрируются по всему циклу.

Фоновая концентрация определяется на входе в смесительный канал в соответствии с подпунктом а) или b) и вычитается из концентраций выбросов в соответствии с пунктом 8.5.2.3.2.

9.4 Измерение твердых частиц и система отбора проб

9.4.1 Общие технические требования

Для определения массы твердых частиц требуются система разбавления и отбора проб твердых частиц, фильтр для отбора проб твердых частиц, весы с точностью взвешивания до миллионной доли грамма, а также камера для взвешивания с контролем температуры и влажности. Система отбора проб твердых частиц должна быть сконструирована таким образом, чтобы она обеспечивала репрезентативность пробы твердых частиц пропорционально расходу отработавших газов.

9.4.2 Общие требования к системе разбавления

Для определения содержания твердых частиц необходимо произвести разбавление пробы с помощью отфильтрованного окружающего воздуха, синтетического воздуха или азота (разбавителя). Система разбавления должна быть отрегулирована таким образом, чтобы:

- а) полностью устранить конденсацию воды в системах разбавления и отбора проб;
- b) поддерживать температуру разбавленных отработавших газов в диапазоне 315 К (42° C) 325 К (52° C) в пределах 20 см перед фильтродержателем (фильтродержателями) или после него (них);
- с) температура разбавителя составляла 293 К 325 К (20° С 42° С) в непосредственной близости от входа в смесительный канал;
- d) минимальный коэффициент разбавления составлял в пределах 5:1 7:1 и по меньшей мере 2:1 на этапе разбавления первичных газов с учетом максимального расхода отработавших газов, выбрасываемых двигателем;
- е) в случае системы с частичным разбавлением потока время прохождения через систему от точки ввода разбавителя до фильтродержателя (фильтродержателей) составляло 0,5-5 секунд;
- f) в случае системы с полным разбавлением потока общее время прохождения через систему от точки ввода разбавителя до

фильтродержателя (фильтродержателей) составляло 1-5 секунд, а время прохождения через вторичную систему разбавления, если она используется, от точки ввода разбавителя до фильтродержателя (фильтродержателей) составляло не менее 0,5 секунды.

Допускается осушение разбавителя перед входом в систему разбавления, причем к осушению целесообразно прибегать, в частности, в том случае, когда разбавитель имеет высокую влажность.

9.4.3 Отбор проб твердых частиц

9.4.3.1 Система частичного разбавления потока

Пробоотборник для твердых частиц устанавливается в непосредственной близости, но на достаточном удалении от пробоотборника для газообразных выбросов во избежание создания помех. В этой связи положения пункта 9.3.10, регламентирующие порядок установки, применяются также к отбору проб твердых частиц. Линия отбора проб должна соответствовать требованиям, изложенным в приложении 3.

В случае многоцилиндрового двигателя с разветвленными выпускными патрубками вход пробоотборника должен располагаться на достаточном удалении по потоку, с тем чтобы проба являлась репрезентативной и отражала средний выброс отработавших газов из всех цилиндров. В случае многоцилиндровых двигателей с разнесенными группами выпускных патрубков, например V-образных двигателей, рекомендуется объединять патрубки на участке до пробоотборника. Если это на практике сделать невозможно, то разрешается отбирать пробы из группы с самым высоким уровнем выбросов твердых частиц. Для расчета выбросов частиц, содержащихся в отработавших газах, используется суммарный массовый расход отработавших газов на выходе патрубка.

9.4.3.2 Система полного разбавления потока

Пробоотборник для твердых частиц устанавливается в непосредственной близости, но на достаточном удалении от пробоотборника для газообразных выбросов во избежание создания помех. В этой связи положения пункта 9.3.11, регламентирующие порядок установки, применяются также к отбору проб твердых частиц. Линия отбора проб должна соответствовать требованиям, изложенным в приложении 3.

9.4.4 Фильтры для отбора проб твердых частиц

Отбор проб разбавленных отработавших газов производится с помощью фильтра, который отвечает требованиям пунктов 9.4.4.1-9.4.4.3, в ходе всей последовательности проведения испытания.

9.4.4.1 Технические требования к фильтрам

Фильтры всех типов должны иметь коэффициент улавливания частиц DOP (диоктилфталата) диаметром 0,3 мкм не менее 99%. Фильтр должен быть изготовлен:

- а) либо из стекловолокна с фторуглеродным покрытием (РТFE),
- b) либо из мембраны с фторуглеродным покрытием (PTFE).

9.4.4.2 Размер фильтра

Фильтр должен иметь округлую форму с номинальным диаметром 47 мм (с допуском $46,50\pm0,6$ мм) и с внешним диаметром (эффективным диаметром) не менее 38 мм.

9.4.4.3 Скорость прохождения газа через фильтрующую поверхность

Скорость прохождения газов через фильтрующую поверхность должна составлять 0,90-1,00 м/с, причем превышать этот предел может менее 5% зарегистрированных значений потока. Если общая масса ТЧ на фильтре превышает 400 мкм, то скорость прохождения газов через фильтрирующую поверхность может быть уменьшена до 0,50 м/с. Скорость прохождения рассчитывается посредством деления объемного расхода пробы на показатели давления перед фильтром и температуры поверхности фильтра в экспонируемой зоне фильтра.

9.4.5 Технические требования к камере для взвешивания и аналитическим весам

Окружающая среда в камере (или помещении) не должна испытывать воздействия каких-либо внешних загрязнителей (как, например, пыль, аэрозоль или полулетучие материалы), которые могут загрязнять фильтры для твердых частиц. В помещении для взвешивания должно быть обеспечено выполнение установленных требований, по крайней мере за 60 мин. до взвешивания фильтров.

9.4.5.1 Условия в камере для взвешивания

Температура в камере (или помещении), где проводится кондиционирование и взвешивание фильтров для твердых частиц, должна поддерживаться на уровне 295 К \pm 1 К (22° С \pm 1° С) в течение всего времени кондиционирования и взвешивания фильтра. Влажность должна поддерживаться в пределах точки росы 282,5 К \pm 1 К (9,5° С \pm 1° С).

Если стабилизация и взвешивание производятся в разных местах, то температура в месте стабилизации должна поддерживаться с допуском 295 K \pm 3 K (22° C \pm 3° C), между тем как требование в отношении точки росы сохраняется на уровне 282,5 K \pm 1 K (9,5° C \pm 1° C).

Значения влажности и внешней температуры регистрируются.

9.4.5.2 Взвешивание эталонных фильтров

В течение 12 часов взвешивается по крайней мере два ранее не использовавшихся эталонных фильтра, причем предпочтительно одновременно с фильтрами для отбора проб. Они должны быть изготовлены из того же материала, что и фильтры для проб. При взвешивании делается поправка на статическое давление.

Если масса любого из эталонных фильтров изменяется между взвешиваниями фильтров для отбора проб более чем на 10 мкг, то все фильтры для отбора проб отбраковываются и испытание на измерение выбросов повторяется.

В соответствии с надлежащим техническим заключением эталонные фильтры периодически (но не реже одного раза в год) заменяются.

9.4.5.3 Аналитические весы

Аналитические весы, используемые для определения массы фильтра, должны удовлетворять критерию проверки линейности, указанному в таблице 7 пункта 9.2. Это означает, что их погрешность (среднеквадратичное отклонение) должна составлять не более 2 мкг, а разрешение - не менее 1 мкг (1 деление = 1 мкг).

Для обеспечения тщательного взвешивания фильтра весы рекомендуется устанавливать следующим образом:

- а) они должны быть установлены на платформе с виброизоляцией для изолирования их от внешнего шума и вибрации;
- b) они должны быть защищены от конвекционного потока воздуха заземленным токорассеивающим экраном.

9.4.5.4 Устранение статического электричества

Перед взвешиванием фильтры нейтрализуются, например с помощью полониевого нейтрализатора или другого устройства аналогичного действия. Если используется фильтр мембранного типа PTFE, то статическое электричество измеряется; рекомендуется, чтобы оно было в пределах \pm 2,0 В от нейтрального значения.

В зоне нахождения весов заряд статического электричества сводится к минимуму при помощи следующих возможных методов:

- а) весы заземляются;
- b) если пробы ТЧ отбираются вручную, то используются пинцеты из нержавеющей стали;
- с) пинцеты должны заземляться при помощи заземляющей перемычки либо же оператор должен использовать заземляющий браслет таким образом, чтобы он был заземлен на общей основе с весами. Заземляющие браслеты должны иметь надлежащее сопротивление, с тем чтобы защищать оператора от случайного поражения электрическим током.

9.4.5.5 Дополнительные технические требования

Все элементы системы разбавления и системы отбора проб на участке от выхлопной трубы до фильтродержателя, находящиеся в контакте с первичными и разбавленными отработавшими газами, должны быть сконструированы таким образом, чтобы свести к минимуму осаждение твердых частиц или изменение их характеристик. Все элементы должны быть изготовлены из электропроводящих материалов, не вступающих в реакцию с компонентами отработавших газов, и заземлены для предотвращения образования статического электричества.

9.4.5.6 Калибровка приборов для измерения расхода

Каждый расходомер, используемый при отборе проб твердых частиц и в системе частичного разбавления потока, подвергается проверке линейности, как это указано в пункте 9.2.1, так часто, как это необходимо для обеспечения точности, требуемой настоящими гтп. Для определения исходных значений расхода используется точный расходомер, соответствующий международным и/или национальным стандартам. Калибровка дифференциального измерения расхода указана в пункте 9.4.6.2.

9.4.6 Особые требования к системе частичного разбавления потока

Система частичного разбавления потока должна быть сконструирована таким образом, чтобы из потока отработавших газов двигателя можно было извлечь пропорциональную пробу первичных отработавших газов в целях учета колебаний расхода отработавших газов. В этой связи крайне важно определить коэффициент разбавления $r_{\rm d}$ или коэффициент отбора проб $r_{\rm s}$ с такой точностью, которая обеспечивала бы соблюдение требований, предусмотренных в пункте 9.4.6.2.

9.4.6.1 Время срабатывания системы

Для контроля системы частичного разбавления потока требуется соответствующая быстродействующая система. Время перехода для этой системы определяется методом, указанным в пункте 9.4.6.6. Если общее время перехода для системы измерения потока отработавших газов (см. пункт 8.3.1.2) и системы частичного разбавления потока составляет ≤0,3 с, то используется система контроля в режиме "онлайн". Если время перехода превышает 0,3 с, то используется прогностический алгоритм управления на основе предварительно записанных параметров испытания. В этом случае комбинированное время восстановления должно составлять ≤0,1 с, а комбинированное время задержки <<10 с.

Система должна быть сконструирована таким образом, чтобы общее время срабатывания обеспечивало отбор репрезентативных проб твердых частиц $q_{mp,i}$ пропорционально массовому расходу отработавших газов. Для определения пропорциональности проводится регрессивный анализ значений $q_{mp,i}$ по $q_{mew,i}$ с

частотой не мене 5 Гц, что соответствует скорости регистрации данных. При этом должны соблюдаться следующие критерии:

- а) коэффициент смешанной корреляции r^2 линейной регрессии на отрезке $q_{mp,i}$ между $q_{mew,i}$ должен составлять не менее 0,95;
- b) стандартная погрешность оценки $q_{mp,i}$ по $q_{mew,i}$ не должна превышать 5% от максимального значения q_{mp} ;
- с) отрезок q_{mp} , отсекаемый линией регрессии, не должен превышать $\pm 2\%$ от максимального значения q_{mp} .

Прогностический алгоритм управления требуется в том случае, когда комбинированное время перехода системы сбора твердых частиц $t_{50,P}$ и сигнала массового расхода отработавших газов $t_{50,F}$ составляет >0,3 с. В этом случае проводится предварительное испытание и полученный сигнал массового расхода отработавших газов используется для контроля расхода проб, поступающих в систему сбора твердых частиц. Правильность регулировки системы частичного разбавления обеспечивается в том случае, если отметка времени для $q_{mew,pre}$, полученная в ходе предварительного испытания, которая используется для регулирования q_{mp} , сдвигается на "прогностический" отрезок времени, равный $t_{50,P} + t_{50,F}$.

Для установления корреляции между значениями $q_{mp,i}$ и $q_{mew,i}$ следует использовать данные, полученные в ходе фактического испытания, при этом $q_{mew,i}$ синхронизируется по $t_{50,F}$ относительно $q_{mp,i}$ (без учета $t_{50,P}$ в полученном сдвиге). Это означает, что сдвиг по времени между q_{mew} и q_{mp} представляет собой разницу между временем перехода каждого из этих параметров, которое было определено в соответствии с пунктом 9.4.6.6.

9.4.6.2 Технические требования к дифференциальному измерению расхода (только частичное разбавление потока)

В случае систем с частичным разбавлением потока точность регистрации расхода пробы q_{mp} приобретает особое значение, если она не измеряется непосредственно, а определяется с помощью дифференциального метода измерения расхода:

$$q_{mp} = q_{mdew} - q_{mdw} \tag{83}$$

В этом случае максимальная погрешность разности должна быть такой, чтобы точность q_{mp} находилась в пределах \pm 5%, когда коэффициент разбавления составляет менее 15. Данную погрешность можно рассчитать по среднеквадратичному значению погрешностей каждого прибора.

Приемлемый уровень точности q_{mp} можно обеспечить при соблюдении одного из следующих условий:

- а) абсолютная точность q_{mdew} и q_{mdw} составляет \pm 0,2%, что обеспечивает точность q_{mp} на уровне \leq 5% при коэффициенте разбавления 15. Однако при более высоких коэффициентах разбавления погрешность будет увеличиваться;
- b) калибровка q_{mdw} по q_{mdew} производится таким образом, чтобы обеспечить ту же точность q_{mp} , что и в случае а). Более подробно см. пункт 9.4.6.2;
- с) точность q_{mp} определяется опосредованно исходя из точности коэффициента разбавления, определенного с помощью индикаторного газа, например CO_2 . При этом необходимо обеспечить точность q_{mp} , эквивалентную случаю а);
- d) абсолютная точность q_{mdew} и q_{mdw} находится в пределах \pm 2% полной шкалы, максимальная погрешность разности $q_{mdew} q_{mdw}$ составляет 0,2%, а линейная погрешность не превышает \pm 0,2% наибольшего значения q_{mdew} , зарегистрированного в ходе испытания.

9.4.6.3 Калибровка приборов для дифференциального измерения расхода

Расходомер или прибор для измерения параметров потока калибруется с соблюдением одной из следующих процедур таким образом, чтобы точность регистрации расхода пробы q_{mp} , поступающей в канал, соответствовала требованиям пункта 9.4.6.2:

а) расходомер для измерения q_{mdw} подсоединяется последовательно с расходомером для измерения q_{mdew} ; разность показаний двух расходомеров калибруется не менее чем по 5 контрольным точкам со значениями расхода, равномерно распределенными между наименьшим значением q_{mdw} , используемым в ходе испытания, и значением q_{mdew} , используемым в ходе испытания. Измерение может проводиться в обход смесительного канала:

- b) калиброванное устройство измерения расхода подсоединяется последовательно с расходомером для измерения q_{mdew} , и его точность проверяется по значению, используемому в ходе испытания. Затем это калиброванное устройство подсоединяется последовательно с расходомером для измерения q_{mdw} , и его точность проверяется не менее чем по 5 точкам регулировки, соответствующим коэффициенту разбавления в пределах от 3 до 50, по отношению к значению q_{mdew} , используемому в ходе испытания;
- с) отводящий патрубок (TT) отсоединяется от выхлопной трубы, и калиброванное устройство измерения параметров потока с соответствующим диапазоном измерения q_{mp} подсоединяется к отводящему патрубку. Значение q_{mdew} устанавливается по значению, используемому в ходе испытания, а значение q_{mdw} последовательно устанавливается как минимум по 5 значениям, соответствующим коэффициентам разбавления в пределах от 3 до 50. В качестве альтернативы можно предусмотреть специальную калибровочную магистраль в обход смесительного канала, но с прохождением общего и разбавленного потока воздуха через соответствующие расходомеры, как происходит в случае фактического испытания;
- d) индикаторный газ направляется в отводящий патрубок TT, через который проходят отработавшие газы. Этим индикаторным газом может быть один из компонентов отработавших газов, например, CO_2 или NO_x . После разбавления в смесительном канале этот компонент, служащий в качестве индикаторного газа, измеряется. Данное измерение проводится для 5 коэффициентов разбавления, находящихся в пределах от 3 до 50. Точность расхода пробы определяется исходя из коэффициента разбавления r_d :

$$q_{mp} = q_{mdew} / r_{d} \tag{84}$$

Для обеспечения точности регистрации q_{mp} необходимо учитывать точность газовых анализаторов.

9.4.6.4 Проверка расхода углерода

Для выявления проблем с измерением и регулировкой и проверки надлежащей работы системы частичного разбавления потока настоятельно рекомендуется произвести проверку расхода углерода на фактических отработавших газах. Проверка расхода углерода должна проводиться по крайней мере при каждой

установке нового двигателя, а также в случае существенных изменений в конфигурации испытательного бокса.

Двигатель должен работать при нагрузке и частоте вращения, соответствующих максимальному крутящему моменту, или в любом другом установившемся режиме, при котором содержание CO_2 увеличивается на 5% или более. Система отбора проб частично разбавленного потока должна работать при коэффициенте разбавления примерно 15 к 1.

Если проводится проверка расхода углерода, то применяется процедура, указанная в приложении 5. Значения расхода углерода рассчитываются по формулам 80-82, приведенным в приложении 5. Разброс всех значений расхода углерода должен составлять не более 3%.

9.4.6.5 Предварительная проверка перед испытанием

Предварительная проверка проводится не ранее чем за 2 часа до проведения испытания следующим образом.

Точность расходомеров проверяется с помощью того же метода, который используется для калибровки (см. пункт 9.4.6.2), не менее чем по двум точкам, включая значение расхода q_{mdw} , которое соответствует коэффициентам разбавления в пределах 5-15 для значения q_{mdew} , используемого в ходе испытания.

Если данные, зарегистрированные в процессе калибровки, предусмотренной пунктом 9.4.6.2, показывают, что калибровка расходомера остается стабильной в течение продолжительного периода времени, то предварительную проверку можно не проводить.

9.4.6.6 Определение времени перехода

Регулировка системы для определения времени перехода должна быть точно такой же, как и в случае замеров в ходе испытания. Время перехода определяется следующим методом.

Отдельный эталонный расходомер с диапазоном измерений, соответствующим расходу пробы, устанавливается последовательно с пробоотборником и подсоединяется непосредственно к нему. Время перехода этого расходомера должно составлять менее 100 мс для той ступени регулировки расхода, которая используется при измерении времени срабатывания, причем ограничение расхода должно быть достаточно малым, с тем чтобы исключить воздействие

на динамические характеристики системы частичного разбавления потока; надлежит обеспечивать соответствие проверенной технической практике.

Расход отработавших газов (или расход воздуха, если расход отработавших газов определяется методом расчета), поступающих в систему частичного разбавления потока, подвергается ступенчатому изменению от самого низкого расхода до расхода, составляющего 90% максимального расхода отработавшего газа. Триггерный механизм перехода на следующую ступень должен быть таким же, который используется для включения системы прогностического алгоритма управления в ходе фактических испытаний. Величина ступенчатого наращивания расхода отработавших газов и показания расходомера регистрируются с частотой отбора проб, составляющей не менее 10 Гп.

На основании этих данных для системы частичного разбавления потока определяется время перехода, которое представляет собой время с момента начала ступенчатого наращивания до момента, когда показания расходомера достигают 50% номинального значения. Аналогичным образом определяется время перехода системы частичного разбавления потока под воздействием сигнала $q_{\rm mp}$ и время перехода расходомера отработавших газов под воздействием сигнала $q_{\rm mew,i}$. Значения этих сигналов используются для проверки полученных результатов методом регрессионного анализа после каждого испытания (см. пункт 9.4.6.1).

Расчеты повторяются не менее чем по 5 точкам увеличения и снижения расхода, и полученные результаты усредняются. Из полученного значения вычитается внутреннее время перехода (<100 мс) эталонного расходомера. Полученная разность представляет собой "прогностическое" значение для системы частичного разбавления потока, которое применяется в соответствии с пунктом 9.4.6.1.

9.5 Калибровка системы CVS

9.5.1 Обшие положения

Система CVS калибруется с помощью точного расходомера и ограничительного устройства. Расход через систему измеряется при различных значениях регулировки ограничителя. Измеряются также контрольные параметры системы и определяется их соотношение с расходом.

Для этих целей могут использоваться различные типы расходомеров, например, калиброванная трубка Вентури, калиброванный ламинарный расходомер, калиброванный турборасходомер.

9.5.2 Калибровка насоса с объемным регулированием (PDP)

Все параметры, связанные с насосом, измеряются одновременно с параметрами, относящимися к калибровочной трубке Вентури, которая соединяется с насосом последовательно. Значение расчетного расхода (в м³/с на входе в насос при данном абсолютном давлении и температуре) наносится на график зависимости расхода от корреляционной функции, которая является показателем конкретного сочетания параметров насоса. Затем определяется линейное уравнение, показывающее взаимосвязь расхода через насос и корреляционной функции. Если система CVS имеет многорежимный привод, калибровка проводится для каждого используемого диапазона.

В процессе калибровки поддерживается стабильный температурный режим.

Утечка во всех соединениях и трубопроводах между калибровочной трубкой Вентури и насосом CVS не должна превышать 0,3% от самой низкой величины расхода (максимальное ограничение и минимальная частота вращения вала PDP).

9.5.2.1 Анализ данных

Расход воздуха (q_{vCVS}) при каждом значении регулировки ограничителя (минимум 6 регулировок) рассчитывается в стандартных единицах (${\rm m}^3/{\rm c}$) на основе показаний расходомера с использованием метода, предписанного изготовителем. Затем расход воздуха преобразуется в расход насоса (V_0) в ${\rm m}^3/{\rm o}$ 6 при абсолютной температуре и абсолютном давлении на входе в насос по следующей формуле:

$$V_0 = \frac{q_{vCVS}}{n} \times \frac{T}{273} \times \frac{101,3}{p_p}$$
 (85),

где:

 q_{vCVS} - расход воздуха при стандартных условиях (101,3 кПа, 273 K) в м³/с;

T - температура на входе в насос в K;

 $p_{\rm p}$ - абсолютное давление на входе в насос в кПа;

n - частота вращения вала насоса в об/с.

Для учета взаимовлияния колебаний давления в насосе и степени проскальзывания насоса определяют корреляционную функцию (X_0) между частотой вращения вала насоса, разностью давлений на входе и выходе насоса и абсолютным давлением на выходе насоса, которая рассчитывается по следующей формуле:

$$X_0 = \frac{1}{n} \times \sqrt{\frac{\Delta p_p}{p_p}} \tag{86},$$

где:

 $\Delta p_{\rm p}$ - разность давлений на входе и выходе насоса в кПа;

 $p_{\rm p}$ - абсолютное давление на выходе насоса в кПа.

Для получения нижеследующего линейного уравнения калибровки необходимо произвести подбор методом наименьших квадратов:

$$V_0 = D_0 - m \times X_0 \tag{87}$$

 D_0 и m - это соответственно отрезок, отсекаемый на оси ординат, и коэффициент наклона - параметры, определяющие линии регрессии.

В случае многорежимной системы CVS калибровочные кривые, построенные для различных диапазонов значений расхода на насосе, должны располагаться приблизительно параллельно, а отрезки, отсекаемые на оси ординат (D_0) , должны увеличиваться по мере перехода к диапазону с меньшими значениями расхода на насосе.

Значения, рассчитанные по вышеприведенному уравнению, должны находиться в пределах \pm 0,5% от измеренной величины V_0 . Значения m будут варьироваться в зависимости от конкретного насоса. Засасывание твердых частиц со временем приведет к снижению степени проскальзывания насоса, о чем свидетельствуют меньшие значения m. Поэтому калибровка должна производиться при вводе насоса в эксплуатацию после капитального технического обслуживания и в том случае, если общая проверка системы указывает на изменение степени проскальзывания.

9.5.3 Калибровка трубки Вентури с критическим расходом (CFV)

Калибровка CFV основана на уравнении критического расхода через трубку Вентури. Расход газа представляет собой функцию давления и температуры на входе в трубку.

Для определения диапазона критического расхода значения K_v наносятся на график в виде функции давления на входе в трубку Вентури. При критическом расходе (закупорке) K_v будет иметь относительно постоянную величину. По мере снижения давления (увеличение разрежения) закупорка трубки Вентури рассасывается и значение K_v уменьшается, что указывает на то, что CFV функционирует за пределами допустимого диапазона.

9.5.3.1 Анализ данных

Расход воздуха (q_{vCVS}) при каждом значении регулировки ограничителя (минимум 8 регулировок) рассчитывается в стандартных единицах (${\rm M}^3/{\rm c}$) на основе показаний расходомера с использованием метода, предписанного изготовителем. Коэффициент калибровки рассчитывается на основе калибровочных данных для каждого значения регулировки по следующей формуле:

$$K_{v} = \frac{q_{v\text{CVS}} \times \sqrt{T}}{p_{p}} \tag{88},$$

где:

 $q_{\nu \text{CVS}}$ - расход воздуха при стандартных условиях (101,3 кПа, 273 K) в м³/с;

т - температура на входе в трубку Вентури в **K**;

 $p_{\rm p}$ - абсолютное давление на входе в трубку Вентури в кПа.

Затем рассчитываются среднее значение $K_{\rm V}$ и стандартное отклонение. Стандартное отклонение не должно превышать $\pm 0.3\%$ среднего значения $K_{\rm V}$.

9.5.4 Калибровка трубки Вентури для дозвуковых потоков (SSV)

Калибровка SSV основана на уравнении расхода через трубку Вентури для дозвуковых потоков. Как явствует из уравнения 43 (см. пункт 8.5.1.4), расход газа представляет собой функцию давления и температуры на входе и падения давления на входе и сужении SSV.

9.5.4.1 Анализ данных

Расход воздуха ($Q_{\rm SSV}$) при каждом значении регулировки ограничителя (минимум 16 регулировок) рассчитывается в стандартных единицах (${\rm M}^3/{\rm c}$) на основе показаний расходомера с использованием метода, предписанного изготовителем. Коэффициент расхода рассчитывается по калибровочным данным для каждого значения регулировки следующим образом:

$$C_{d} = \frac{Q_{SSV}}{d_{V}^{2} \times p_{p} \times \sqrt{\frac{1}{T} \times \left(r_{p}^{1,4286} - r_{p}^{1,7143}\right) \times \left(\frac{1}{1 - r_{D}^{4} \times r_{p}^{1,4286}}\right)}}$$
(89),

где:

 $Q_{\rm SSV}$ - расход воздуха при стандартных условиях (101,3 кПа, 273 K) в м³/с;

температура на входе в трубку Вентури в К;

 $d_{\rm V}$ - диаметр сужения SSV в м;

 $r_{\rm p}$ - отношение давления на сужении SSV к абсолютному статическому давлению на входе = $1-\frac{\Delta p}{p_{\rm p}}$;

 $r_{\rm D}$ - отношение диаметра сужения SSV $d_{\rm V}$ к внутреннему диаметру D входной трубы.

Для определения диапазона расхода дозвукового потока значения $C_{\rm d}$ наносятся на график в виде функции числа Рейнольдса Re на сужении SSV. Re на сужении SSV рассчитывается при помощи следующего уравнения:

$$Re = A_1 \times \frac{Q_{SSV}}{d_V \times \mu} \tag{90},$$

при этом

$$\mu = \frac{b \times T^{1,5}}{S + T} \tag{91},$$

где:

A₁ - 25,55152 в единицах СИ $\left(\frac{1}{M^3}\right) \left(\frac{MUH}{c}\right) \left(\frac{MM}{M}\right)$;

 $Q_{\rm SSV}$ - расход воздуха при стандартных условиях (101,3 кПа, 273 K) в м³/с;

 $d_{\rm V}$ - диаметр сужения SSV в м;

 μ - абсолютная или динамическая вязкость газа в кг/мс;

b - $1,458 \times 10^6$ (эмпирическая константа), кг/мс $K^{0,5}$;

S - 110,4 (эмпирическая константа) в К.

Поскольку в уравнении $Re\ Q_{\rm SSV}$ представляет собой аргумент, расчеты необходимо начинать с произвольно выбранной величины $Q_{\rm SSV}$ или $C_{\rm d}$ калибровочной трубки Вентури и повторять расчет $Q_{\rm SSV}$ до тех пор, пока результаты не совпадут. При этом методе последовательных приближений погрешность должна составлять 0.1% или меньше.

Значения $C_{\rm d}$, рассчитанные с помощью уравнения подборки калибровочной кривой, как минимум в 16 точках участка дозвукового потока должны находиться в пределах \pm 0,5% от измеренной величины $C_{\rm d}$ в каждой точке калибровки.

9.5.5 Общая проверка системы

Суммарная погрешность системы отбора проб CVS и аналитической системы определяется путем введения известной массы загрязняющего газа в систему во время ее работы в нормальном режиме. Загрязняющее вещество подвергается анализу, и его масса рассчитывается в соответствии с пунктом 8.5.2.4, за исключением случая пропана, когда для НС вместо 0,000480 используется коэффициент *и*, который принимается равным 0,000472. При этом используется один из следующих двух методов.

9.5.5.1 Измерение с помощью диафрагмы для создания критического потока

Известное количество чистого газа (оксида углерода или пропана) подается в систему CVS через калиброванную диафрагму для создания критического потока. Если давление на входе достаточно высокое, то расход, регулируемый посредством диафрагмы для создания критического потока, не зависит от давления на выходе из диафрагмы (критический поток). Система CVS должна работать в нормальном режиме испытания на выбросы отработавших газов в течение приблизительно 5-10 минут. Проба газа анализируется с помощью обычного оборудования (мешок для отбора проб или метод интегрирования), и производится расчет массы газа.

Определенная таким образом масса должна находиться в пределах \pm 3% от известной массы введенного газа.

9.5.5.2 Измерение с помощью гравиметра

Масса небольшого цилиндрического контейнера, заполненного оксидом углерода или пропаном, определяется с точностью \pm 0,01 г. В течение приблизительно 5-10 минут система CVS должна работать в нормальном режиме испытания на выбросы отработавших газов, в то время как в систему вводится оксид углерода или пропан. Количество выделенного чистого газа определяется посредством дифференциального взвешивания. Проба газа анализируется с помощью обычного оборудования (мешок для отбора проб или метод интегрирования), и производится расчет массы газа.

Определенная таким образом масса должна находиться в пределах \pm 3% от известной массы введенного газа.

 $\frac{\Pi \text{риложение 1}}{\Pi \text{РОГРАММА ЗАДАНИЯ РЕЖИМА РАБОТЫ ДВИГАТЕЛЯ НА ДИНАМОМЕТРЕ В ХОДЕ ИСПЫТАНИЯ ВСПЦ}}$

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c	%	%	c	%	%	c	%	%
1	0,0	0,0	47	0,0	0,0	93	32,8	32,7
2	0,0	0,0	48	0,0	0,0	94	33,7	32,5
3	0,0	0,0	49	0,0	0,0	95	34,4	29,5
4	0,0	0,0	50	0,0	13,1	96	34,3	26,5
5	0,0	0,0	51	13,1	30,1	97	34,4	24,7
6	0,0	0,0	52 52	26,3	25,5	98 99	35,0	24,9
7	1,5	8,9	53	35,0	32,2		35,6	25,2
8 9	15,8 27,4	30,9 1,3	54 55	41,7 42,2	14,3 0,0	100 101	36,1 36,3	24,8 24,0
10	32,6	0,7	56	42,2	11,6	101	36,2	23,6
11	34,8	1,2	57	51,0	20,9	102	36,2	23,5
12	36,2	7,4	58	60,0	9,6	103	36,8	22,7
13	37,1	6,2	59	49,4	0,0	105	37,2	20,9
14	37,9	10,2	60	38,9	16,6	106	37,0	19,2
15	39,6	12,3	61	43,4	30,8	107	36,3	18,4
16	42,3	12,5	62	49,4	14,2	108	35,4	17,6
17	45,3	12,6	63	40,5	0,0	109	35,2	14,9
18			64			110		
	48,6	6,0		31,5	43,5		35,4	9,9
19	40,8	0,0	65	36,6	78,2	111	35,5	4,3
20	33,0	16,3	66	40,8	67,6	112	35,2	6,6
21	42,5	27,4	67	44,7	59,1	113	34,9	10,0
22	49,3	26,7	68	48,3	52,0	114	34,7	25,1
23	54,0	18,0	69	51,9	63,8	115	34,4	29,3
24	57,1	12,9	70	54,7	27,9	116	34,5	20,7
25	58,9	8,6	71	55,3	18,3	117	35,2	16,6
26	59,3	6,0	72	55,1	16,3	118	35,8	16,2
27	59,0	4,9	73	54,8	11,1	119	35,6	20,3
28	57,9	m	74	54,7	11,5	120	35,3	22,5
29	55,7	m	75	54,8	17,5	121	35,3	23,4
30	52,1	m	76	55,6	18,0	122	34,7	11,9
31	46,4	m	77	57,0	14,1	123	45,5	0,0
32	38,6	m	78	58,1	7,0	124	56,3	m
33	29,0		78 79	43,3	0,0	125	46,2	
34		m						m
	20,8	m	80	28,5	25,0	126	50,1	0,0
35	16,9	m	81	30,4	47,8	127	54,0	m
36	16,9	42,5	82	32,1	39,2	128	40,5	m
37	18,8	38,4	83	32,7	39,3	129	27,0	m
38	20,7	32,9	84	32,4	17,3	130	13,5	m
39	21,0	0,0	85	31,6	11,4	131	0,0	0,0
40	19,1	0,0	86	31,1	10,2	132	0,0	0,0
41	13,7	0,0	87	31,1	19,5	133	0,0	0,0
42	2,2	0,0	88	31,4	22,5	134	0,0	0,0
43	0,0	0,0	89	31,6	22,9	135	0,0	0,0
44	0,0	0,0	90	31,6	24,3	136	0,0	0,0
45	0,0	0,0	91	31,9	26,9	137	0,0	0,0
46	0,0	0,0	92	32,4	30,6	138	0,0	0,0
.0	0,0	0,0	12	32, 1	30,0	130	0,0	0,0

Время	Приведенная частота вращения %	Приведенный крутящий момент %	Время	Приведенная частота вращения %	Приведенный крутящий момент %	Время с	Приведенная частота вращения %	Приведенный крутящий момент %
139	0,0	0,0	189	0,0	5,9	239	0,0	0,0
140	0,0	0,0	190	0,0	0,0	240	0,0	0,0
141	0,0	0,0	191	0,0	0,0	241	0,0	0,0
142	0,0	4,9	192	0,0	0,0	242	0,0	0,0
143	0,0	7,3	193	0,0	0,0	243	0,0	0,0
144	4,4	28,7	194	0,0	0,0	244	0,0	0,0
145	11,1	26,4	195	0,0	0,0	245	0,0	0,0
145	15,0	9,4	195	0,0	0,0	243	0,0	0,0
147		0,0	190			247		
147	15,9		197	0,0	0,0	247	0,0	0,0
	15,3	0,0		0,0	0,0		0,0	0,0
149	14,2	0,0	199	0,0	0,0	249	0,0	0,0
150	13,2	0,0	200	0,0	0,0	250	0,0	0,0
151	11,6	0,0	201	0,0	0,0	251	0,0	0,0
152	8,4	0,0	202	0,0	0,0	252	0,0	0,0
153	5,4	0,0	203	0,0	0,0	253	0,0	31,6
154	4,3	5,6	204	0,0	0,0	254	9,4	13,6
155	5,8	24,4	205	0,0	0,0	255	22,2	16,9
156	9,7	20,7	206	0,0	0,0	256	33,0	53,5
157	13,6	21,1	207	0,0	0,0	257	43,7	22,1
158	15,6	21,5	208	0,0	0,0	258	39,8	0,0
159	16,5	21,9	209	0,0	0,0	259	36,0	45,7
160	18,0	22,3	210	0,0	0,0	260	47,6	75,9
161	21,1	46,9	211	0,0	0,0	261	61,2	70,4
162	25,2	33,6	212	0,0	0,0	262	72,3	70,4
163	28,1	16,6	213	0,0	0,0	263	76,0	m
164	28,8	7,0	214	0,0	0,0	264	74,3	m
165	27,5	5,0	215	0,0	0,0	265	68,5	m
166	23,1	3,0	216	0,0	0,0	266	61,0	m
167	16,9	1,9	217	0,0	0,0	267	56,0	m
168	12,2	2,6	218	0,0	0,0	268	54,0	m
169	9,9	3,2	219	0,0	0,0	269	53,0	m
170	9,1	4,0	220	0,0	0,0	270	50,8	m
171	8,8	3,8	221	0,0	0,0	271	46,8	m
172	8,5	12,2	222	0,0	0,0	272	41,7	m
173	8,2	29,4	223	0,0	0,0	273	35,9	m
174	9,6	20,1	224	0,0	0,0	274	29,2	m
175	14,7	16,3	225	0,0	0,0	275	20,7	m
176	24,5	8,7	226	0,0	0,0	276	10,1	m
177	39,4	3,3	227	0,0	0,0	277	0,0	m
178	39,0	2,9	228	0,0	0,0	278	0,0	0,0
179	38,5	5,9	229	0,0	0,0	279	0,0	0,0
180	42,4	8,0	230	0,0	0,0	280	0,0	0,0
181 182	38,2 41,4	6,0 3,8	231 232	0,0 0,0	0,0 0,0	281 282	0,0 0,0	0,0 0,0
183	44,6	5,4	232	0,0	0,0	283	0,0	0,0
184	38,8	8,2	234	0,0	0,0	284	0,0	0,0
185	37,5	8,9	235	0,0	0,0	285	0,0	0,0
186	35,4	7,3	236	0,0	0,0	286	0,0	0,0
187	28,4	7,0	237	0,0	0,0	287	0,0	0,0
188	14,8	7,0	238	0,0	0,0	288	0,0	0,0
100	14,0	7,0	230	0,0	0,0	200	0,0	0,0

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c	%	%	c	%	%	c 200	%	%
289	0,0	0,0	339	0,0	0,0	389	25,2	14,7
290	0,0	0,0	340	0,0	0,0	390	28,6	28,4
291	0,0	0,0	341	0,0	0,0	391	35,5	65,0
292	0,0	0,0	342	0,0	0,0	392	43,8	75,3
293	0,0	0,0	343	0,0	0,0	393	51,2	34,2
294	0,0	0,0	344	0,0	0,0	394	40,7	0,0
295	0,0	0,0	345	0,0	0,0	395	30,3	45,4
296	0,0	0,0	346	0,0	0,0	396	34,2	83,1
297	0,0	0,0	347	0,0	0,0	397	37,6	85,3
298	0,0	0,0	348	0,0	0,0	398	40,8	87,5
299	0,0	0,0	349	0,0	0,0	399	44,8	89,7
300	0,0	0,0	350	0,0	0,0	400	50,6	91,9
301	0,0	0,0	351	0,0	0,0	401	57,6	94,1
302	0,0	0,0	352	0,0	0,0	402	64,6	44,6
303	0,0	0,0	353	0,0	0,0	403	51,6	0,0
304	0,0	0,0	354	0,0	0,5	404	38,7	37,4
305	0,0	0,0	355	0,0	4,9	405	42,4	70,3
306	0,0	0,0	356	9,2	61,3	406	46,5	89,1
307	0,0	0,0	357	22,4	40,4	407	50,6	93,9
308	0,0	0,0	358	36,5	50,1	408	53,8	33,0
309	0,0	0,0	359	47,7	21,0	409	55,5	20,3
310	0,0	0,0	360	38,8	0,0	410	55,8	5,2
311	0,0	0,0	361	30,0	37,0	411	55,4	m
312	0,0	0,0	362	37,0	63,6	412	54,4	m
313	0,0	0,0	363	45,5	90,8	413	53,1	m
314	0,0	0,0	364	54,5	40,9	414	51,8	m
315	0,0	0,0	365	45,9	0,0	415	50,3	m
316	0,0	0,0	366	37,2	47,5	416	48,4	m
317	0,0	0,0	367	44,5	84,4	417	45,9	m
318	0,0	0,0	368	51,7	32,4	418	43,1	m
319	0,0	0,0	369	58,1	15,2	419	40,1	m
320	0,0	0,0	370	45,9	0,0	420	37,4	m
321	0,0	0,0	371	33,6	35,8	421	35,1	m
322	0,0	0,0	372	36,9	67,0	422	32,8	m
323	0,0	0,0	373	40,2	84,7	423	45,3	0,0
324	4,5	41,0	374	43,4	84,3	424	57,8	m
325	17,2	38,9	375	45,7	84,3	425	50,6	m
326	30,1	36,8	376	46,5	m	426	41,6	m
327	41,0	34,7	377	46,1	m	427	47,9	0,0
328	50,0	32,6	378	43,9	m	428	54,2	m
329	51,4	0,1	379	39,3	m	429	48,1	m
330	47,8	m	380	47,0	m	430	47,0	31,3
331	40,2	m	381	54,6	m	431	49,0	38,3
332	32,0	m	382	62,0	m	432	52,0	40,1
333	24,4	m	383	52,0	m	433	53,3	14,5
334	16,8	m	384	43,0	m	434	52,6	0,8
335	8,1	m	385	33,9	m	435	49,8	m
336	0,0	m	386	28,4	m	436	51,0	18,6
337	0,0	0,0	387	25,5	m	437	56,9	38,9
338	0,0	0,0	388	24,6	11,0	438	67,2	45,0

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c 439	% 78,6	% 21,5	c 489	% 45,5	%	c 539	% 56,7	%
440	65,5	0,0	490	40,4	m m	540	46,9	m m
441	52,4	31,3	491	49,7	0,0	541	37,5	m
442	56,4	60,1	492	59,0	m	542	30,3	
442	59,7	29,2	492	48,9	m	543	27,3	m 32,3
444	45,1	0,0	494	40,0		544	30,8	60,3
445	30,6	4,2	494	33,5	m m	545	41,2	62,3
446	30,0	8,4	493	30,0	m	545 546	36,0	0,0
447	30,5	4,3	490	29,1	12,0	547	30,8	32,3
448	30,5 44,6	0,0	497	29,1	40,4	548	33,9	60,3
449	58,8	m	499	30,4	29,3	549	34,6	38,4
450	55,1		500	32,2	15,4	550	37,0	16,6
451		m	501					
451	50,6 45,3	m	502	33,9 35,3	15,8 14,9	551 552	42,7 50,4	62,3 28,1
453		m	503			553	40,1	
453 454	39,3	m 0,0	504	36,4 38,0	15,1	554		0,0
454	49,1 58,8		505	40,3	15,3 50,9	555	29,9 32,5	8,0 15,0
455 456		m	506			556		
	50,7	m		43,0	39,7		34,6	63,1
457	42,4	m o o	507	45,5 47.2	20,6	557 559	36,7	58,0
458	44,1	0,0	508	47,3	20,6	558	39,4	52,9
459	45,7	m	509	48,8	22,1	559	42,8	47,8
460	32,5	m	510	50,1	22,1	560	46,8	42,7
461	20,7	m	511	51,4	42,4	561	50,7	27,5
462	10,0	m	512	52,5	31,9	562	53,4	20,7
463	0,0	0,0	513	53,7	21,6	563	54,2	13,1
464	0,0	1,5	514	55,1	11,6	564	54,2	0,4
465	0,9	41,1	515	56,8	5,7	565	53,4	0,0
466	7,0	46,3	516	42,4	0,0	566	51,4	m
467	12,8	48,5	517	27,9	8,2	567	48,7	m
468	17,0	50,7	518	29,0	15,9	568	45,6	m
469	20,9	52,9	519	30,4	25,1	569 570	42,4	m
470	26,7	55,0	520	32,6	60,5	570	40,4	m 5.0
471	35,5	57,2	521	35,4	72,7	571	39,8	5,8
472	46,9	23,8	522	38,4	88,2	572	40,7	39,7
473	44,5	0,0	523 524	41,0	65,1	573	43,8	37,1
474	42,1	45,7	524	42,9	25,6	574 575	48,1	39,1
475	55,6	77,4	525	44,2	15,8	575 576	52,0	22,0
476	68,8	100,0	526	44,9	2,9	576	54,7	13,2
477	81,7	47,9	527	45,1	m	577	56,4	13,2
478	71,2	0,0	528	44,8	m	578 578	57,5	6,6
479	60,7	38,3	529	43,9	m	579	42,6	0,0
480	68,8	72,7	530	42,4	m	580	27,7	10,9
481 482	75,0 61,3	m m	531 532	40,2 37,1	m m	581 582	28,5 29,2	21,3 23,9
482	53,5	m m	532	37,1 47,0	m 0,0	582 583	29,2 29,5	15,2
484	45,9	58,0	534	57,0	m	584	29,7	8,8
485	48,1	80,0	535	45,1	m	585	30,4	20,8
486	49,4	97,9	536	32,6	m	586	31,9	22,9
487	49,7	m	537	46,8	0,0	587	34,3	61,4
488	48,7	m	538	61,5	m	588	37,2	76,6

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c	%	%	c	%	%	c	%	%
589	40,1	27,5	639	39,8	m	689	46,6	0,0
590	42,3	25,4	640	36,0	m	690	32,3	34,6
591	43,5	32,0	641	29,7	m	691	32,7	68,6
592	43,8	6,0	642	21,5	m	692	32,6	67,0
593	43,5	m	643	14,1	m	693	31,3	m
594	42,8	m	644	0,0	0,0	694	28,1	m
595	41,7	m	645	0,0	0,0	695	43,0	0,0
596	40,4	m	646	0,0	0,0	696	58,0	m
597	39,3	m	647	0,0	0,0	697	58,9	m
598	38,9	12,9	648	0,0	0,0	698	49,4	m
599	39,0	18,4	649	0,0	0,0	699	41,5	m
600	39,7	39,2	650	0,0	0,0	700	48,4	0,0
601	41,4	60,0	651	0,0	0,0	701	55,3	m
602	43,7	54,5	652	0,0	0,0	702	41,8	m
603	46,2	64,2	653	0,0	0,0	703	31,6	m
604	48,8	73,3	654	0,0	0,0	704	24,6	m
605	51,0	82,3	655	0,0	0,0	705	15,2	m
606	52,1	0,0	656	0,0	3,4	706	7,0	m
607	52,0	m	657	1,4	22,0	707	0,0	0,0
608	50,9	m	658	10,1	45,3	708	0,0	0,0
609	49,4	m	659	21,5	10,0	709	0,0	0,0
610	47,8	m	660	32,2	0,0	710	0,0	0,0
611	46,6	m	661	42,3	46,0	711	0,0	0,0
612	47,3	35,3	662	57,1	74,1	712	0,0	0,0
613	49,2	74,1	663	72,1	34,2	713	0,0	0,0
614	51,1	95,2	664	66,9	0,0	714	0,0	0,0
615	51,7	m	665	60,4	41,8	715	0,0	0,0
616	50,8	m	666	69,1	79,0	716	0,0	0,0
617	47,3	m	667	77,1	38,3	717	0,0	0,0
618	41,8	m	668	63,1	0,0	718	0,0	0,0
619	36,4	m	669	49,1	47,9	719	0,0	0,0
620	30,9	m	670	53,4	91,3	720	0,0	0,0
621	25,5	37,1	671	57,5	85,7	721	0,0	0,0
622	33,8	38,4	672	61,5	89,2	722	0,0	0,0
623	42,1	m	673	65,5	85,9	723	0,0	0,0
624	34,1	m	674	69,5	89,5	723	0,0	0,0
625	33,0	37,1	675	73,1	75,5	725	0,0	0,0
626	36,4	38,4	676	76,2	73,6	726	0,0	0,0
627	43,3	17,1	677	70,2	75,6 75,6	720	0,0	0,0
		0,0	678			727		0,0
628	35,7			81,8	78,2		0,0	
629	28,1	11,6	679	84,1	39,0	729	0,0	0,0
630	36,5 45.2	19,2	680	69,6	0,0	730	0,0	0,0
631	45,2	8,3	681	55,0	25,2	731	0,0	0,0
632	36,5	0,0	682	55,8	49,9	732	0,0	0,0
633 634	27,9 31,5	32,6 59,6	683 684	56,7 57,6	46,4 76,3	733 734	0,0 0,0	0,0 0,0
635	31,5 34,4	59,6 65,2	685	58,4	76,3 92,7	734	0,0	0,0
636	37,0	59,6	686	59,3	99,9	736	0,0	0,0
637	39,0	49,0	687	60,1	95,0	737	0,0	0,0
638	40,2	m	688	61,0	46,7	738	0,0	0,0

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
C 720	%	%	c 700	%	%	c	%	%
739	0,0	0,0	789	17,2	m 27.6	839	38,1	m
740	0,0	0,0	790	14,0	37,6	840	37,2	42,7
741	0,0	0,0	791	18,4	25,0	841	37,5	70,8
742	0,0	0,0	792	27,6	17,7	842	39,1	48,6
743	0,0	0,0	793	39,8	6,8	843	41,3	0,1
744	0,0	0,0	794	34,3	0,0	844	42,3	m
745	0,0	0,0	795	28,7	26,5	845	42,0	m
746	0,0	0,0	796	41,5	40,9	846	40,8	m
747	0,0	0,0	797	53,7	17,5	847	38,6	m
748	0,0	0,0	798	42,4	0,0	848	35,5	m
749	0,0	0,0	799	31,2	27,3	849	32,1	m
750	0,0	0,0	800	32,3	53,2	850	29,6	m
751	0,0	0,0	801	34,5	60,6	851	28,8	39,9
752	0,0	0,0	802	37,6	68,0	852	29,2	52,9
753	0,0	0,0	803	41,2	75,4	853	30,9	76,1
754	0,0	0,0	804	45,8	82,8	854	34,3	76,5
755	0,0	0,0	805	52,3	38,2	855	38,3	75,5
756	0,0	0,0	806	42,5	0,0	856	42,5	74,8
757	0,0	0,0	807	32,6	30,5	857	46,6	74,2
758	0,0	0,0	808	35,0	57,9	858	50,7	76,2
759	0,0	0,0	809	36,0	77,3	859	54,8	75,1
760	0,0	0,0	810	37,1	96,8	860	58,7	36,3
761	0,0	0,0	811	39,6	80,8	861	45,2	0,0
762	0,0	0,0	812	43,4	78,3	862	31,8	37,2
763	0,0	0,0	813	47,2	73,4	863	33,8	71,2
764	0,0	0,0	814	49,6	66,9	864	35,5	46,4
765	0,0	0,0	815	50,2	62,0	865	36,6	33,6
766	0,0	0,0	816	50,2	57,7	866	37,2	20,0
767	0,0	0,0	817	50,6	62,1	867	37,2	m
768	0,0	0,0	818	52,3	62,9	868	37,0	m
769	0,0	0,0	819	54,8	37,5	869	36,6	m
770	0,0	0,0	820	57,0	18,3	870	36,0	m
771	0,0	22,0	821	42,3	0,0	871	35,4	m
772	4,5	25,8	822	27,6	29,1	872	34,7	m
773	15,5	42,8	823	28,4	57,0	873	34,1	m
774	30,5	46,8	824	29,1	51,8	874	33,6	m
775	45,5	29,3	825	29,6	35,3	875	33,3	m
776	49,2	13,6	826	29,7	33,3	876	33,1	m
777	39,5	0,0	827	29,8	17,7	877	32,7	m
778	29,7	15,1	828	29,5	m	878	31,4	m
779	34,8	26,9	829	28,9	m	879	45,0	0,0
780	40,0	13,6	830	43,0	0,0	880	58,5	m
781	42,2	m	831	57,1	m	881	53,7	m
782	42,1	m	832	57,7	m	882	47,5	m
783	40,8	m	833	56,0	m	883	40,6	m
784	37,7	37,6	834	53,8	m	884	34,1	m
785	47,0	35,0	835	51,2	m	885	45,3	0,0
786	48,8	33,4	836	48,1	m	886	56,4	m
787 788	41,7 27.7	m m	837 838	44,5 40.9	m m	887 888	51,0 44.5	m m
768	27,7	m	838	40,9	m	888	44,5	m

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c	%	%	c	%	%	c	%	%
889	36,4	m	939	32,7	56,5	989	32,6	m
890	26,6	m	940	33,4	62,8	990	30,9	m
891	20,0	m	941	34,6	68,2	991	29,9	m
892	13,3	m	942	35,8	68,6	992	29,2	m
893	6,7	m	943	38,6	65,0	993	44,1	0,0
894	0,0	0,0	944	42,3	61,9	994	59,1	m
895	0,0	0,0	945	44,1	65,3	995	56,8	m
896	0,0	0,0	946	45,3	63,2	996	53,5	m
897	0,0	0,0	947	46,5	30,6	997	47,8	m
898	0,0	0,0	948	46,7	11,1	998	41,9	m
899	0,0	0,0	949	45,9	16,1	999	35,9	m
900	0,0	0,0	950	45,6	21,8	1000	44,3	0,0
901	0,0	5,8	951	45,9	24,2	1001	52,6	m
902	2,5	27,9	952	46,5	24,7	1002	43,4	m
903	12,4	29,0	953	46,7	24,7	1003	50,6	0,0
904	19,4	30,1	954	46,8	28,2	1004	57,8	m
905	29,3	31,2	955	47,2	31,2	1005	51,6	m
906	37,1	10,4	956	47,6	29,6	1006	44,8	m
907	40,6	4,9	957	48,2	31,2	1007	48,6	0,0
908	35,8	0,0	958	48,6	33,5	1008	52,4	m
909	30,9	7,6	959	48,8	m	1009	45,4	m
910	35,4	13,8	960	47,6	m	1010	37,2	m
911	36,5	11,1	961	46,3	m	1011	26,3	m
912	40,8	48,5	962	45,2	m	1012	17,9	m
913	49,8	3,7	963	43,5	m	1013	16,2	1,9
914	41,2	0,0	964	41,4	m	1014	17,8	7,5
915	32,7	29,7	965	40,3	m	1015	25,2	18,0
916	39,4	52,1	966	39,4	m	1016	39,7	6,5
917	48,8	22,7	967	38,0	m	1017	38,6	0,0
918	41,6	0,0	968	36,3	m	1018	37,4	5,4
919	34,5	46,6	969	35,3	5,8	1019	43,4	9,7
920	39,7	84,4	970	35,4	30,2	1020	46,9	15,7
921	44,7	83,2	971	36,6	55,6	1021	52,5	13,1
922	49,5	78,9	972	38,6	48,5	1022	56,2	6,3
923	52,3	83,8	973	39,9	41,8	1023	44,0	0,0
924	53,4	77,7	974	40,3	38,2	1024	31,8	20,9
925	52,1	69,6	975	40,8	35,0	1025	38,7	36,3
926	47,9	63,6	976	41,9	32,4	1026	47,7	47,5
927	46,4	55,2	977	43,2	26,4	1027	54,5	22,0
928	46,5	53,6	978	43,5	m	1028	41,3	0,0
929	46,4	62,3	979	42,9	m	1029	28,1	26,8
930	46,1	58,2	980	41,5	m	1030	31,6	49,2
931	46,2	61,8	981	40,9	m	1031	34,5	39,5
932	47,3	62,3	982	40,5	m	1032	36,4	24,0
933	49,3	57,1	983	39,5	m	1033	36,7	m
934	52,6	58,1	984	38,3	m	1034	35,5	m
935	56,3	56,0	985	36,9	m	1035	33,8	m
936	59,9	27,2	986	35,4	m	1036	33,7	19,8
937 938	45,8 31,8	0,0 28,8	987 988	34,5 33,9	m m	1037 1038	35,3 38,0	35,1 33,9
730	31,0	20,0	700	33,7	111	1030	30,0	33,7

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c 1020	% 40.1	% 24.5	C 1.090	% 46.2	%	C 1120	% 51.7	%
1039	40,1	34,5	1,089	46,3	24,0	1139	51,7	0,0
1040	42,2	40,4	1,090	47,8	20,6	1140	59,2	m
1041	45,2	44,0	1,091	47,2	3,8	1141	47,2	m
1042	48,3	35,9	1,092	45,6	4,4	1142	35,1	0,0
1043	50,1	29,6	1,093	44,6	4,1	1143	23,1	m
1044	52,3	38,5	1,094	44,1	m	1144	13,1	m
1045	55,3	57,7	1,095	42,9	m	1145	5,0	m
1046	57,0	50,7	1,096	40,9	m	1146	0,0	0,0
1047	57,7	25,2	1,097	39,2	m	1147	0,0	0,0
1048	42,9	0,0	1,098	37,0	m	1148	0,0	0,0
1049	28,2	15,7	1,099	35,1	2,0	1149	0,0	0,0
1050	29,2	30,5	1,100	35,6	43,3	1150	0,0	0,0
1051	31,1	52,6	1,101	38,7	47,6	1151	0,0	0,0
1052	33,4	60,7	1,102	41,3	40,4	1152	0,0	0,0
1053	35,0	61,4	1,103	42,6	45,7	1153	0,0	0,0
1054	35,3	18,2	1,104	43,9	43,3	1154	0,0	0,0
1055	35,2	14,9	1,105	46,9	41,2	1155	0,0	0,0
1056	34,9	11,7	1,106	52,4	40,1	1156	0,0	0,0
1057	34,5	12,9	1,107	56,3	39,3	1157	0,0	0,0
1058	34,1	15,5	1108	57,4	25,5	1158	0,0	0,0
1059	33,5	m	1109	57,2	25,4	1159	0,0	0,0
1060	31,8	m	1110	57,0	25,4	1160	0,0	0,0
1061	30,1	m	1111	56,8	25,3	1161	0,0	0,0
1062	29,6	10,3	1112	56,3	25,3	1162	0,0	0,0
1063	30,0	26,5	1113	55,6	25,2	1163	0,0	0,0
1064	31,0	18,8	1114	56,2	25,2	1164	0,0	0,0
1065	31,5	26,5	1115	58,0	12,4	1165	0,0	0,0
1066	31,7	m	1116	43,4	0,0	1166	0,0	0,0
1067	31,5	m	1117	28,8	26,2	1167	0,0	0,0
1068	30,6	m	1118	30,9	49,9	1168	0,0	0,0
1069	30,0	m	1119	32,3	40,5	1169	0,0	0,0
1070	30,0	m	1120	32,5	12,4	1170	0,0	0,0
1071	29,4	m	1121	32,4	12,2	1171	0,0	0,0
1072	44,3	0,0	1122	32,1	6,4	1172	0,0	0,0
1073	59,2	m	1123	31,0	12,4	1173	0,0	0,0
1073	58,3	m	1124	30,1	18,5	1174	0,0	0,0
1075	57,1		1125	30,4	35,6	1175	0,0	0,0
1075	55,4	m	1125	31,2	30,1	1175	0,0	0,0
1070	53,5	m m	1120	31,5	30,1	1170	0,0	0,0
1077		m				1177		
	51,5	m	1128	31,5	26,9		0,0	0,0
1079	49,7	m	1129	31,7	33,9	1179	0,0	0,0
1080	47,9	m	1130	32,0	29,9	1180	0,0	0,0
1081	46,4	m	1131	32,1	m	1181	0,0	0,0
1082	45,5 45.2	m	1132	31,4	m	1182	0,0	0,0
1083 1084	45,2 44,3	m m	1133 1134	30,3 29,8	m m	1183 1184	0,0 0,0	0,0 0,0
1084	44,5	m m	1134	29,8 44,3	m 0,0	1184	0,0	0,0
1086	43,1	m	1136	58,9	m	1186	0,0	0,0
1087	42,5	25,6	1137	52,1	m	1187	0,0	0,0
1088	43,3	25,7	1138	44,1	m	1188	0,0	0,0

Tiles 0.0	Время	Приведенная частота вращения %	Приведенный крутящий момент %	Время	Приведенная частота вращения %	Приведенный крутящий момент %	Время	Приведенная частота вращения %	Приведенный крутящий момент %
1190	C 1180			c 1239			c 1280		
1191 0.0									
1192									
1193 0,0 0,0 1243 64,1 87,6 1293 78,3 83,2 1194 0,0 0,0 1244 65,4 87,5 1294 82,6 86,0 1195 0,0 0,0 1245 66,7 87,8 1295 87,0 89,5 1196 0,0 20,4 1246 68,1 43,5 1296 91,2 90,8 1197 12,6 41,2 1247 55,2 0,0 1297 95,3 45,9 1198 27,3 20,4 1248 42,3 37,2 1298 81,0 0,0 1199 40,4 7,6 1249 43,0 73,6 1299 66,6 38,2 1200 46,1 m 1250 43,5 65,1 1300 67,9 75,5 1201 44,6 m 1251 43,8 53,1 1301 68,4 80,5 1202 42,7 14,7 1252 43,9 54,6 1302 69,0 88,5 1203 42,9 7,3 1253 43,9 41,2 1303 70,0 85,2 1204 36,1 0,0 1254 43,8 34,8 1304 71,6 88,9 1205 29,3 15,0 1255 43,6 30,3 1305 73,3 86,2 1206 43,8 22,6 1256 43,3 21,9 1306 74,8 86,5 1207 54,9 9,9 1257 42,8 19,9 1307 76,3 42,9 1208 44,9 0,0 1258 42,3 m 1308 63,3 0,0 1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1244 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 60,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1315 51,9 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1226 74,1 81,1 1276 42,3 m 1330 37,4 52,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 37,2 1229 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9									
1194 0,0 0,0 1244 65,4 87,5 1294 82,6 86,0 1195 0,0 0,0 1245 66,7 87,8 1295 87,0 90,5 1197 12,6 41,2 1246 68,1 43,5 1296 91,2 90,8 1197 12,6 41,2 1247 55,2 0,0 1297 95,3 45,9 1198 27,3 20,4 1248 42,3 37,2 1298 81,0 0,0 0,0 1299 66,6 38,2 1200 46,1 m 1250 43,5 65,1 1300 67,9 75,5 1201 44,6 m 1251 43,8 53,1 1301 68,4 80,5 1202 42,7 14,7 1252 43,9 54,6 1302 69,0 85,5 1203 42,9 7,3 1253 43,9 41,2 1303 70,0 85,2 1203 42,9 7,3 1253 43,9 41,2 1303 70,0 85,2 1204 43,6 30,3 1305 73,3 86,2 1206 43,8 22,6 1256 43,3 21,9 1306 74,8 86,5 1207 54,9 9,9 1257 42,8 19,9 1306 74,8 86,5 1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1211 52,0 81,2 1261 38,7 m 1311 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 42,3 1211 58,1 0,0 1264 34,2 m 1311 50,6 53,7 1212 54,9 43,9 47,4 1259 41,4 m 1309 50,4 21,2 1214 58,1 0,0 1264 34,2 m 1311 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 50,6 53,7 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 41,1 41,1 1271 46,8 74,1 1271 49,6 m 1320 41,4 41,1									
1195 0,0 0,0 1245 66,7 87,8 1295 87,0 89,5 1196 0,0 20,4 1246 68,1 43,5 1296 91,2 90,8 1197 12,6 41,2 1247 55,2 0,0 1297 95,3 45,9 1198 27,3 20,4 1248 42,3 37,2 1298 81,0 0,0 1199 40,4 7,6 1249 43,0 73,6 1299 66,6 88,2 1200 46,1 m 1250 43,5 65,1 1300 67,9 75,5 1201 44,6 m 1251 43,8 53,1 1301 68,4 80,5 1202 42,7 14,7 1252 43,9 54,6 1302 69,0 85,5 1203 42,9 7,3 1253 43,9 41,2 1303 70,0 85,2 1204 36,1 0,0 1254 43,8 34,8 1304 71,6 85,9 1205 29,3 15,0 1255 43,6 30,3 1305 73,3 86,2 1207 54,9 9,9 1257 42,8 19,9 1306 74,8 86,5 1207 54,9 9,9 1257 42,8 19,9 1307 76,3 42,9 1208 44,9 0,0 1258 42,3 m 1308 63,3 0,0 1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1311 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 42,3 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 50,6 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1318 47,7 0,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 1228 60,2 78,7 1262 30,0 m 1315 51,9 100,0 1216 46,8 74,1 1267 30,7 m 1317 52,8 1221 56,9 77,1 1271 49,6 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1224 67,2 79,6 1274 45,0 m 1327 37,6 57,8 1229 80,8 85,6 1278 39,6 m 1331 37,4 41,4 1229 80,8 85,6 1278 39,6 m 1331 37,4 41,9 1222 60,2 78,7 1268 29,6 m 1331 37,4 41,9 1224 67,2 79,6 1274 45,0 m 1327 37,6 57,8 1225 70,7 80,9 1275 43,6 m 1325 39,3 1									
1196									
1197									
1198									
1199									
1200									
1201									
1202 42,7 14,7 1252 43,9 54,6 1302 69,0 85,5 1203 42,9 7,3 1253 43,9 41,2 1303 70,0 85,2 1204 36,1 0,0 1254 43,8 34,8 1304 71,6 85,9 1205 29,3 15,0 1255 43,6 30,3 1305 73,3 86,2 1206 43,8 22,6 1256 43,3 21,9 1306 74,8 86,5 1207 54,9 9,9 1257 42,8 19,9 1307 76,3 42,9 1208 44,9 0,0 1258 42,3 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262									
1203									
1204 36,1 0,0 1254 43,8 34,8 1304 71,6 85,9 1205 29,3 15,0 1255 43,6 30,3 1305 73,3 86,2 1206 43,8 22,6 1256 43,3 21,9 1306 74,8 86,5 1207 54,9 9,9 1257 42,8 19,9 1307 76,3 42,9 1208 44,9 0,0 1258 42,3 m 1308 63,3 0,0 1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1225 70,7 80,9 1275 43,6 m 1322 37,3 59,8 1229 84,1 81,6 1279 38,3 m 1320 37,3 59,8 1229 84,1 81,6 1279 38,3 m 1320 37,3 59,8 1229 84,1 81,6 1279 38,3 m 1320 37,3 59,8 1229 84,1 81,6 1279 38,3 m 1323 37,4 16,9 1233 96,8 96,6 1283 33,0 m 1331 37,4 16,9 1233 96,8 96,6 1283 33,0 m 1334 36,2 25,3 1235 96,0 m 1284 31,1 m 1334 36,2 25,3 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1205 29,3 15,0 1255 43,6 30,3 1305 73,3 86,2 1206 43,8 22,6 1256 43,3 21,9 1306 74,8 86,5 1207 54,9 9,9 1257 42,8 19,9 1307 76,3 42,9 1208 44,9 0.0 1258 42,3 m 1308 63,3 0.0 1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0.0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0.0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1325 39,3 1,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1267 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1331 37,4 16,9 1233 94,8 96,6 1283 33,0 m 1333 37,4 16,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1284 31,1 m 1334 36,2 25,3 1236 81,9 m 1285 29,2 m 1335 35,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1206									
1207 54,9 9,9 1257 42,8 19,9 1307 76,3 42,9 1208 44,9 0,0 1258 42,3 m 1308 63,3 0,0 1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 36,2 25,3 1235 96,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 33,2 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1208									
1209 34,9 47,4 1259 41,4 m 1309 50,4 21,2 1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1278 39,6 m 1321 37,4 40,9 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1284 31,1 m 1334 36,2 25,3 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m 1238 33,2 m									
1210 42,7 82,7 1260 40,2 m 1310 50,6 42,3 1211 52,0 81,2 1261 38,7 m 1311 50,6 53,7 1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1211 52,0									
1212 61,8 82,7 1262 37,1 m 1312 50,4 90,1 1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,8 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1213 71,3 39,1 1263 35,6 m 1313 50,5 97,1 1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1318 47,7 0,0 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1214 58,1 0,0 1264 34,2 m 1314 51,0 100,0 1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1215 44,9 42,5 1265 32,9 m 1315 51,9 100,0 1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1216 46,3 83,3 1266 31,8 m 1316 52,6 100,0 1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1217 46,8 74,1 1267 30,7 m 1317 52,8 32,4 1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6									
1218 48,1 75,7 1268 29,6 m 1318 47,7 0,0 1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6									
1219 50,5 75,8 1269 40,4 0,0 1319 42,6 27,4 1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6									
1220 53,6 76,7 1270 51,2 m 1320 42,1 53,5 1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3									
1221 56,9 77,1 1271 49,6 m 1321 41,8 44,5 1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1									
1222 60,2 78,7 1272 48,0 m 1322 41,4 41,1 1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 <						m			
1223 63,7 78,0 1273 46,4 m 1323 41,0 21,0 1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 <						m			
1224 67,2 79,6 1274 45,0 m 1324 40,3 0,0 1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1225 70,7 80,9 1275 43,6 m 1325 39,3 1,0 1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1									
1226 74,1 81,1 1276 42,3 m 1326 38,3 15,2 1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1227 77,5 83,6 1277 41,0 m 1327 37,6 57,8 1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287									
1228 80,8 85,6 1278 39,6 m 1328 37,3 73,2 1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1229 84,1 81,6 1279 38,3 m 1329 37,3 59,8 1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1230 87,4 88,3 1280 37,1 m 1330 37,4 52,2 1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m						m			
1231 90,5 91,9 1281 35,9 m 1331 37,4 16,9 1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m						m			
1232 93,5 94,1 1282 34,6 m 1332 37,1 34,3 1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m						m			
1233 96,8 96,6 1283 33,0 m 1333 36,7 51,9 1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1234 100,0 m 1284 31,1 m 1334 36,2 25,3 1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1235 96,0 m 1285 29,2 m 1335 35,6 m 1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1236 81,9 m 1286 43,3 0,0 1336 34,6 m 1237 68,1 m 1287 57,4 32,8 1337 33,2 m									
1237 68,1 m 1287 57,4 32,8 1337 33,2 m									

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c	%	%	c	%	%	C	%	%
1339	30,1	m	1389	50,4	50,2	1439	36,3	98,8
1340	28,8	m	1390	53,0	26,1	1440	37,7	100,0
1341	28,0	29,5	1391	59,5	0,0	1441	39,2	100,0
1342	28,6	100,0	1392	66,2	38,4	1442	40,9	100,0
1343	28,8	97,3	1393	66,4	76,7	1443	42,4	99,5
1344	28,8	73,4	1394	67,6	100,0	1444	43,8	98,7
1345	29,6	56,9	1395	68,4	76,6	1445	45,4	97,3
1346	30,3	91,7	1396	68,2	47,2	1446	47,0	96,6
1347	31,0	90,5	1397	69,0	81,4	1447	47,8	96,2
1348	31,8	81,7	1398	69,7	40,6	1448	48,8	96,3
1349	32,6	79,5	1399	54,7	0,0	1449	50,5	95,1
1350	33,5	86,9	1400	39,8	19,9	1450	51,0	95,9
1351	34,6	100,0	1401	36,3	40,0	1451	52,0	94,3
1352	35,6	78,7	1402	36,7	59,4	1452	52,6	94,6
1353	36,4	50,5	1403	36,6	77,5	1453	53,0	65,5
1354	37,0	57,0	1404	36,8	94,3	1454	53,2	0,0
1355	37,3	69,1	1405	36,8	100,0	1455	53,2	m
1356	37,6	49,5	1406	36,4	100,0	1456	52,6	m
1357	37,8	44,4	1407	36,3	79,7	1457	52,1	m
1358	37,8	43,4	1408	36,7	49,5	1458	51,8	m
1359	37,8	34,8	1409	36,6	39,3	1459	51,3	m
1360	37,6	24,0	1410	37,3	62,8	1460	50,7	m
1361	37,2	m	1411	38,1	73,4	1461	50,7	m
1362	36,3	m	1412	39,0	72,9	1462	49,8	m
1363	35,1	m	1413	40,2	72,0	1463	49,4	m
1364	33,7	m	1414	41,5	71,2	1464	49,3	m
1365	32,4	m	1415	42,9	77,3	1465	49,1	m
1366	31,1	m	1416	44,4	76,6	1466	49,1	m
1367	29,9	m	1417	45,4	43,1	1467	49,1	8,3
1368	28,7	m	1418	45,3	53,9	1468	48,9	16,8
1369	29,0	58,6	1419	45,1	64,8	1469	48,8	21,3
1370	29,0	88,5	1419	46,5	74,2	1470	49,1	22,1
1370	31,0	86,3	1420	47,7	74,2 75,2	1470	49,4	26,3
1372	31,8	43,4	1422	48,1	75,5	1472	49,8	39,2
1373	31,7	m	1423	48,6	75,8	1473	50,4	83,4
1374	29,9	m	1424	48,9	76,3	1474	51,4	90,6
1375	40,2	0,0	1425	49,9	75,5	1475	52,3	93,8
1376	50,4	m	1426	50,4	75,2	1476	53,3	94,0
1377	47,9	m	1427	51,1	74,6	1477	54,2	94,1
1378	45,0	m	1428	51,9	75,0	1478	54,9	94,3
1379	43,0	m	1429	52,7	37,2	1479	55,7	94,6
1380	40,6	m	1430	41,6	0,0	1480	56,1	94,9
1381	55,5	0,0	1431	30,4	36,6	1481	56,3	86,2
1382	70,4	41,7	1432	30,5	73,2	1482	56,2	64,1
1383	73,4	83,2	1433	30,3	81,6	1483	56,0	46,1
1384	74,0	83,7	1434	30,4	89,3	1484	56,2	33,4
1385	74,9	41,7	1435	31,5	90,4	1485	56,5 56.3	23,6
1386 1387	60,0 45,1	0,0 41,6	1436 1437	32,7 33,7	88,5 97,2	1486 1487	56,3 55,7	18,6 16,2
1388	43,1 47,7	84,2	1437	35,7 35,2	97,2 99,7	1487	56,0	15,9
		- ,		7	*-			- 7-

1489 55,9 21,8 1539 57,0 59,5 1589 56,8 42,9 1490 55,8 20,9 1540 56,7 57,0 1590 56,5 42,8 1492 55,4 18,4 1541 56,7 69,8 1591 56,7 43,2 1492 55,7 25,1 1542 56,8 58,5 1592 56,5 42,8 1493 56,0 27,7 1543 56,8 47,2 1593 56,9 42,2 1494 55,8 22,4 1544 57,0 38,5 1594 56,5 43,1 1495 56,1 20,0 1545 57,0 32,8 1595 56,5 42,9 1496 55,7 17,4 1546 56,8 30,2 1596 56,7 42,7 1497 55,9 20,9 1547 57,0 27,0 1597 56,6 41,5 1498 56,0 22,9 1548 56,7 26,2 1598 56,9 41,8 1499 56,0 21,1 1549 56,7 26,2 1598 56,9 41,8 1499 56,0 21,1 1549 56,7 26,2 1599 56,6 41,9 1500 55,1 19,2 1550 57,0 26,6 1600 56,7 42,6 1501 55,6 24,2 1551 56,7 27,8 1601 56,7 42,6 1502 55,4 23,5 1555 56,6 34,9 1604 56,5 42,2 1503 55,7 24,7 1533 56,8 32,1 1603 56,7 42,2 1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1604 56,5 42,2 1506 55,7 30,9 1556 56,3 35,8 1606 56,7 42,1 1508 55,3 25,8 1558 56,6 33,9 1604 56,5 42,0 1509 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,9 1511 54,4 m 1561 56,6 36,6 1607 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1616 56,6 41,9 1513 53,5 m 1563 56,5 36,8 36,1 162 56,8 41,0 1514 52,4 m 1564 56,5 36,0 1619 56,7 41,5 1515 51,8 m 1567 56,5 36,0 1616 56,7 41,5 1517 44,9 m 1567 56,5 36,0 1616 56,6 41,6 1517 49,9 m 1567 56,5 36,0 1616 56,6 41,6 1517 49,9 m 1567 56,5 36,0 1626 56,5 44,4 1522 46,9 m 1573 56,5 36,0 1626 56,5 44,4 1523 47,2 m 1573 56,5 36,0 1626 56,5	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
1490	C 1/80	% 55.0	% 21.8	C 1530	% 57.0	% 50.5	C 1590	% 56.8	% 42.0
1491									
1492									
1493									
1494 55.8 22.4 1544 57.0 38.5 1594 56.5 43.1 1495 56.1 20.0 1545 57.0 32.8 1595 56.5 42.9 1496 55.7 17.4 1546 56.8 30.2 1596 56.7 42.7 1497 55.9 20.9 1547 57.0 27.0 1597 56.6 41.5 1498 56.0 22.9 1548 56.9 26.2 1598 56.9 41.8 1499 56.0 21.1 1549 56.7 26.2 1599 56.6 41.9 1500 55.1 19.2 1550 57.0 26.6 1600 56.7 42.6 1501 55.6 24.2 1551 56.7 27.8 1601 56.7 42.6 1502 55.4 25.6 1552 56.7 29.7 1602 56.7 41.5 1503 55.7 24.7 1533 56.8 32.1 1603 56.7 42.2 1504 55.9 24.0 1554 56.5 34.9 1605 56.8 41.9 1506 55.7 30.9 1556 56.3 34.9 1605 56.8 41.9 1506 55.7 30.9 1556 56.3 35.8 1606 56.5 42.0 1507 55.4 42.5 1557 56.6 36.6 1607 56.7 42.1 1508 55.3 25.8 1558 56.2 37.6 1608 56.4 41.9 1509 55.4 4.1 3 1559 56.6 38.2 1609 56.7 42.9 1510 55.0 m 1560 56.2 37.9 1610 56.7 41.8 1511 54.4 m 1561 56.6 37.5 1611 56.7 41.9 1512 54.2 m 1562 56.4 36.7 1612 56.8 42.0 1513 53.5 m 1563 56.5 34.8 1613 56.7 41.9 1514 52.4 m 1564 56.5 36.8 1614 56.6 41.9 1515 51.8 m 1563 56.5 36.8 1614 56.6 41.9 1517 49.9 m 1567 56.7 37.8 1611 56.7 41.9 1518 49.1 m 1568 56.5 36.8 1614 56.6 41.9 1522 46.9 m 1571 56.5 36.8 36.1 1620 56.5 42.0 1523 47.2 m 1570 56.8 36.1 1620 56.5 42.0 1524 47.8 m 1568 56.5 36.8 1619 56.7 39.3 1520 47.3 m 1570 56.8 36.1 1620 56.5 42.0 1521 46.9 m 1571 56.5 36.8 36.1 1620 56.5 42.0 1522 46.9 m 1572 56.5 36.0 1622 56.8 42.2 1523 47.2 m 1573 56.5 36.0 1624 56.8 42.2 1525 48.2 0.0 1575 56.4 48.6 48.6 45.0									
1495 56,1 20,0 1545 57,0 32,8 1595 56,5 42,9 1496 55,7 17,4 1546 56,8 30,2 1596 56,7 42,7 1497 55,9 20,9 1547 57,0 27,0 1597 56,6 41,5 1498 56,0 22,9 1548 56,9 26,2 1598 56,9 41,8 1499 56,0 21,1 1549 56,7 26,6 1600 56,7 42,6 1500 55,1 19,2 1550 57,0 26,6 1600 56,7 42,6 1501 55,6 24,2 1551 56,7 27,8 1601 56,7 42,6 1502 55,4 25,6 1552 56,7 27,8 1601 56,7 42,6 1503 55,7 24,7 1533 56,8 32,1 1603 56,7 42,2 1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1605 56,8 41,9 1506 55,7 30,9 1556 56,3 33,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 1,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 44,9 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,9 1515 51,8 m 1566 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1566 56,5 36,2 37,8 1617 56,6 41,6 1516 50,7 m 1566 56,5 36,8 1621 56,4 44,9 1517 49,9 m 1567 56,5 36,8 1621 56,4 44,9 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1519 47,7 m 1569 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1570 56,5 36,8 1621 56,4 44,9 1523 47,2 m 1573 56,5 36,8 1621 56,4 44,9 1524 47,8 m 1570 56,5 36,8 1621 56,4 44,9 1523 47,2 m 1573 56,5 36,0 1624 56,8 42,2 1524 47,8 m 1573 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,5 36,0 1624 56,8 42,2 1526									
1496									
1497 55.9 20.9 1547 57.0 27.0 1597 56.6 41.5 1498 56.0 22.9 1548 56.9 26.2 1598 56.9 41.8 1499 56.0 21.1 1549 56.7 26.2 1598 56.6 41.9 1500 55.1 19.2 1550 57.0 26.6 1600 56.7 42.6 1501 55.6 24.2 1551 56.7 27.8 1601 56.7 42.6 1501 55.6 24.2 1551 56.7 27.8 1601 56.7 42.6 1502 55.4 25.6 1552 56.7 29.7 1602 56.7 42.2 1503 55.7 24.7 1553 56.8 32.1 1603 56.7 42.2 1504 55.9 24.0 1554 56.5 34.9 1604 56.5 42.2 1505 55.4 23.5 1555 56.6 34.9 1605 56.8 41.9 1506 55.7 30.9 1556 56.3 35.8 1606 56.5 42.0 1507 55.4 42.5 1557 56.6 36.6 1607 56.7 42.1 1508 55.3 22.8 1558 56.2 37.6 1608 56.4 41.9 1509 55.4 1.3 1559 56.6 38.2 1609 56.7 42.9 1510 55.0 m 1560 56.2 37.9 1610 56.7 41.8 1511 54.4 m 1561 56.6 37.5 1611 56.7 41.9 1512 54.2 m 1562 56.4 36.7 1612 56.8 42.0 1513 33.5 m 1563 56.5 34.8 1613 56.7 41.5 1514 52.4 m 1566 56.5 36.2 1615 56.8 41.0 1515 51.8 m 1566 56.5 36.2 1615 56.8 41.0 1516 50.7 m 1566 56.5 36.6 1619 56.7 39.3 1519 47.7 m 1569 56.6 36.6 1619 56.7 39.3 1520 47.3 m 1571 56.5 36.8 1621 56.4 44.9 1522 46.9 m 1571 56.5 36.8 1621 56.4 44.9 1524 47.8 m 1571 56.5 36.8 1621 56.4 44.9 1522 48.8 23.0 1575 56.5 36.0 1624 56.8 42.2 1523 47.2 m 1573 56.5 36.0 1624 56.8 42.2 1524 47.8 m 1573 56.5 36.0 1624 56.8 42.2 1525 48.2 0.0 1575 56.4 36.5 1625 56.5 56.5 42.3 1526 48.8 23.0 1576 56.5 38.0 1626 56.5 56.5 42.3 1526 48.8 23.0 1576 56.5 38.0 1626 56.5 56.5 42.3 1527 49.1 67.9 1577 56.5 39.9 1627									
1498									
1499									
1500 55,1 19,2 1550 57,0 26,6 1600 56,7 42,6 1501 55,6 24,2 1551 56,7 27,8 1601 56,7 42,6 1502 55,4 25,6 1552 56,7 27,8 1601 56,7 42,2 1503 55,7 24,7 1553 56,8 32,1 1603 56,7 42,2 1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1605 56,8 41,9 1506 55,7 30,9 1556 56,3 35,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 1,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,8 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,6 1515 51,8 m 1565 56,5 36,2 1615 56,6 41,6 1517 49,9 m 1567 56,5 37,8 1618 56,7 40,7 1519 47,7 m 1568 56,7 37,8 1618 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,8 42,2 1523 47,2 m 1574 56,5 36,0 1624 56,5 44,9 1524 47,8 m 1571 56,5 36,0 1624 56,8 42,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1525 56,5 44,4 1527 49,1 67,9 1577 56,5 36,0 1624 56,8 42,2 1525 48,8 23,0 1576 56,5 39,9 1627 56,9 45,1 1522 46,9 m 1571 56,5 36,0 1624 56,8 42,2 1525 48,8 23,0 1576 56,5 36,0 1624 56,8 42,2 1525 48,8 23,0 1576 56,5 36,0 1624 56,5 44,4 1527 49,1 67,9 1577 56,5 36,0 1624 56,8 42,2 1525 48,8 23,0 1576 56,5 36,0 1624 56,8 42,2 1525 48,8 23,0 1576 56,5 36,0 1624 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1525 48,8 23,0 1576 56,5 47,0 1629 5									
1501 55,6 24,2 1551 56,7 27,8 1601 56,7 42,6 1502 55,4 25,6 1552 56,7 29,7 1602 56,7 41,5 1503 55,7 24,7 1553 56,8 32,1 1603 56,7 42,2 1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1605 56,8 41,9 1506 55,7 30,9 1556 56,3 35,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 41,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,9 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 34,8 1613 56,7 41,5 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1516 50,7 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 41,9 1522 46,9 m 1571 56,5 36,8 1621 56,8 44,9 1522 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1571 56,5 36,8 1621 56,5 44,4 1521 46,9 m 1571 56,5 36,8 1621 56,5 44,4 1521 46,9 m 1571 56,5 36,8 1621 56,5 44,4 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 36,4 48,0 1630 56,7 44,9 1522 49,4 73,7 1578 56,4 48,0 1630 56,7 44,9 1523 53,3 71,2 1583 56,4 48,0 1630 56,7 44,9 1533 51,4 73,7 1578 56,4 48,0 1630 56,7 44,9 1533 51,4 73,7 1578 56,4 48,0 1630 56,7 44,9 1533 51,4 73,7 1578 56,4 48,0 1630 56,7 44,9 15									
1502 55,4 25,6 1552 56,7 29,7 1602 56,7 41,5 1503 55,7 24,7 1553 56,8 32,1 1603 56,7 42,2 1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1605 56,8 41,9 1506 55,7 30,9 1556 56,3 35,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 22,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 1,3 1559 56,6 38,2 1609 56,7 42,1 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,8 1511 54,2 m 1562									
1503 55,7 24,7 1553 56,8 32,1 1603 56,7 42,2 1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1605 56,8 41,9 1506 55,7 30,9 1556 56,3 33,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 1,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,8 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,9 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,2 1615 56,8 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 44,4 1522 49,8 75,0 1579 56,5 38,0 1626 56,5 44,4 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 45,5 1520 49,8 75,0 1579 56,5 47,0 1629 56,7 44,5 1520 49,8 75,0 1579 56,5 47,0 1629 56,7 44,5 1520 49,8 75,0 1579 56,5 47,0 1629 56,7 44,5 1520 49,8 75,0 1579 56,5 47,0 1629 56,7 45,5 1520 49,8 75,0 1579 56,5 44,0 1620 56,5 44,4 1523 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,0 1630 56,6 48,3 1533 54,4 6									
1504 55,9 24,0 1554 56,5 34,9 1604 56,5 42,2 1505 55,4 23,5 1555 56,6 34,9 1605 56,8 41,9 1506 55,7 30,9 1556 56,3 35,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 1,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,8 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,8 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1566 56,5 36,2 1615 56,8 41,6 1517 49,9 m 1567 56,5 36,2 1615 56,8 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1571 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 47,8 m 1574 56,5 36,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 48,0 1630 56,7 46,3 1530 50,4 47,8 m 1574 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 44,9 1533 53,3 71,2 1583 56,4 48,0 1630 56,7 44,9 1533 53,3 71,2 1583 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,9 1632 56,7 46,6 1536 56,6 46,8 1636 56,6 48,3 1536 56,7 67,0 1586 56,6									
1505									
1506 55,7 30,9 1556 56,3 35,8 1606 56,5 42,0 1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,7 42,9 1500 55,4 1,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,8 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1533 53,3 71,2 1584 56,5 48,3 1634 56,8 45,0 1533 53,3 71,2 1584 56,5 48,3 1634 56,6 48,3 1534 54,6 71,2 1584 56,5 48,3 1634 56,6 48,3 1534 56,6 48,3 1537 57,2 64,6 1587 56,6 46,6 1637 56,4 48,6 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 64,62 1637 56,4 48,6									
1507 55,4 42,5 1557 56,6 36,6 1607 56,7 42,1 1508 55,3 25,8 1558 56,2 37,6 1608 56,4 41,9 1509 55,4 1,3 1559 56,6 38,2 1609 56,7 42,9 1510 55,0 m 1560 56,2 37,9 1610 56,7 41,8 1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1563 56,5 34,8 1613 56,7 41,9 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,6 1515 51,8 m 1566 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7									
1508									
1509 55,4									
1510									
1511 54,4 m 1561 56,6 37,5 1611 56,7 41,9 1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1571 56,5									
1512 54,2 m 1562 56,4 36,7 1612 56,8 42,0 1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5									
1513 53,5 m 1563 56,5 34,8 1613 56,7 41,5 1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7 37,8 1618 56,7 40,7 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1573 56,7									
1514 52,4 m 1564 56,5 35,8 1614 56,6 41,9 1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7									
1515 51,8 m 1565 56,5 36,2 1615 56,8 41,6 1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5									
1516 50,7 m 1566 56,5 36,7 1616 56,6 41,6 1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4									
1517 49,9 m 1567 56,7 37,8 1617 56,9 42,0 1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1518 49,1 m 1568 56,7 37,8 1618 56,7 40,7 1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5									
1519 47,7 m 1569 56,6 36,6 1619 56,7 39,3 1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 5									
1520 47,3 m 1570 56,8 36,1 1620 56,5 41,4 1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1530 50,4 75,8 1580 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1521 46,9 m 1571 56,5 36,8 1621 56,4 44,9 1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580									
1522 46,9 m 1572 56,9 35,9 1622 56,8 45,2 1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581			m						
1523 47,2 m 1573 56,7 35,0 1623 56,6 43,6 1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582			m						
1524 47,8 m 1574 56,5 36,0 1624 56,8 42,2 1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6									
1525 48,2 0,0 1575 56,4 36,5 1625 56,5 42,3 1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1526 48,8 23,0 1576 56,5 38,0 1626 56,5 44,4 1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7<									
1527 49,1 67,9 1577 56,5 39,9 1627 56,9 45,1 1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2<									
1528 49,4 73,7 1578 56,4 42,1 1628 56,4 45,0 1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1529 49,8 75,0 1579 56,5 47,0 1629 56,7 46,3 1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1530 50,4 75,8 1580 56,4 48,0 1630 56,7 45,5 1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1531 51,4 73,9 1581 56,1 49,1 1631 56,8 45,0 1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1532 52,3 72,2 1582 56,4 48,9 1632 56,7 44,9 1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1533 53,3 71,2 1583 56,4 48,2 1633 56,6 45,2 1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1534 54,6 71,2 1584 56,5 48,3 1634 56,8 46,0 1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1535 55,4 68,7 1585 56,5 47,9 1635 56,5 46,6 1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1536 56,7 67,0 1586 56,6 46,8 1636 56,6 48,3 1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
1537 57,2 64,6 1587 56,6 46,2 1637 56,4 48,6									
		57,3							

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
c 1639	% 56,3	% 51,9	c 1689	% 57,6	% 8,9	c 1739	% 56,1	% 46,8
1640	56,5	54,1	1690	57,5	8,0	1739	56,1	45,8
1641	56,3	54,9	1691	57,5 57,5	5,8	1740	56,2	46,0
1642	56,4	55,0	1692	57,3	5,8	1741	56,3	45,9
1643	56,4	56,2	1693	57,5 57,6	5,8 5,5	1742	56,3	45,9
1644			1694					44,6
	56,2	58,6	1694	57,3	4,5	1744	56,2	44,0
1645	56,2	59,1		57,2	3,2	1745	56,2	46,0 46,2
1646	56,2	62,5	1696	57,2	3,1	1746	56,4	
1647	56,4	62,8	1697	57,3	4,9	1747	55,8 55.5	m
1648	56,0	64,7	1698	57,3	4,2	1748	55,5	m
1649	56,4	65,6	1699	56,9	5,5	1749	55,0	m
1650 1651	56,2 55,9	67,7 68,9	1700 1701	57,1 57,0	5,1 5,2	1750 1751	54,1 54,0	m m
1652	56,1	68,9	1701	56,9	5,5	1752	53,3	m
1653	55,8	69,5	1703	56,6	5,4	1753	52,6	m
1654	56,0	69,8	1704	57,1	6,1	1754	51,8	m
1655	56,2	69,3	1705	56,7	5,7	1755	50,7	m
1656	56,2	69,8	1706	56,8	5,8	1756	49,9	m
1657	56,4	69,2	1707	57,0	6,1	1757	49,1	m
1658	56,3	68,7	1708	56,7	5,9	1758	47,7	m
1659	56,2	69,4	1709	57,0	6,6	1759	46,8	m
1660	56,2	69,5	1710	56,9	6,4	1760	45,7	m
1661	56,2	70,0	1711	56,7	6,7	1761	44,8	m
1662	56,4	69,7	1712	56,9	6,9	1762	43,9	m
1663	56,2	70,2	1713	56,8	5,6	1763	42,9	m
1664	56,4	70,5	1714	56,6	5,1	1764	41,5	m
1665	56,1	70,5	1715	56,6	6,5	1765	39,5	m
1666	56,5	69,7	1716	56,5	10,0	1766	36,7	m
1667	56,2	69,3	1717	56,6	12,4	1767	33,8	m
1668	56,5	70,9	1718	56,5	14,5	1768	31,0	m
1669	56,4	70,8	1719	56,6	16,3	1769	40,0	0,0
1670	56,3	71,1	1720	56,3	18,1	1770	49,1	m
1671	56,4	71,0	1721	56,6	20,7	1771	46,2	m
1672	56,7	68,6	1722	56,1	22,6	1772	43,1	m
1673	56,8	68,6	1723	56,3	25,8	1773	39,9	m
1674	56,6	68,0	1724	56,4	27,7	1774	36,6	m
1675	56,8	65,1	1725	56,0	29,7	1775	33,6	m
1676	56,9	60,9	1726	56,1	32,6	1776	30,5	m
1677	57,1	57,4	1727	55,9	34,9	1777	42,8	0,0
1678	57,1	54,3	1728	55,9	36,4	1778	55,2	m
1679	57,0	48,6	1729	56,0	39,2	1779	49,9	m
1680	57,4	44,1	1730	55,9	41,4	1780	44,0	m
1681	57,4	40,2	1731	55,5	44,2	1781	37,6	m
1682	57,6	36,9	1732	55,9	46,4	1782	47,2	0,0
1683	57,5	34,2	1733	55,8	48,3	1783	56,8	m
1684	57,4	31,1	1734	55,6	49,1	1784	47,5	m
1685	57,5	25,9	1735	55,8	49,3	1785	42,9	m
1686	57,5	20,7	1736	55,9	47,7	1786	31,6	m
1687	57,6	16,4	1737	55,9	47,4	1787	25,8	m
1688	57,6	12,4	1738	55,8	46,9	1788	19,9	m
1000	57,0	12,7	1130	33,0	10,7	1700	1,,,	111

Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент	Время	Приведенная частота вращения	Приведенный крутящий момент
С	%	%	С	%	%	c	%	%
1789	14,0	m						
1790	8,1	m						
1791	2,2	m						
1792	0,0	0,0						
1793	0,0	0,0						
1794	0,0	0,0						
1795	0,0	0,0						
1796	0,0	0,0						
1797	0,0	0,0						
1798	0,0	0,0						
1799	0,0	0,0						
1800	0,0	0,0						

т = прокручивание двигателя на динамометре

<u>Приложение 2</u> А.2.1 ЭТАЛОННОЕ ДИЗЕЛЬНОЕ ТОПЛИВО ЕВРОПЫ

	Единица Пределы <u>1</u> /					
Параметр	измерения	Минимум	Максимум	испытания		
Цетановое число		52	54	ISO 5165		
Плотность при 15° С	$\kappa\Gamma/M^3$	833	837	ISO 3675		
Перегонка:						
- 50% объема	°C	245		ISO 3405		
- 95% объема	°C	345	350			
- конечная точка						
кипения	°C		370			
Температура вспышки	°C	55		ISO 2719		
Точка закупорки			_	EN 116		
холодного фильтра	°C		-5			
Кинематическая	2,	2.2	2.2	ISO 3104		
вязкость при 40° С	MM^2/C	2,3	3,3	EN 12016		
Полициклические ароматические	%			EN 12916		
углеводороды	(массовая доля)	2,0	6,0			
Углеродистый остаток		2,0	5,0	ISO 10370		
по Конрадсону (10%	%					
DR)	(массовая доля)		0,2			
Содержание золы	%			EN-ISO 6245		
11.2	(массовая доля)		0,01			
Содержание воды	%			EN-ISO 12937		
	(массовая доля)		0,02			
Содержание серы	мг/кг		10	EN-ISO 14596		
Окисление медной				EN-ISO 2160		
пластины при 50° С			1			
Смазочное свойство			400	GEG E OC A OC		
(HFRR при 60° C)	MKM		400	CEC F-06-A-96		
Индекс нейтрализации	мг КОН/г		0,02			
Стойкость к окислению		20		EN 14112		
при 110° С <u>2/3</u> /	Ч	20		EN 14112		
Присадки <u>4</u> /	% объема	4,5	5,5	EN 14078		

1/ Значения, указанные в спецификации, являются "истинными значениями". При определении предельных значений были использованы условия стандарта ISO 4259 "Нефтепродукты. Определение и применение данных о точности методов испытания", а при установлении минимального значения принималась во внимание минимальная разность 2R выше нулевого значения; при установлении максимального и минимального значений минимальная разность составляет 4R (R = воспроизводимость).

Независимо от этой меры, которая необходима по статистическим соображениям, изготовителю топлива следует, тем не менее, стремиться к нулевому значению в том случае, когда предусмотренное максимальное значение равняется 2R, и к среднему значению в случае ссылки на максимальный и минимальный пределы. Если необходимо уточнить вопрос о том, соответствует ли топливо требованиям спецификации, следует применять условия стандарта ISO 4259.

- 2/ Несмотря на контроль устойчивости к окислению, вполне вероятно, что срок годности будет ограничен. Информация о рекомендуемых условиях хранения и о сроках годности должна запрашиваться у поставщика.
- 3/ Стойкость к окислению может быть подтверждена на основе стандартов EN-ISO 12205 или EN 14112. Это требование пересматривается на основе оценок стойкости к окислению и условий испытания ТК-19 ЕКС (CEN/TC19).
- 4/ Качество ПРИСАДОК в соответствии с EN 14114 (ASTM D 6751).
- 5/ Применяется последний вариант соответствующего метода проведения испытания.

А.2.2 ЭТАЛОННОЕ ДИЗЕЛЬНОЕ ТОПЛИВО 2-D СОЕДИНЕННЫХ ШТАТОВ АМЕРИКИ

Параметр	Единица	Метод испытания	Пре,	делы
			Минимум	Максимум
Цетановое число	Л	ASTM D 613	40	50
Цетановый индекс	Л	ASTM D 976	40	50
Плотность при 15° С	кг/м ³	ASTM D 1298	840	865
Перегонка		ASTM D 86		
начальная точка кипения	°C		171	204
10% объема	°C		204	238
50% объема	°C		243	282
90% объема	°C		293	332
конечная точка кипения	°C		321	366
Температура вспышки	°C	ASTM D 93	54	-
Кинематическая вязкость при 37,9° С	mm^2/c	ASTM D 445	2	3,2
Весовая доля серы	МЛН ⁻¹	ASTM D 2785	7	15
Объемная доля ароматических веществ	проценты объема	ASTM D 1319	27	-

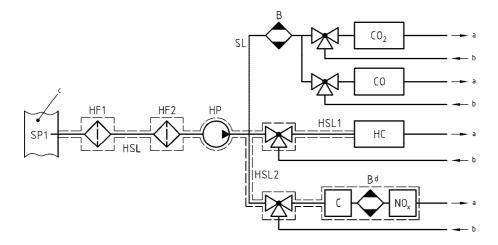
А.2.3 ЭТАЛОННОЕ ДИЗЕЛЬНОЕ ТОПЛИВО ЯПОНИИ

Параметры	Едина	Метод испытания	CODT I		Сор	т 2	Сертифици диз	-
			мин.	макс.	мин.	макс.	мин.	макс.
Цетановое число		ISO 4264	50	-	45	-	53	57
Плотность при 15° С	$\kappa\Gamma/M^3$		-	-	-	-	824	840
Перегонка		ISO 3405						
50% объема	°C		-	-	-	-	255	295
90% объема	°C		-	360	-	350	300	345
конечная точка	°C		-	-	-	-	-	370
Температура вспышки	°C	ISO 3405	50	-	50	-	58	-
Температура закупорки холодного фильтра	°C	ICS 75.160.20	-	-1	-	-5	-	-
Точка текучести	°C	ISO 3015	-	-2,5	-	-7,5	-	-
Кинематическая вязкость при 30 °C	mm ² /c	ISO 2909	2,7	-	2,5	-	3,0	4,5
Массовая доля серы	%	ISO 4260	-	0,001	-	0,001	-	0,001
Объемная доля всех ароматических веществ	% объема	HPLC	-	-	-	-	-	25
Объемная доля полиароматических веществ	% объема	HPLC	-	-	-	-	-	5,0
Массовая доля	МΓ	ISO 4260	-	0,1	-	0,1	-	-
углеродного остатка (10-процентный осадок)								

Приложение 3

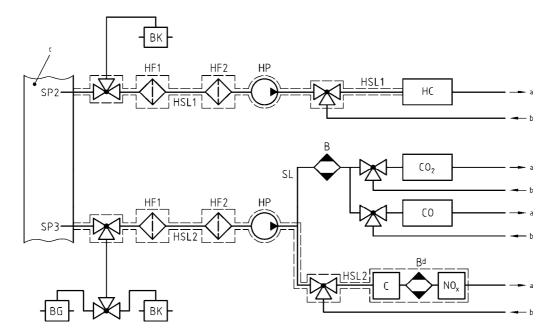
ИЗМЕРИТЕЛЬНАЯ АППАРАТУРА

А.3.1 В настоящем приложении содержатся основные требования и общее описание систем отбора проб и анализа для измерения выбросов газообразных загрязнителей и твердых частиц. Поскольку эквивалентные результаты можно получить при различных конфигурациях, точного соблюдения схем, показанных на рисунках в настоящем приложении, не требуется. Для получения дополнительной информации и координации функций взаимодействующих систем могут использоваться такие компоненты, как измерительные приборы, клапаны, соленоиды, насосы, регуляторы расхода и переключатели. Другие компоненты, которые не требуются для обеспечения необходимой точности работы отдельных систем, могут исключаться, если отказ от их использования основан на проверенной технической практике.


А.3.1.1 Аналитическая система

А.3.1.2 Описание аналитической системы

Описываемая ниже аналитическая система для определения выбросов газообразных веществ в первичных (рис. 9) или разбавленных (рис. 10) отработавших газах основана на использовании:


- а) анализатора HFID или FID для измерения содержания углеводородов;
- b) анализаторов NDIR для измерения содержания оксида углерода и диоксида углерода;
- с) анализатора HCLD или CLD для измерения содержания оксидов азота.

Отбор проб для анализа всех компонентов надлежит проводить с помощью одного пробоотборника; затем проба разделяться внутри системы и направляться в различные анализаторы. Допускается использование двух пробоотборников, расположенных в непосредственной близости друг от друга. Необходимо следить за тем, чтобы ни в одной точке аналитической системы не происходила конденсация компонентов отработавших газов (включая воду и серную кислоту).

a = в атмосферу b = нулевой, поверочный газ c = выхлопная труба d = факультативно

<u>Рис. 9</u>: Принципиальная схема системы анализа первичных отработавших газов для измерения содержания CO, CO_2 , NO_x и HC

a = в атмосферу b = нулевой, поверочный газ c = смесительный канал d = факультативно

<u>Рис. 10</u>: Принципиальная схема системы анализа разбавленных отработавших газов для измерения содержания CO, CO_2, NO_x и HC

А.3.1.3 Компоненты, показанные на рис. 9 и 10

- ЕР Выхлопная труба
- SP Пробоотборник для первичных отработавших газов (только рис. 9)

Рекомендуется использовать прямой пробоотборник из нержавеющей стали с несколькими отверстиями и заглушенным торцем. Внутренний диаметр пробоотборника не должен превышать внутренний диаметр пробоотборной магистрали. Толщина стенок пробоотборника не должна превышать 1 мм. В трех различных радиальных плоскостях должно быть не менее трех отверстий, имеющих размеры, обеспечивающие отбор проб приблизительно в одинаковом режиме потока. Сечение пробоотборника должно составлять не менее 80% диаметра выхлопной трубы. Допускается использование одного или двух пробоотборников.

SP2 Пробоотборник для анализа HC в разбавленных отработавших газах (только рис. 10)

Пробоотборник должен:

- а) рассматриваться в качестве первого участка подогреваемой пробоотборной магистрали HSL1 и занимать ее отрезок длиной 254-762 мм;
- b) иметь внутренний диаметр не менее 5 мм;
- с) быть установлен в смесительном канале DT (рис. 15) в точке, где обеспечивается хорошее перемешивание разбавляющего воздуха и отработавших газов (т. е. на расстоянии, равном приблизительно 10 диаметрам канала по направлению потока от точки, в которой отработавшие газы входят в смесительный канал);
- d) находиться на достаточном удалении (по радиусу) от других пробоотборников и стенок канала, с тем чтобы не подвергаться воздействию любых турбулентных потоков или завихрений;
- е) подогреваться таким образом, чтобы температура газового потока повышалась до 463 K \pm 10 K (190° C \pm 10° C) на выходе из пробоотборника, либо до 385 K \pm 10 K (112° C \pm 10° C) в случае двигателей с принудительным зажиганием;
- f) не подогреваться в случае измерения с помощью FID (в холодном состоянии).
- SP3 Пробоотборник для анализа CO, CO₂, NO_x в разбавленных отработавших газах (только рис. 10)

Пробоотборник должен:

- а) находиться в той же плоскости, что и SP2;
- b) находиться на достаточном удалении (по радиусу) от других пробоотборников и стенок канала, с тем чтобы не подвергаться воздействию любых турбулентных потоков или завихрений;
- с) быть изолированным и подогреваться по всей длине до температуры не менее 328 K (55° C) для предотвращения конденсации влаги.

HF1 Подогреваемый первичный фильтр (факультативно)

Поддерживается такая же температура, как и для HSL1.

HF2 Подогреваемый фильтр

Фильтр должен осаждать любые твердые частицы из пробы газа до ее попадания в анализатор. Поддерживается такая же температура, как и для HSL1. Фильтр подлежит замене по мере необходимости.

HSL1 Подогреваемая пробоотборная магистраль

По пробоотборной магистрали проба газа перетекает из единого пробоотборника к точке (точкам) разделения потока и в анализатор НС.

Пробоотборная магистраль должна:

- а) иметь внутренний диаметр не менее 4 мм и не более 13,5 мм;
- b) быть изготовлена из нержавеющей стали или политетрафторэтилена (тефлона);
- с) поддерживать температуру стенок в пределах $463 \text{ K} \pm 10 \text{ K}$ ($190^{\circ} \text{ C} \pm 10^{\circ} \text{ C}$), измеряемую в каждой отдельно контролируемой подогреваемой секции, при температуре отработавших газов в пробоотборнике не более 463 K (190° C);
- d) поддерживать температуру стенок на уровне более 453 K (180° C) при температуре отработавших газов в пробоотборнике выше 463 K (190° C);

е) поддерживать температуру газа в пределах $463~\mathrm{K} \pm 10~\mathrm{K}~(190^{\circ}\mathrm{C} \pm 10^{\circ}\mathrm{C})$ непосредственно перед подогреваемым фильтром HF2 и детектором HFID.

HSL2 Подогреваемая пробоотборная магистраль для NO_x

Пробоотборная магистраль должна:

- а) поддерживать температуру стенок в диапазоне 328 K 473 K (55° C -200° C) вплоть до конвертера в случае измерения на сухой основе и до анализатора в случае измерения на влажной основе;
- b) быть изготовлена из нержавеющей стали или политетрафторэтилена (тефлона).

НР Подогреваемый насос для перекачки проб

Насос подогревается до температуры HSL.

SL Пробоотборная магистраль для CO и CO₂

Магистраль должна быть изготовлена из политетрафторэтилена (тефлона) или нержавеющей стали. Она может быть подогреваемой или не подогреваемой.

HC Анализатор HFID

Нагреваемый плазменно-ионизационный детектор (HFID) или плазменно-ионизационный детектор (FID) для определения содержания углеводородов. Температура HFID поддерживается в диапазоне 453K - 473 K (180° C - 200° C).

CO, CO₂ Анализатор NDIR или анализатор NDUV

Анализаторы NDIR для определения содержания оксида углерода и диоксида углерода (факультативно - для определения коэффициента разбавления при измерении концентрации ТЧ).

NO_x Анализатор CLD или анализатор NDUV

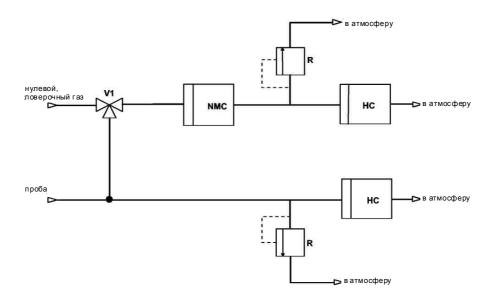
Анализатор CLD, HCLD или NDUV для определения содержания оксидов азота. При использовании HCLD температура поддерживается в диапазоне $328 \text{ K} - 473 \text{ K} (55^{\circ} \text{ C} - 200^{\circ} \text{ C}).$

В Осушитель для проб (факультативно - для измерения NO)

Для охлаждения и конденсации влаги из проб отработавших газов. Использование ванны факультативно, если на работу анализатора не влияет водяной пар в соответствии с пунктом 9.3.9.2.2. Если влага удаляется методом конденсации, то необходимо контролировать температуру пробы газа или точку росы либо во влагоотделителе, либо ниже по направлению потока. Температура пробы газа или точка росы не должны превышать 280 К (7° С). Использование химических осушителей для удаления влаги из пробы не допускается.

ВК Мешок для определения фоновой концентрации (факультативно; только рис. 10)

Для измерения фоновых концентраций.


BG Мешок для отбора проб (факультативно; только рис. 10)

Для измерения концентраций проб.

А.3.1.4 Метод отделения неметановых фракций (NMC)

Отделитель окисляет все углеводороды, за исключением CH_4 , превращая их в CO_2 и H_2O , так что при прохождении пробы через NMC детектор HFID регистрирует только CH_4 . В дополнение к обычной схеме отбора проб HC (см. рис. 9 и 10) устанавливается вторая схема отбора проб HC, оснащенная отделителем, как показано на рис. 11. Это позволяет одновременно измерять общее содержание HC, CH_4 и NMHC.

Прежде чем использовать отделитель в испытаниях необходимо при температуре 600 К (327° С) или выше получить характеристики его каталитического воздействия на CH_4 и C_2H_6 при соответствующих значениях H_2O , типичных для потока отработавших газов. Необходимо также знать точку росы и уровень содержания O_2 в потоке отработавших газов пробы. Относительная чувствительность FID к CH_4 и C_2H_6 определяется в соответствии с пунктом 9.3.8.

<u>Рис. 11</u>: Принципиальная схема системы анализа на содержание метана с помощью NMC

А.3.1.5 Компоненты, показанные на рис. 11

NMC Отделитель неметановых фракций

Для окисления всех углеводородов, за исключением метана.

HC

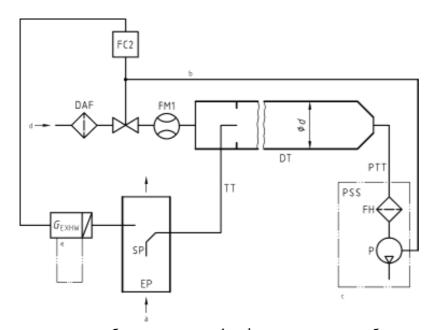
Нагреваемый плазменно-ионизационный детектор (HFID) или плазменно-ионизационный детектор (FID) для измерения концентраций HC и $\rm CH_4$. Температура HFID поддерживается в диапазоне 453 K - 473 K (180°C - 200°C).

V1 Селекторный клапан

Для подачи по выбору нулевого и поверочного газа.

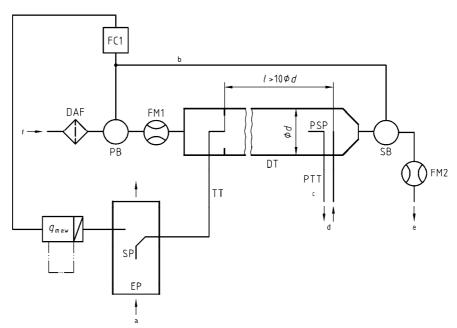
R Регулятор давления

Для регулирования давления в пробоотборной магистрали и управления потоком газов, поступающих в HFID.


А.3.2 Система разбавления и отбора проб твердых частиц

А.3.2.1 Описание системы частичного разбавления потока

Описанная ниже система разбавления основана на разбавлении части потока отработавших газов. Разделение потока отработавших газов и последующий процесс разбавления могут осуществляться с помощью систем разбавления


различных типов. Для последующего сбора твердых частиц весь поток разбавленных отработавших газов или только часть разбавленных отработавших газов направляется в систему отбора проб твердых частиц. Первый метод называется методом полного отбора проб, а второй - методом частичного отбора проб. Способ расчета коэффициента разбавления зависит от типа используемой системы.

В случае системы с полным отбором проб, показанной на рис. 12, первичные отработавшие газы направляются из выхлопной трубы (EP) в смесительный канал (DT) через пробоотборник (SP) и отводящий патрубок (TT). Полный поток через канал контролируется с помощью регулятора расхода FC2 и насоса для подачи проб (P) системы отбора проб твердых частиц (см. рис. 16). Поток разбавляющего воздуха контролируется регулятором расхода FC1, который может использовать q_{mew} или q_{maw} и q_{mf} в качестве сигналов подачи команд для требуемого разделения потока отработавших газов. Расход пробы в DT представляет собой разность суммарного расхода и расхода разбавляющего воздуха. Расход разбавляющего воздуха измеряется с помощью расходомера FM1, а суммарный расход - с помощью расходомера FM3 системы отбора проб твердых частиц (см. рис. 16). Коэффициент разбавления рассчитывается по этим двум показателям расхода.

<u>Рис. 12</u>: Схема системы частичного разбавления потока (с полным отбором проб)

При использовании системы с частичным отбором проб, показанной на рис. 13, первичные отработавшие газы направляются из выхлопной трубы (EP) в смесительный канал (DT) через пробоотборник (SP) и отводящий патрубок (TT). Полный поток через канал контролируется с помощью регулятора расхода FC1, подсоединенного либо к насосу, нагнетающему разбавляющий воздух в канал, по которому проходит полный поток, либо к вытяжному насосу. Регулятор расхода FC1 может использовать q_{mew} или q_{maw} и q_{mf} в качестве сигналов подачи команд для требуемого разделения потока отработавших газов. Расход пробы в DT представляет собой разность суммарного расхода и расхода разбавляющего воздуха. Расход разбавляющего воздуха измеряется с помощью расходомера FM1, а суммарный расход - с помощью расходомера FM2. Коэффициент разбавления рассчитывается по этим двум показателям расхода. Пробы твердых частиц отбираются из DT с помощью системы отбора проб твердых частиц (см. рис. 16).

a= отработавшие газы b= в PB или SB c= более подробно см. рис. 16 d= в систему отбора проб твердых частиц e= в атмосферу

<u>Рис. 13</u>: Схема системы частичного разбавления потока (с частичным отбором проб)

А.3.2.2 Компоненты, показанные на рис. 12 и 13

ЕР Выхлопная труба

Выхлопная труба может изолироваться. Для снижения тепловой инерции выхлопной трубы рекомендуемое отношение толщины стенки к диаметру должно составлять 0,015 или менее. Использование гибких секций должно

ограничиваться участками с отношением длины к диаметру не более 12. Для уменьшения инерционных отложений количество изгибов сводится к минимуму. Если в систему входит глушитель испытательного стенда, то его также можно изолировать. На участке длиной, соответствующей шести диаметрам трубы до наконечника пробоотборника и трем диаметрам трубы за ним, рекомендуется использовать прямую трубу.

SP Пробоотборник

Пробоотборник должен быть одного из следующих типов:

- а) патрубок с открытым торцом, обращенным навстречу потоку и расположенным на осевой линии выхлопной трубы;
- b) патрубок с открытым торцом, обращенным по направлению потока и расположенным на осевой линии выхлопной трубы;
- с) пробоотборник с несколькими отверстиями, соответствующий описанию SP в пункте A.3.1.3;
- пробоотборник с коническим наконечником, обращенным навстречу потоку и расположенным на осевой линии выхлопной трубы, как показано на рис. 14.

Минимальный внутренний диаметр наконечника пробоотборника должен составлять 4 мм. Минимальное отношение диаметра выхлопной трубы к диаметру пробоотборника должно быть равно 4.

В случае использования пробоотборника типа а) непосредственно перед фильтродержателем устанавливается инерционный предварительный сепаратор (циклонного или ударного типа), обеспечивающий 50-процентный уровень эффективности отделения частиц размером 2,5-10 мкм.

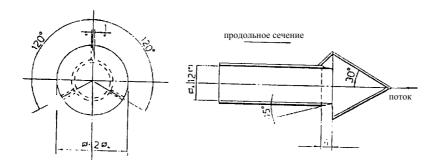


Рис. 14: Схема пробоотборника с коническим наконечником

ТТ Отводящий патрубок отработавших газов

Отводящий патрубок должен иметь как можно меньшую длину, но

а) его длина не должна превышать 0,26 м, если изолировано 80% его общей длины, измеряемой от конечной точки пробоотборника до зоны разбавления

или

b) его длина не должна превышать 1 м, если нагревается до температуры свыше 150°С 90% его общей длины, измеряемой от конечной точки пробоотборника до зоны разбавления.

Его диаметр не должен быть меньше диаметра пробоотборника, однако он не должен превышать 25 мм и должен достигать своей концевой частью осевой линии смесительного канала в направлении по движению потока.

Что касается подпункта а), то изоляция должна обеспечиваться при помощи материала с максимальной теплопроводностью 0,05 Вт/м.К и толщиной по радиусу, соответствующей диаметру пробоотборника.

FC1 Регулятор расхода

Регулятор расхода используется для регулирования потока разбавляющего воздуха, проходящего через нагнетательный насос PB и/или вытяжной насос SB. К нему могут быть подведены сигналы от датчика расхода отработавших газов, указанные в пункте 8.4.1. Регулятор расхода может устанавливаться до или после соответствующего насоса. При подаче воздуха под давлением FC1 непосредственно управляет потоком воздуха.

FM1 Расходомер

DAF Фильтр разбавителя

Разбавитель (окружающий воздух, синтетический воздух или азот) фильтруется с помощью высокоэффективного фильтра (HEPA), у которого первоначальная эффективность улавливания составляет не менее 99,97% согласно EN 1822-1 (фильтр класса H14 или выше), ASTM A 1471-93 или эквивалентному стандарту.

FM2 Расходомер (для систем с частичным отбором проб; только рис. 13)

Газомер или другое устройство для измерения расхода разбавленных отработавших газов. FM2 является факультативным прибором, если вытяжной насос SB откалиброван для измерения расхода.

PB Нагнетательный насос (для систем с частичным отбором проб, только рис. 13)

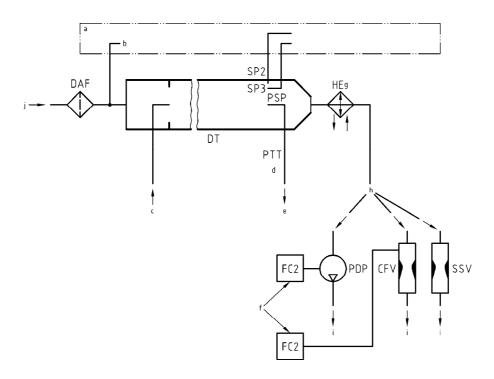
В целях регулирования расхода разбавляющего воздуха PB может быть соединен с регулятором расхода FC1 или FC2. При использовании поворотной заслонки PB не требуется. PB, если он соответствующим образом откалиброван, может использоваться для измерения расхода разбавляющего воздуха.

- SB Вытяжной насос (для систем с частичным отбором проб, только рис. 13)
- SB, если он соответствующим образом откалиброван, может использоваться для измерения расхода разбавленных отработавших газов.
- DT Смесительный канал (частичное разбавление потока)

Смесительный канал

- а) должен иметь достаточную длину для обеспечения полного перемешивания отработавших газов и разбавляющего воздуха в условиях турбулентного потока (число Рейнольдса (*Re*) больше 4 000, где *Re* основывается на внутреннем диаметре смесительного канала) при использовании системы с частичным отбором проб; т.е. в случае системы с полным отбором проб полное перемешивание не требуется;
- b) должен быть изготовлен из нержавеющей стали;
- с) может подогреваться до температуры стенок не более $325 \text{ K } (52^{\circ}\text{C});$
- d) может иметь изоляцию.
- PSP Пробоотборник для твердых частиц (для систем с частичным отбором проб, только рис. 13)

Пробоотборник для твердых частиц представляет собой основной участок отводящего патрубка твердых частиц РТТ (см. пункт А.3.2.6) и


- а) устанавливается навстречу потоку в точке, где обеспечивается хорошее перемешивание разбавляющего воздуха и отработавших газов, т. е. на осевой линии смесительного канала DT на расстоянии, приблизительно равном 10 диаметрам канала, ниже точки, где отработавшие газы входят в смесительный канал;
- b) должен иметь внутренний диаметр не менее 8 мм;
- с) может подогреваться до температуры стенок не более 325 К (52°С) путем прямого нагревания или с помощью предварительно нагретого разбавляющего воздуха при условии, что температура разбавляющего воздуха до подачи отработавших газов в смесительный канал не превышает 325 К (52°С);
- d) может иметь изоляцию.

А.3.2.3 Описание системы полного разбавления потока

Система разбавления основана на разбавлении всего потока первичных отработавших газов в смесительном канале DT в соответствии с концепцией CVS (отбор проб постоянного объема); эта система показана на рис. 15.

Расход разбавленных отработавших газов измеряется с помощью насоса с объемным регулированием (PDP), либо трубки Вентури с критическим расходом (CFV) или же трубки Вентури для дозвуковых потоков (SSV). Для пропорционального отбора проб твердых частиц и определения расхода может использоваться теплообменник (HE) или электронный компенсатор расхода (EFC). Поскольку масса твердых частиц определяется на основе полного потока разбавленных отработавших газов, рассчитывать коэффициент разбавления нет необходимости.

Для последующего накопления твердых частиц проба разбавленных отработавших газов подается в систему отбора проб твердых частиц с двойным разбавлением (см. рис. 17). Хотя система двойного разбавления в определенной степени относится к системам разбавления, она все же описывается как представляющая собой некоторую модификацию системы отбора проб твердых частиц, поскольку использует большинство компонентов типовой системы отбора проб твердых частиц.

a= система анализатора b= фоновый воздух c= отработавшие газы d= более подробно см. рис. 17 e= в систему двойного разбавления f= если используется EFC i= в атмосферу g= факультативно h= или

<u>Рис. 15</u>: Схема системы полного разбавления потока (CVS)

А.3.2.4 Компоненты, показанные на рис. 15

ЕР Выхлопная труба

Длина выхлопной трубы от выпускного коллектора двигателя, выхода из турбонагнетателя или устройства последующей обработки до смесительного канала должна быть не более 10 м. Если длина системы превышает 4 м, то в этом случае все трубопроводы за пределами участка длиной 4 м должны быть изолированы, за исключением встроенного дымомера, если таковой используется. Радиальная толщина изоляции должна составлять не менее 25 мм. Теплопроводность изоляционного материала, измеренная при температуре 673 K, не должна превышать 0,1 Вт/м·К. Для уменьшения тепловой инерции выхлопной трубы рекомендуемое отношение толщины к диаметру должно составлять 0,015 или менее. Использование гибких секций ограничивается участками с отношением длины к диаметру не более 12.

PDP Насос с объемным регулированием

Насосом PDP измеряют общий расход разбавленных отработавших газов по числу оборотов вала насоса и его рабочему объему. Искусственное понижение

противодавления выхлопной системы с помощью PDP или системы подачи разбавляющего воздуха не допускается. Статическое противодавление отработавших газов, измеренное с подключенной системой PDP, должно оставаться в пределах \pm 1,5 кПа относительно статического давления, измеренного без подключения к PDP, при одинаковой частоте вращения двигателя и одинаковой нагрузке. Температура газовой смеси непосредственно перед PDP должна находиться в пределах \pm 6 К от средней рабочей температуры, наблюдаемой в ходе испытания, когда система компенсации расхода (EFC) не используется. Компенсатор расхода допускается применять только в том случае, если температура на входе в PDP не превышает 323 К (50° C).

CFV Трубка Вентури с критическим расходом

Трубкой CFV измеряют общий расход разбавленных отработавших газов, устанавливая расход в условиях дросселирования (критический расход). Статическое противодавление отработавших газов, измеренное с подключенной системой CFV, должно оставаться в пределах ± 1,5 кПа относительно статического давления, измеренного без подключения к CFV, при одинаковой частоте вращения двигателя и одинаковой нагрузке. Температура газовой смеси непосредственно перед CFV должна находиться в пределах ± 11 К от средней рабочей температуры, наблюдаемой в ходе испытания, когда система компенсации расхода (EFC) не используется.

SSV Трубка Вентури для дозвуковых потоков

Трубкой SSV измеряют общий расход разбавленных отработавших газов с использованием функции расхода газов трубки Вентури в режиме дозвуковых потоков в зависимости от давления и температуры на входе и падения давления между входом в трубку и сужением. Статическое противодавление отработавших газов, измеренное с подключенной системой SSV, должно оставаться в пределах \pm 1,5 кПа относительно статического давления, измеренного без подключения к SSV, при одинаковой частоте вращения и одинаковой нагрузке. Температура газовой смеси непосредственно перед SSV должна находиться в пределах \pm 11 К от средней рабочей температуры, наблюдаемой в ходе испытания, когда система компенсации расхода (EFC) не используется.

НЕ Теплообменник (факультативно)

Теплообменник должен обладать достаточной емкостью для поддержания температуры в указанных выше пределах. Если используется EFC, то теплообменник не обязателен.

ЕГС Электронный компенсатор расхода (факультативно)

Если температура на входе в PDP, CFV или SSV не поддерживается в указанных выше пределах, то для непрерывного измерения расхода и управления пропорциональным отбором проб в системе двойного разбавления требуется система компенсации расхода. С этой целью для поддержания степени пропорциональности расхода потока пробы через фильтры для осаждения твердых частиц, установленные в системе двойного разбавления (см. рис. 17), в пределах \pm 2,5% используются сигналы непрерывного измерения расхода.

DT Смесительный канал (полное разбавление потока)

Смесительный канал

- а) должен иметь достаточно малый диаметр для создания турбулентного потока (число Рейнольдса (*Re*) больше 4 000, причем *Re* основывается на внутреннем диаметре смесительного канала) и достаточную длину для обеспечения полного перемешивания отработавших газов и разбавляющего воздуха;
- b) может иметь изоляцию,
- с) может нагреваться до тех пор, пока температура стенок не станет достаточной для устранения водного конденсата.

Отработавшие газы двигателя направляются по потоку в точку, где они вводятся в смесительный канал, и тщательно перемешиваются. Для этого может использоваться соответствующее смесительное сопло.

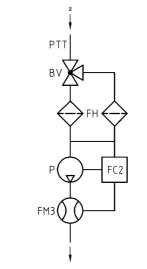
В системе двойного разбавления проба из смесительного канала подается во вторичный смесительный канал, где она дополнительно разбавляется, а затем пропускается через фильтры для отбора проб (рис. 17). Система вторичного разбавления должна обеспечивать подачу достаточного количества разбавляющего воздуха для вторичного разбавления в целях поддержания температуры дважды разбавленного потока отработавших газов непосредственно перед фильтром для осаждения твердых частиц в диапазоне $315 \text{ K } (42 \, ^{\circ}\text{C})$ - $325 \text{ K } (52 \, ^{\circ}\text{C})$.

DAF Фильтр разбавителя

Разбавитель (окружающий воздух, синтетический воздух или азот) фильтруется с помощью высокоэффективного фильтра (HEPA), у которого первоначальная эффективность улавливания составляет не менее 99,97% согласно EN 1822-1 (фильтр класса H14 или выше), ASTM F 1471-93 или эквивалентному стандарту.

PSP Пробоотборник для твердых частиц

Пробоотборник представляет собой основной участок РТТ и


- а) устанавливается навстречу потоку в точке, где обеспечивается хорошее перемешивание разбавляющего воздуха и отработавших газов, т. е. на осевой линии смесительного канала DT системы разбавления на расстоянии, приблизительно равном 10 диаметрам канала, ниже точки, где отработавшие газы входят в смесительный канал;
- b) должен иметь внутренний диаметр не менее 8 мм;
- с) может подогреваться до температуры стенок не более 325 К (52°С) путем прямого нагревания или с помощью предварительно нагретого разбавляющего воздуха при условии, что температура воздуха не превышает 325 К (52°С) до подачи отработавших газов в смесительный канал:
- d) может иметь изоляцию.

А.3.2.5 Описание системы отбора проб твердых частиц

Система отбора проб твердых частиц требуется для их осаждения на фильтре твердых частиц. Она показана на рис. 16 и 17. В случае полного отбора проб в условиях частичного разбавления потока, когда вся проба разбавленных отработавших газов целиком пропускается через фильтры, система разбавления и система отбора проб обычно составляют единый блок (см. рис. 12). В случае частичного отбора проб в условиях частичного или полного разбавления потока, когда через фильтры пропускается только часть разбавленных отработавших газов, система разбавления и система отбора проб обычно составляют отдельные блоки.

В случае системы частичного разбавления потока проба разбавленных отработавших газов отбирается из смесительного канала DT и пропускается через пробоотборник твердых частиц PSP и патрубок отвода твердых частиц PTT с помощью насоса для перекачки проб P, как показано на рис. 16. Проба проходит через фильтродержатель (фильтродержатели) FH, в котором (которых) закреплены фильтры для осаждения твердых частиц. Расход пробы контролируется регулятором расхода FC3.

В случае системы полного разбавления потока используется система отбора проб твердых частиц в условиях двойного разбавления, как показано на рис. 17. Проба разбавленных отработавших газов направляется из смесительного канала DT через пробоотборник твердых частиц PSP и патрубок отвода твердых частиц PTT во вторичный смесительный канал SDT, где она разбавляется еще раз. Затем проба проходит через фильтродержатель (и фильтродержатели) FH, в котором (которых) закреплены фильтры для осаждения твердых частиц. Расход разбавляющего воздуха обычно является постоянным, а расход пробы контролируется с помощью регулятора расхода FC3. Если используется электронный компенсатор расхода EFC (см. рис. 15), то суммарный расход разбавленных отработавших газов служит в качестве сигнала подачи команды на FC3.

а = из смесительного канала

Рис. 16: Схема системы отбора проб твердых частиц

a= разбавленные отработавшие газы из DT b= факультативно c= в атмосферу d= вторичный разбавляющий воздух

<u>Рис. 17</u>: Схема системы отбора проб твердых частиц в условиях двойного разбавления

А.3.2.6 Компоненты, показанные на рис. 16 (только система частичного разбавления потока) и 17 (только система полного разбавления потока)

РТТ Патрубок отвода твердых частиц

Патрубок отвода

- а) не должен вступать во взаимодействие с ТЧ,
- b) может нагреваться до температуры стенок не более $325 \text{ K} (52^{\circ}\text{C})$,
- с) может иметь изоляцию.

SDT Вторичный смесительный канал (только рис. 17)

Вторичный смесительный канал:

- а) должен иметь достаточную длину и диаметр, с тем чтобы он соответствовал требованиям о времени прохождения, указанном в пункте 9.4.2 f),
- b) может нагреваться до температуры стенок не более 325 K (52°C),
- с) может иметь изоляцию.

FH Фильтродержатель

Фильтродержатель

- а) должен образовывать 12,5-градусный (от центра) угол конуса в соединительной секции между линией, соответствующей диаметру отвода, и линией, соответствующей экспонированному диаметру лицевой части фильтра,
- b) может нагреваться до температуры стенок не более 325 K (52 °C),
- с) может иметь изоляцию.

Использование устройства замены (автоматической) фильтров допускается, если предназначенные для отбора проб фильтры не вступают между собой в реакцию.

Фильтры мембранного типа PTFE устанавливаются в фильтродержателе в специальном кассетном устройстве.

В случае использования пробоотборника с открытым торцом, обращенным навстречу потоку, непосредственно перед фильтродержателем устанавливается инерционный предварительный сепаратор, обеспечивающий 50-процентный уровень эффективности отделения частиц размером 2,5-10 мкм.

Р Насос для перекачки проб

FC2 Регулятор расхода

Регулятор расхода используется для регулирования расхода проб твердых частиц.

FM3 Расходомер

Газомер или прибор измерения расхода для определения расхода проб твердых частиц, проходящих через фильтр твердых частиц. Он может устанавливаться до или после насоса для перекачки проб Р.

FM4 Расходомер

Газомер или прибор измерения расхода для определения расхода вторичного разбавляющего воздуха, проходящего через фильтр твердых частиц.

BV Шаровой затвор (факультативно)

Внутренний диаметр шарового затвора должен быть не меньше внутреннего диаметра патрубка отвода твердых частиц РТТ, а время переключения должно составлять менее 0,5 с.

Приложение 4

СТАТИСТИКА

А.4.1 Среднее значение и стандартное отклонение

Среднеарифметическое значение рассчитывается следующим образом:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{92}$$

Стандартное отклонение рассчитывается следующим образом:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}}$$
 (93)

А.4.2 Регрессивный анализ

Наклон линии регрессии рассчитывается следующим образом:

$$a_{1} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y}) \times (x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$
(94)

Отсекаемое на оси у значение линии регрессии рассчитывается следующим образом:

$$a_0 = \overline{y} - (a_1 \times \overline{x}) \tag{95}$$

Стандартная погрешность оценки (СПО) рассчитывается следующим образом:

$$SEE = \frac{\sqrt{\sum_{i=1}^{n} \left[y_i - a_0 - \left(a_1 \times x_i \right) \right]^2}}{n - 2}$$
 (96)

Коэффициент смешанной корреляции рассчитывается следующим образом:

$$r^{2} = 1 - \frac{\sum_{i=1}^{n} [y_{i} - a_{0} - (a_{1} \times x_{i})]^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
(97)

А.4.3 Определение эквивалентности системы

Определение эквивалентности системы в соответствии с пунктом 5.1.1 производится на основе корреляционного анализа семи (или более) пар проб, отобранных рассматриваемой системой и одной из эталонных систем, принятых в настоящих гтп, с использованием соответствующего(их) цикла(ов) испытания. Критериями эквивалентности, подлежащими применению в данном случае, являются критерий F и двусторонний критерий f по методу Стьюдента.

Этот статистический метод позволяет проверить правильность допущения, в соответствии с которым стандартное отклонение параметров пробы и среднее значение параметров пробы соответствующих выбросов, измеренных с помощью рассматриваемой системы, не отличаются от стандартного отклонения параметров пробы и среднего значения параметров пробы этих же выбросов, измеренных с помощью эталонной системы. Данное допущение проверяется на основе 10-процентного уровня значимости критериев F и t. Критические значения F и t для 7-10 пар проб приведены в таблице 9. Если значения F и t, рассчитанные с помощью нижеприведенной формулы, больше критических значений F и t, то рассматриваемая система неэквивалентна.

Используется следующая процедура. Нижние индексы R и C указывают на эталонную и рассматриваемую системы, соответственно:

- а) Проводится не менее 7 испытаний с использованием рассматриваемой и эталонной систем, работающих параллельно. Число испытаний обозначается как n_R и n_C .
- b) Рассчитываются средние значения $\overline{x_R}$ и $\overline{x_C}$ и стандартные отклонения s_R и s_C .
- с) Рассчитывается значение F по следующей формуле:

$$F = \frac{s_{\text{major}}^2}{s_{\text{minor}}^2} \tag{98}$$

(за знаменатель принимается большее из двух стандартных отклонений s_R или s_C).

d) Рассчитывается значение t по следующей формуле:

$$t = \frac{|\overline{x_{\rm C}} - \overline{x_{\rm R}}|}{\sqrt{s_{\rm C}^2 / n_{\rm C} + s_{\rm R}^2 / n_{\rm R}}}$$
(99)

- е) Сопоставляются рассчитанные значения F и t с критическими значениями F и t, соответствующими номерам испытаний, указанным в таблице 9. Если выбираются более крупные размеры выборки, то определяется 10-процентный уровень значимости (90-процентный доверительный уровень) по статистическим таблицам.
- f) Степени свободы (df) определяются следующим образом:

для критерия
$$F$$
: $dfI = n_R - 1 / df2 = n_C - 1$ (100) для критерия t : $df = (n_C + n_R - 2)/2$ (101)

- g) Эквивалентность определяется следующим образом:
 - i) если $F < F_{\text{crit}}$ и $t < t_{\text{crit}}$, то рассматриваемая система эквивалентна эталонной системе, указанной в настоящих гтп;
 - іі) если $F \ge F_{\text{crit}}$ или $t \ge t_{\text{crit}}$, то рассматриваемая система отличается от эталонной системы, указанной в настоящих гтп.

Размер выборки	Крите	ϵ рий F	Критерий <i>t</i>		
	df	$F_{ m crit}$	df	$t_{ m crit}$	
7	6,6	3,055	6	1,943	
8	7,7	2,785	7	1,895	
9	8,8	2,589	8	1,860	
10	9,9	2,440	8	1,833	

<u>Таблица 9</u>. Значения t и F для отобранных размеров выборки

Приложение 5

ПРОВЕРКА РАСХОДА УГЛЕРОДА

А.5.1 Введение

Весь углерод, содержащийся в отработавших газах, за исключением очень незначительной части, образуется из топлива, и весь он, за исключением минимальной доли, поступает в выхлопные газы в виде CO_2 . Этот факт и положен в основу системы проверки методом замеров CO_2 .

Расход углерода в системах измерения параметров отработавших газов определяется на основе расхода топлива. Расход углерода в различных точках отбора проб в системах отбора проб выбросов и твердых частиц определяется на основе концентрации CO_2 и показателей расхода газов в этих точках.

В этом смысле двигатель представляет собой известный источник потока углерода, и наблюдение за этим же потоком углерода в выхлопной трубе и на выходе системы отбора проб ТЧ в частичном потоке позволяет проверить целостность системы на утечку и точность измерения расхода. Эта проверка имеет то преимущество, что с точки зрения температуры и расхода все компоненты работают в реальных условиях испытания двигателя.

На рис. 18 показаны точки отбора проб, в которых проверяется расход углерода. Ниже приводятся конкретные формулы определения расхода углерода в каждой точке отбора проб.

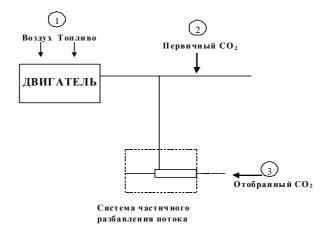


Рис. 18: Точки замера для проверки расхода углерода

А.5.2 Расход углерода в двигателе (точка 1)

Массовый расход углерода в двигателе для топлива $\mathrm{CH}_{\alpha}\mathrm{O}_{\varepsilon}$ определяется по формуле:

$$q_{mCf} = \frac{12\beta}{12\beta + \alpha + 16\varepsilon} \times q_{mf} \tag{102},$$

где:

 q_{mf} - массовый расход топлива в кг/с.

А.5.3 Расход углерода в первичных отработавших газах (точка 2)

Массовый расход углерода в выхлопной трубе двигателя определяется на основе концентрации первичного CO_2 и массового расхода отработавших газов:

$$q_{mCe} = \left(\frac{c_{CO2,r} - c_{CO2,a}}{100}\right) \times q_{mew} \times \frac{12,011}{M_{re}}$$
(103),

где:

 $c_{{\rm CO2,r}}$ - концентрация ${\rm CO_2}$ в первичных отработавших газах на влажной основе в %;

 $c_{\text{CO2,a}}$ - концентрация CO_2 в окружающем воздухе на влажной основе в %; массовый расход отработавших газов на влажной основе в кг/с;

 M_{re} - молярная масса отработавших газов в г/моль.

Если замер CO_2 производится на сухой основе, то полученная величина пересчитывается на влажную основу в соответствии с пунктом 8.1.

А.5.4 Расход углерода в системе разбавления (точка 3)

В случае системы частичного разбавления потока необходимо также учитывать коэффициент разделения. Расход углерода определяется на основе концентрации разбавленного CO_2 , массового расхода отработавших газов и расхода проб:

$$q_{mCp} = \left(\frac{c_{CO2,d} - c_{CO2,a}}{100}\right) \times q_{mdew} \times \frac{12,011}{M_e} \times \frac{q_{mew}}{q_{mp}}$$
(104),

где:

 $c_{\text{CO2,d}}$ - влажная концентрация CO_2 в разбавленных отработавших газах на выходе из смесительного канала в %;

 $c_{\text{CO2,a}}$ - концентрация CO_2 в окружающем воздухе на влажной основе в %; q_{mew} - массовый расход отработавших газов на влажной основе в кг/с; расход проб отработавших газов, проходящих через систему

частичного разбавления потока в кг/с;

 $M_{\rm e}$ - молярная масса отработавших газов в г/моль.

Если замер CO_2 производится на сухой основе, то полученная величина пересчитывается на влажную основу в соответствии с пунктом 8.1.

А.5.5 Расчет молярной массы отработавших газов

Молярная масса отработавших газов рассчитывается при помощи уравнения 28 (см. пункт 8.4.2.4).

В качестве альтернативы можно использовать следующие значения молярной массы отработавших газов:

 $M_{\rm e}$ (дизельное топливо) = 28,9 г/моль, $M_{\rm e}$ (СНГ) = 28,6 г/моль, $M_{\rm e}$ (ПГ) = 28,3 г/моль.

Приложение 6

ПРИМЕР ПРОЦЕДУРЫ РАСЧЕТА

А.6.1 Процедура получения фактического значения частоты вращения и крутящего момента из приведенного

В качестве примера берется следующая испытательная точка:

приведенная частота вращения = 43%, приведенный крутящий момент = 82%.

Задаются следующие значения:

 $n_{
m lo} = 1\,015~{
m MиH}^{-1},$ $n_{
m hi} = 2\,200~{
m MuH}^{-1},$ $n_{
m pref} = 1\,300~{
m MuH}^{-1},$ $n_{
m idle} = 600~{
m MuH}^{-1}$

Результат расчета:

фактическая частота вращения =

$$\frac{43 \times \left(0,45 \times 1015 + 0,45 \times 1300 + 0,1 \times 2200 - 600\right) \times 2,0327}{100} + 600 = 1\ 178\ \text{мин}^{-1}$$

Для максимального крутящего момента 700 Hm, отмеченного на построенной кривой, при 1 178 мин^{-1}

фактический крутящий момент = $\frac{82 \times 700}{100}$ = 574 Hm.

А.6.2 Базовые данные для стехиометрических расчетов

Атомная масса водорода	1,00794 г/атом
Атомная масса углерода	12,011 г/атом
Атомная масса серы	32,065 г/атом
Атомная масса азота	14,0067 г/атом
Атомная масса кислорода	15,9994 г/атом
Атомная масса аргона	39,9 г/атом
Молярная масса воды	18,01534 г/моль
Молярная масса диоксида углерода	44,01 г/моль
Молярная масса оксида углерода	28,011 г/моль

Молярная масса кислорода	31,9988 г/моль
Молярная масса азота	28,011 г/моль
Молярная масса оксидов азота	30,008 г/моль
Молярная масса диоксида азота	46,01 г/моль
Молярная масса диоксида серы	64,066 г/моль
Молярная масса сухого воздуха	28,965 г/моль

Если допустить отсутствие эффекта сжимаемости, то все газы, вовлеченные в работу двигателя в процессе впуска/сжигания/выпуска, можно считать идеальными, и поэтому любые расчеты объема производятся на основе молярного объема, составляющего, по допущению Авогадро, 22,414 л/моль.

А.6.3 Газообразные выбросы (дизельное топливо)

Данные измерений в отдельном конкретном режиме испытательного цикла (при частоте регистрации данных 1 Γ ц), используемые для расчета мгновенных значений массы выбросов, указаны ниже. В настоящем примере концентрации CO и NO_x замерены на сухой основе, а HC - на влажной основе. Концентрация HC приводится в пропановом эквиваленте (C3), поэтому для получения результата в эквиваленте C1 ее необходимо умножить на C1 для всех других режимов цикла процедура расчета идентична.

Для более наглядной иллюстрации в показанном ниже примере расчета все промежуточные результаты, полученные на различных этапах, округлены. Следует отметить, что в случае реальных расчетов округление промежуточных результатов не допускается (см. пункт 8).

T _{a,i} (K)	<i>H</i> _{a,i} (г/кг)	<i>W</i> _{act} (кВт·ч)	$q_{ m mew,i} \ (m K\Gamma/c)$	$q_{ m maw,i} \ (\kappa \Gamma / { m c})$	$q_{m\mathrm{f,i}} \ (\mathrm{K}\Gamma/\mathrm{c})$	<i>C</i> _{HC,i} (млн ⁻¹)	С _{СО,і} (млн ⁻¹)	$\mathcal{C}_{ ext{NOx},i}$ (млн $^{-1}$)
295	8,0	40	0,155	0,150	0,005	10	40	500

Ниже рассматривается следующий состав топлива:

Компонент	Молярная доля	% от массы
Н	$\alpha = 1,8529$	$w_{\rm ALF} = 13,45$
С	$\beta = 1,0000$	$w_{\rm BET} = 86,50$
S	$\gamma = 0.0002$	$w_{\rm GAM} = 0.050$
N	$\delta = 0,0000$	$w_{\rm DEL} = 0,000$
0	$\varepsilon = 0.0000$	$w_{\rm EPS} = 0.000$

Этап 1. Поправка на сухое/влажное состояние (пункт 8.1):

Уравнение (16): $k_{\text{fw}} = 0.055584 \times 13.45 - 0.0001083 \times 86.5 - 0.0001562 \times 0.05 = 0.7382$

Уравнение (13):
$$k_{\text{w,a}} = \left(1 - \frac{1,2434 \times 8 + 111,12 \times 13,45 \times \frac{0,005}{0,148}}{773,4 + 1,2434 \times 8 + \frac{0,005}{0,148} \times 0,7382 \times 1000}\right) \times 1,008 = 0,9331$$

Уравнение (12):
$$c_{\text{CO,i}}$$
 (на влажной основе) = $40 \times 0.9331 = 37.3 \text{ млн}^{-1}$ $c_{\text{NOx,i}}$ (на влажной основе) = $500 \times 0.9331 = 466.6 \text{ млн}^{-1}$

Этап 2. Поправка на температуру и влажность для NO_x (пункт 8.2.1):

Уравнение (23):
$$k_{h,D} = \frac{15,698 \times 8,00}{1000} + 0,832 = 0,9576$$

Этап 3. Расчет мгновенных значений выбросов в каждом отдельном режиме цикла (пункт 8.4.2.4):

Уравнение (36):
$$m_{\text{HC,I}} = 10 \times 3 \times 0,155 = 4,650$$

 $m_{\text{CO,I}} = 37,3 \times 0,155 = 5,782$
 $m_{\text{Nox,I}} = 466,6 \times 0,9576 \times 0,155 = 69,26$

Этап 4. Расчет массы выбросов за цикл методом интегрирования мгновенных значений выбросов и значений *и*, взятых из таблицы 5 (пункт 8.4.2.4):

Следующий расчет приведен для цикла ВСУЦ (1 800 с) и на основе допущения, что в каждом режиме цикла концентрация выбросов одинакова.

Уравнение (36):
$$m_{\text{HC}} = 0,000479 \times \sum_{i=1}^{1800} 4,650 = 4,01$$
 г/испытание
$$m_{\text{CO}} = 0,000966 \times \sum_{i=1}^{1800} 5,782 = 10,05$$
 г/испытание
$$m_{\text{NOx}} = 0,001586 \times \sum_{i=1}^{1800} 69,26 = 197,72$$
 г/испытание

Этап 5. Расчет удельных выбросов (пункт 8.6.3):

Уравнение (69):
$$e_{HC} = 4,01 / 40$$
 $= 0,10 \ г/к Вт·ч$ $e_{CO} = 10,05 / 40$ $= 0,25 \ г/к Вт·ч$ $e_{NOx} = 197,72 / 40$ $= 4,94 \ r/к Вт·ч$

А.6.4 Выбросы твердых частиц (дизельное топливо)

	р _{ь,ь} (кПа)	р _{ь,а} (кПа)	<i>W</i> _{act} (кВт·ч)	$q_{ m mew,i} \ (m K\Gamma/c)$	$q_{m\mathrm{f,i}} \ (\mathrm{K}\Gamma/\mathrm{c})$	$q_{m ext{dw,i}} \ (ext{K}\Gamma/ ext{C})$	$q_{m m dew,i} \ (\kappa \Gamma / c)$	$m_{ m uncor,b} \ ({ m M}\Gamma)$	$m_{ m uncor,a} \ ({ m M}\Gamma)$	m _{sep} (кг)
Ī	99	100	40	0,155	0,005	0,0015	0,0020	90,0000	91,7000	1,515

Этап 1. Расчет m_{edf} (пункт 8.4.3.2.2):

Уравнение (48):
$$r_{d,i} = \frac{0,002}{(0,002 - 0,0015)} = 4$$

Уравнение (47):
$$q_{medf,i} = 0.155 \times 4 = 0.620 \text{ кг/с}$$

Уравнение (46):
$$m_{\text{edf}} = \sum_{i=1}^{1800} 0,620 = 1 \ 116 \ \text{кг/испытание}$$

Этап 2: Корректировка массы твердых частиц на статическое давление (пункт 8.3)

До испытания:

Уравнение (26):
$$\rho_{a,b} = \frac{99 \times 28,836}{8,3144 \times 295} = 1,164 \text{ кг/м}^3$$

Уравнение (25):
$$m_{\rm f,T} = 90,0000 \times \frac{\left(1 - 1,164/8\,000\right)}{\left(1 - 1,164/2\,300\right)} = 90,0325 \,\mathrm{M}$$
г

После испытания:

Уравнение (26):
$$\rho_{a,a} = \frac{100 \times 28,836}{8.3144 \times 295} = 1,176 \text{ кг/м}^3$$

Уравнение (25):
$$m_{\rm f,G} = 91,7000 \times \frac{\left(1 - 1,176/8\,000\right)}{\left(1 - 1,176/2\,300\right)} = 91,7334 \,\mathrm{M}$$
г

Уравнение (27):
$$m_p = 91,7334 \text{ мг} - 90,0325 \text{ мг} = 1,7009 \text{ мг}$$

Этап 3: Расчет массы выбросов твердых частиц (пункт 8.4.3.2.2):

Уравнение (45):
$$m_{\text{PM}} = \frac{1,7009 \times 1,116}{1,515 \times 1000} = 1,253$$
 г/испытание

Этап 4: Расчет удельных выбросов (пункт 8.6.3):

Уравнение (69):
$$e_{PM} = 1,253/40 = 0,031 \, \Gamma/\kappa B_{T} \cdot \Psi$$

Приложение 7

УСТАНОВКА ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ И УСТРОЙСТВ ДЛЯ ПРОВЕДЕНИЯ ИСПЫТАНИЯ НА ВЫБРОСЫ

Номер	Вспомогательное оборудование	Устанавливается для проведения испытания на выбросы
1	Система впуска	
	Впускной коллектор	Да
	Заборник для рециркуляции картерных газов	Да
	Устройства управления двухканальной системы впускного коллектора	Да
	Анемометр	Да
	Впускной патрубок	Да или оборудование камеры для испытания
	Воздушный фильтр	Да или оборудование камеры для испытания
	Глушитель шума всасывания	Да или оборудование камеры для испытания
	Ограничитель скорости	Да
2	Подогревающее устройство впускного коллектора	Да, по возможности оно должно быть отрегулировано на оптимальный режим работы.
3	Система выпуска выхлопных газов	
	Выпускной коллектор	Да
	Соединительные патрубки	Да
	Глушитель	Да
	Выхлопная труба	Да
	Устройство для дросселирования выхлопа	Нет либо полностью открыто
	Нагнетающее устройство	Да
4	Топливный насос	Да
5	Оборудование для двигателей, работающих на газе	
	Электронная система регулирования, анемометр и т.д.	Да
	Редукционный клапан	Да
	Испаритель	Да
	Смеситель	Да
	l .	<u> </u>

Номер	Вспомогательное оборудование	Устанавливается для проведения испытания на выбросы
6	Оборудование для впрыска топлива	
	Фильтр предварительной очистки	Да
	Фильтр	Да
	Насос	Да
	Трубопровод высокого давления	Да
	Форсунка	Да
	Воздушная заслонка	Да
	Электронная система регулирования, датчики и т.д.	Да
	Регулятор/система регулирования	Да
	Автоматический ограничитель предельной нагрузки на регулирующую рейку, действующий в зависимости от атмосферных условий	Да
7	Оборудование системы жидкостного охлаждения	
	Радиатор	Нет
	Вентилятор	Нет
	Кожух вентилятора	Нет
	Водяной насос	Да
	Термостат	Да, может быть полностью открыт
8	Воздушное охлаждение	
	Воздухосборник	Нет
	Вентилятор или воздуходувка	Нет
	Устройство для регулирования температуры	Нет
9	Электрооборудование	
	Генератор	Нет
	Индукционная катушка или катушки	Да
	Проводка	Да
	Электронная система регулирования	Да
10	Оборудование для нагнетания воздуха	
	Компрессор, прямо или косвенно приводимый в действие двигателем и/или выхлопными газами	Да
	Промежуточный теплообменник	Да или система камеры для испытания
	Насос или вентилятор охладителя (с приводом от двигателя)	Нет
	Устройство регулировки расхода охлаждающей жидкости	Да

Номер	Вспомогательное оборудование	Устанавливается для проведения испытания на выбросы
	Устройство для ограничения выброса загрязняющих веществ (система последующей обработки отработавших газов)	Да
12	Оборудование для запуска двигателя	Да или система камеры для испытания
13	Масляный насос	Да

- - - - -