
Uncertainties on ASEP Limit for each proposals

Issue by France

To choose the method, we need to study 2 following points (GRBIG-ASEP-08-07)

As Limit depends on measurements, Limit has uncertainties

Uncertainties determination by using Gum approach apply on basis variables

Formula with non correlated variables $x_1, x_2, ..., x_N$:

$$y = f(x_1; x_2; ...; x_N)$$

Standard deviation :

$$u_c^2(y) = \sum_{i=1}^N \left[\frac{\partial f}{\partial x_i}\right]^2 \times u^2(x_i)$$

Exemple on L wot $i = \Sigma L$ wot :

$$y = \frac{x_1 + x_2 + \dots + x_N}{N} \to u_c(y) = \frac{1}{\sqrt{N}}u(x_i)$$

with $u(x_1) = u(x_2) = \dots = u(x_N)$

Basis variables and standard deviation

	standard deviation		
	run to run	Mean of 4 measures	by regression
L wot	0,5	0,25	-
L crs	0,35	0,175	-
L urban	-	0,17	-
N	50	25	-
v	0,7	0,35	-
а	0,05	0,025	-
L tyre	-	-	0,4
OICA slope	-	-	0,0003

Reference point		Tyre noise		
F/D Original	$L_{ref} = L_{wot_i}$	$L_{tyre} = L_{tyre_ref} + B \times \log(V/50)$		
New F/D opt°2	$L_{ref} = L_{wot_i} + (L_{urban_limit} - L_{urban})$	$L_{tyre} = L_{crs_{50}} + 34 \times \log(V/50)$		
New F/D opt°1	$L_{ref} = (L_{urban_limit} - k_p \times L_{crs_50})/(1 - k_p)$	$L_{tyre} = L_{crs_{50}} + 34 \times \log(V/50)$		
Formula to L limit				
$L_{engine_ref} = 10 \times \log \left[10^{0.1 \times L_{ref}} - 10^{0.1 \times L_{tyre-ref}} \right]$				
$L_{engine} (N) = L_{engine_ref} + 0.005 \times (N - N_{ref})$				
$L_{\lim it}(N,V) = 10 \times \log \left[10^{0.1 \times L_{engine}} + 10^{0.1 \times L_{tyre}} \right]$				

Reference point			
NL	$L_{ref} = L_{urban \lim it}$		
OICA	$L_{ref} = L_{wot_i}$		
Formula to L limit			
NL	$L_{\lim it}(a, V) = L_{ref} + 0.3 \times (V - V_{ref}) + 4 \times (a - a_{urban})$		
OICA	$L_{\lim it}(N) = L_{ref} + OICA_Slope \times (N - N_{ref})$		

uncertainties on all methods

$$U(L_{\lim it}) = k \times u_c(L_{\lim it})$$

$$L_{true_limit} = L_{limit_cal} \pm U$$

with k = 2 for 95 % of coverage

For the same vehicle and the same conditions, the "true" limit can be (for 95% of cases) between L _{limit_cal} + U and L _{limit_cal} - U

UNCERTAINTIES U (dBA)		
F/D original	1,8	
New F/D option 2	1,6	
OICA	1,4	
New F/D option 1	0,8	
NL	0,6	

Whatever the proposal, additional tolerance is needed to take into account uncertainties

Uncertainties are not sufficient to compare proposals