HEAVY-DUTY GASOLINE ENGINE WHDC VALIDATION STUDY Transmitted by CATARC

1. Purpose

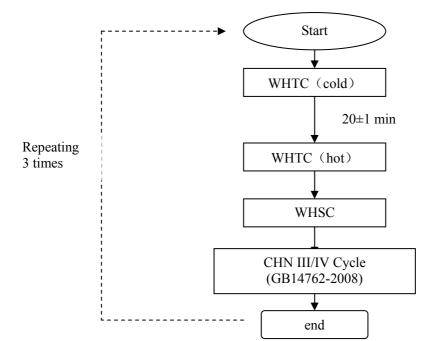
In order to verify the feasibility to take WHDC cycles as the emission test cycle of gasoline engine, in the request of Prof. Stein from WHDC working group, some validation studies of WHDC cycles with gasoline engine were carried out. As a comparison, some emission tests of gasoline engine with CHN III cycle were also done.

2. Engine tested / fuel and Equipment

2.1 Engine tested:

Engine type – L4, four stroke, positive ignition, 2.237L capacity; Fuel feed- EFI; multiply point injection with ECU and oxygen sensor (close-loop); After-treatment system – 3-way catalytic converter.

2.2 Equipment


Engine dynamometer: APA404/8EU(Austria AVL) Exhaust gas analyzer: CEBII(Austria AVL-Germany Pierburg) CVS: CVS4000(Austria AVL -Germany Pierburg)

2.3 fuel

93 gasoline for motor vehicle (DB11/238-2007); RON: 94.2; (RON+MON)/2: 89.0; Density: 742.7 kg/m³; Pb content: 0.0025 g/L Mn content: 0.0014 g/L; Sulphur content: 0.003 % (m/m) ; Benzene content:0.64%(v/v); Alkene content:19.2(v/v); Alkene+Aromatic HC:46.0%(v/v).

3. Test sequence

The test sequence of emisssion test cycles for heavy-duty gasoline engine could be seen in Fig.1. The test sequence commenced at the start of the engine then the WHTC (cold) was performed. Immediately upon completion of the cold start WHTC test, we take 20±1min as a hot soak period for the hot start test. As a comparison, a CHN III/IV test cycle had been done after WHSC. After CHN III/IV test, the engine tested was cooled down naturally to ambient temperature for next WHTC (cold). The tests of WHTC (hot), WHTC (cold), WHSC and CHN III/IV Cycle have been repeated three times.

4. Test results

4.1 Pollutants emissions of CO, THC and NOx

4.1.1. The test results of exhaust emissions for four emission cycles from the engine tested is shown in Table 1.

	Emissions	WHTC (cold)			WHTC (hot)			WHSC			CHN III		
	(g/kWh)	Test1	Test 2	Test 3	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3
	CO	6.71	5.39	5.72	5.18	5.43	5.82	11.68	11.04	11.52	2.68	2.01	1.95
Ī	NOx	0.27	0.25	0.26	0.36	0.25	0.38	0.00	0.00	0.03	0.03	0.08	0.00
	THC	0.41	0.38	0.41	0.32	0.26	0.18	0.64	0.54	0.56	0.23	0.26	0.19

Table 1. The test results of exhaust emissions for four emission cycles

4.1.2. The column diagrams of the pollutants CO, THC and NOx relative emissions for four emission cycles (Test 1#, test 2# and test 3#)from the engine tested are shown in Fig.2, Fig.3 and Fig.4 individually.

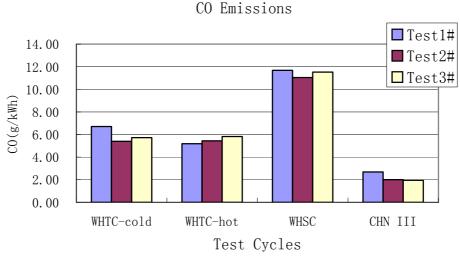
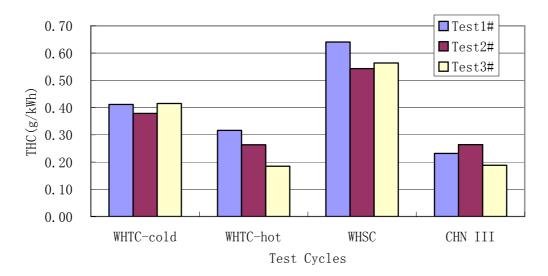



Fig.2 CO relative emissions

THC Emissions

Fig.3 THC relative emissions

NOx Emissions

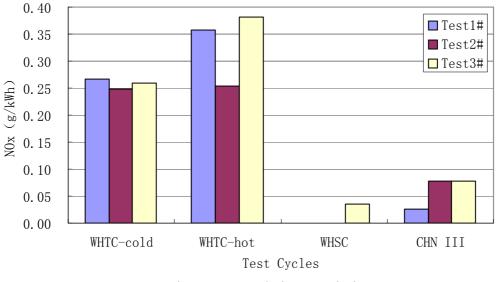


Fig.4 NOx relative emissions

4.1.3. The average emissions of the pollutants CO, THC and NOx of three tests (Test 1#, test 2# and test 3#) is shown in table 2.

Table 2. The average emissions of the pollutants CO, THC and NOx of three tests

Average Emissions (g/kWh)	CO	NOx	THC
WHTC-cold	5.94	0.26	0.40
WHTC-hot	5.48	0.33	0.25
WHSC	11.41	0.01	0.58
CHN III	2.21	0.06	0.23

4.1.4. The column diagram of average emissions of the pollutants CO, THC and NOx for four emission cycles is shown in Fig. 5.

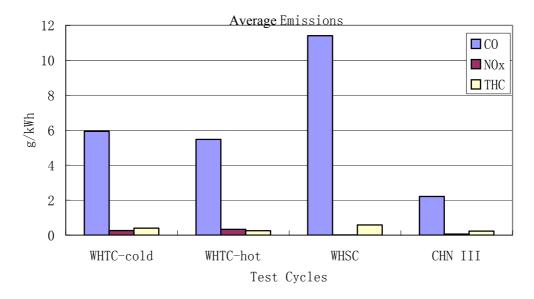
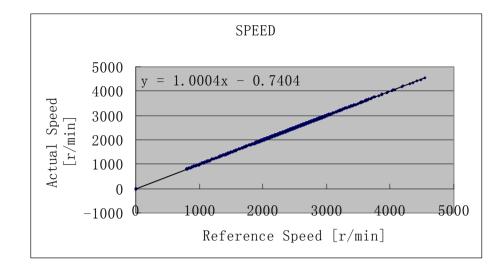
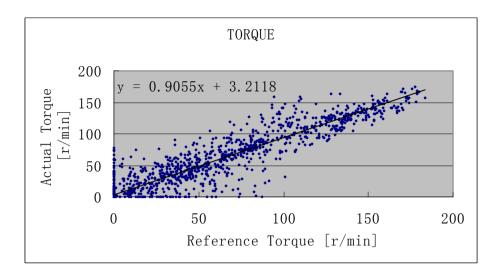
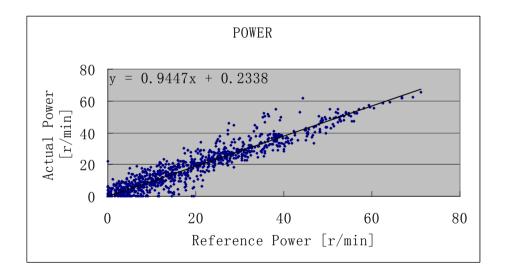
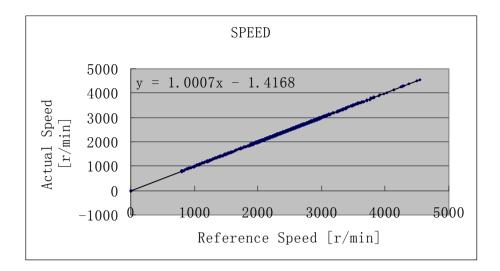
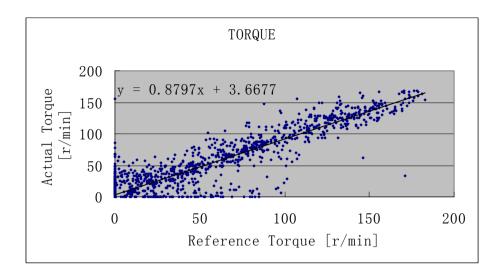
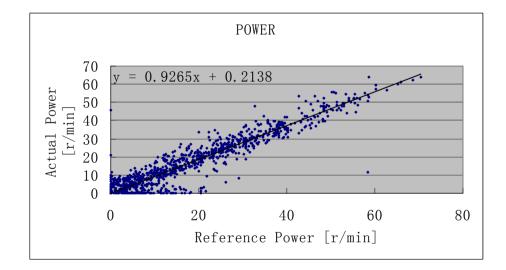





Fig.5 CO, THC and NOx average emissions

4.2. Validation statistics of the test cycles **4.2.1. WHTC (cold)**

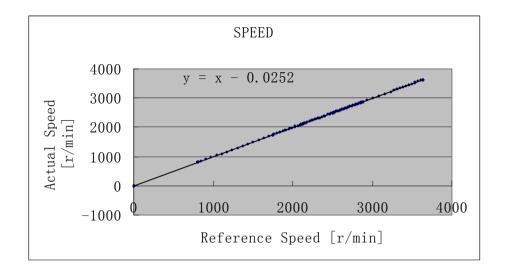


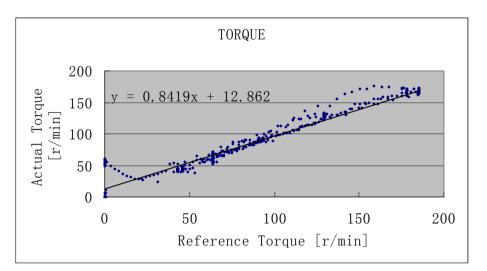


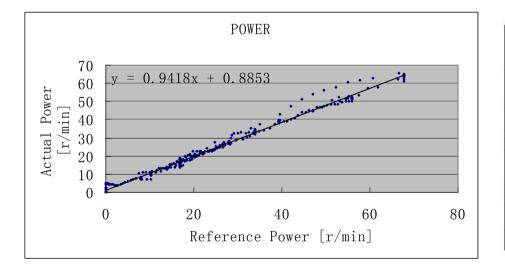


	Speed*		Torque₽		Power⇔	
Standard error of estimate (SEE) of y on x+ ³	2.4660	OK₽	15.590₽	ok≁	3.5810	OK+
<i>≫limit+</i>	max. 100 r/min.	8 0	22.62.		5.228.	
Slope of the + regression line, m4	1.000₽	OK+3	0.9060	ok₽	0.9450	OK€
<i>Xlimit</i> ₽	0.95~1.03.	\$ - S	0.83~1.03		0.89~1.03.	
Coefficient of 4 determination, r ² 4	1.000₽	OK₽	0.895+	OK₽	0.938₽	OK₽
<i>Xlimit₽</i>	min. 0.970.		min. 0.850.		Min. 0.910.	
y intercept of the regression line, b4	cept of the ion line, b∉ -0.740¢ C		3.212₽	ok₽	0.2340	OK€
<i>Xlimit</i> ₽			±2011		± 4kW	

4.2.2. WHTC (hot)

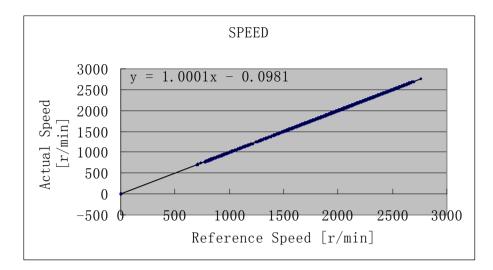


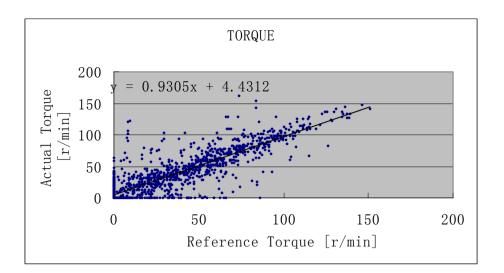


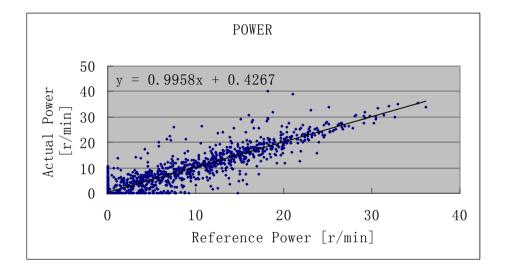


	Speed*2		Torque₽		Power∻	,
Standard error of estimate (SEE) of y on x ²	4.1140	OK⇔	17.029₽	OK₽	3.8130	ok₽
≫limi t≠	max. 100 r/min.		21.97.		5.13.	
Slope of the + regression line, m4	1.0010	ok€	0.8800	OK₽	0.9260	ok≎
<i>Xlimit</i> ₽	0.95~1.03.		0.83~1.03.		0.89~1.03.	
Coefficient of 4 determination, r ² 4	1.000*	ok⇔	0.8720	OK₽	0.928₽	OK€
<i>Xlimit</i> ₽	min. 0.970.	8	min. 0.850.		Min. 0.910.	
y intercept of the regression line, b+	-1.4170	ok₽	3.6680	OK₽	0.2140	OK+
<i>≫limit</i> +	± 50 r/min.		±2011		± 4kW	

4.2.3. WHSC







	Speed		Torque₽		Power+	
Standard error of estimate (SEE) of y on x ²	0.3120	ok≁	15.5260	oke	1.5340	OK+
<i>≫limit</i> ≁	max. 100 r/min.		22.88.		5.23.	
Slope of the + ^j regression line, m ²	1.000₽	OK€	0.8420	OK₽	0.942₽	OK¢
<i>Xlimit</i> ₽	0.95~1.03.	1	0.83~1.03.		0.89~1.03	
Coefficient of + determination, r ² +	1.000₽	0.880+		oke	0.9880	OK+
<i>Xlimit₽</i>	min. 0.970.		min. 0.850.		Min. 0.910.	
y intercept of the regression line, b4	-0.025₽	OK₽	12.8620	ok₽	0.8850	OK€
<i>≫limit</i> ₽	± 50 r/min.	- 2000 U.S.	±2011 m	1929252	± 4kW	

4.2.4. CHN III/IV Cycle

	Speed₽		Torque⇔		Power⇔	
Standard error of estimate (SEE) of y on x+ ²	0.7180	OK€	15.652¢	OK⇔	2.9180	OK.
<i>≫limit+</i>	max. 100 r/min.		24.30.		6.03.	
Slope of the + regression line, m4	1.0000	OK₽	0.9300	ok≁j	0.996₽	OK4
<i>Xlimit</i> ₽	0.95~1.03.	11	0.83~1.03.		0.83~1.03.	
Coefficient of + determination, r ² +	1.0000	OK₽	0.791@	OK€	0.8640	OK+
<i>Xlimit</i> ₽	min. 0.950.		min. 0.750.		Min. 0.750.	
y intercept of the regression line, b4	-0.0980	OK₽	4.4310	OK₽	0.4270	OK
<i>Xlimit</i> ₽	± 50 r/min.		±2011 1		± AcW a	

5. Conclusions

According to the test results of pollutants CO, THC and NOx emissions (4.1.) and validation statistics of the test cycles (4.2.), we summarize as follows:

- (1) The engine tested could meet the validation criteria of the GTR completely both WHTC and WHSC cycles.
- (2) The emissions of pollutants CO, THC and NOx from WHTC are reasonable.
- (3) The emissions of pollutant CO from WHSC is about 2 times as that of WHTC, and is over 5 times as that of CHN III/IV Cycle. The contribution to CO emissions of WHSC mainly come from the 2, 5 and 10 modes of WHSC which run at the conditions of 100% load with $\alpha < 1$ excess air ratio.
- (4) WHTC is applicable for the emissions test cycle of gasoline engine, but WHSC is not applicable for that of gasoline engine for its too high CO emissions.