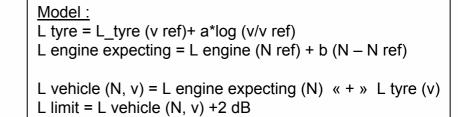
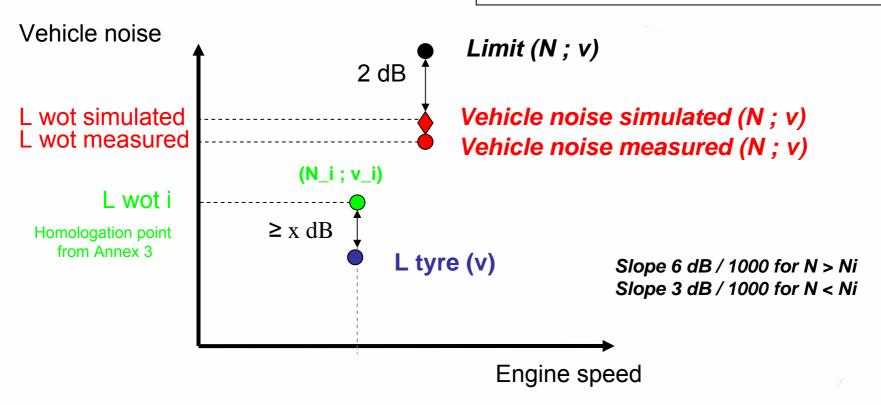
Additional Sound Emission Provisions

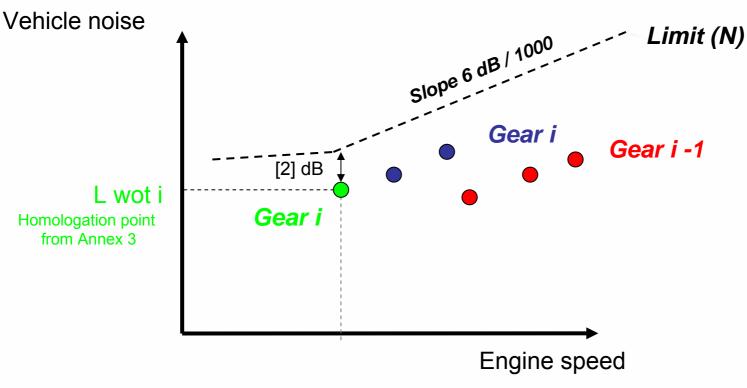

Can we simplify France/German method?


Description of F/D proposal and J Proposal

Limit line(s) instead of Limit Points –
 A possibility to converge to Japan Proposal

Tyre noise close to vehicle noise –
 A possibility to solve the problem

Presentation of actual F/D Proposal


ASEP Measurements

Presentation of actual Japan Proposal

Model:

L vehicle expecting = L wot i (N ref) + b (N – N ref)

L limit = L vehicle (N, v) +2 dB

- ASEP Measurements
- ASEP Measurements

Description of F/D proposal and J Proposal

Limit line(s) instead of Limit Points –
 A possibility to converge to Japan Proposal

Tyre noise close to vehicle noise –
 A possibility to solve the problem

Basis Ideas

Some important elements for each proposal

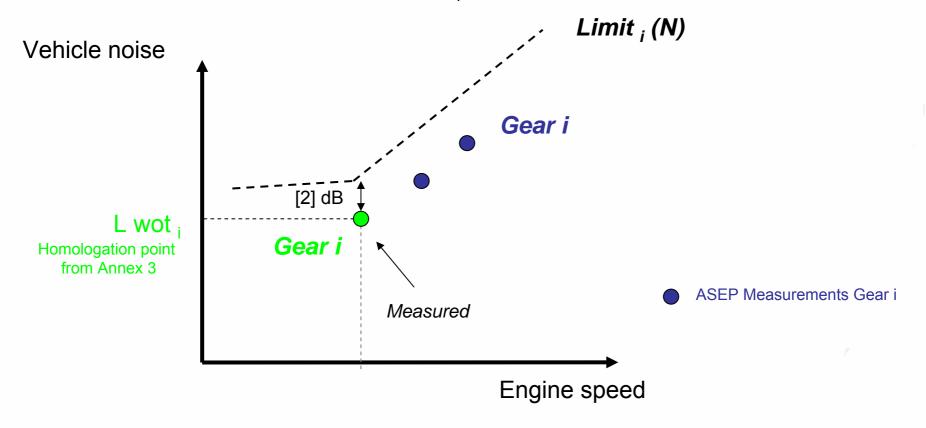
Japan Proposal:

- Lpmax vs. rpm axis,
- Using simple line as limit
- Reducing time to do ASEP Test

F/D Proposal:

- Take into account the gap between vehicle noise gear i and vehicle noise gear i-1 (or gear i-2) due to tyre noise contribution
- Using continuous measuring device, V max and N max at Lpmax to be more precise and to take into account of downshift,

Basis Ideas

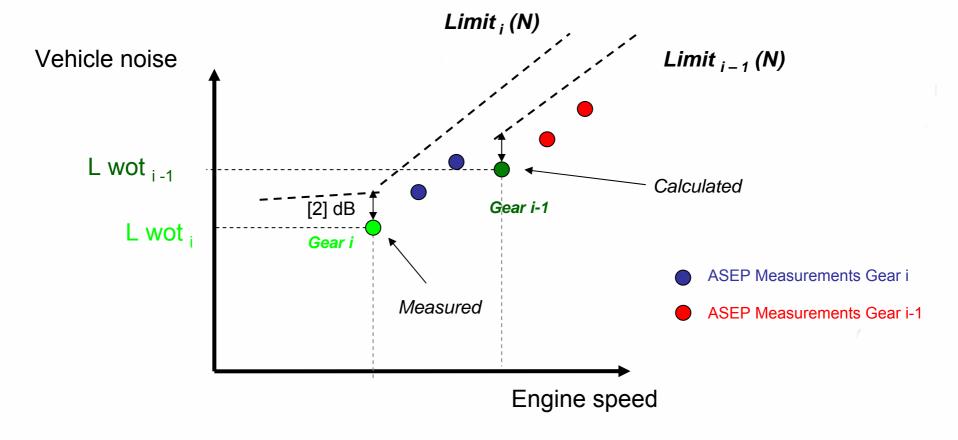

Limit line(s) basis idea

- → Lpmax vs. rpm axis,
- → Using simple line(s) as limit instead of points
- → Take into account the gap between vehicle noise gear i and vehicle noise gear i-1 (or gear i-2)
- → Reduce tyre noise measurements by measuring only L tyre 50 kph
- → Using continuous measuring device, V max and N max at Lpmax to be more precise and to take into account of downshift,

Limit line(s) concept

ASEP measurements only on Gear i:

- For manual and automatic transmission with constant gear ratios tested only on Gear i for ASEP
- For CVT
- → Line limit concept for Gear i : Limit (N)



Limit line(s) concept

ASEP measurements only on Gear i and Gear i-1:

 For manual and automatic transmission with constant gear ratios tested on Gear i, gear i-1 (and gear i-2 if necessary) for ASEP

→ Line limit concept for Gear i : Limit ; (N)

Limit line(s) concept

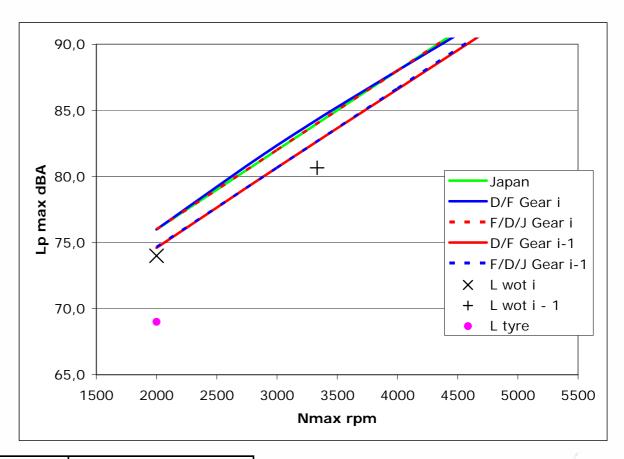
Line limit concept for Gear i : Limit $_i(N) = L$ wot $_i + b$ $(N - N_i) + 2$ dB Line limit concept for Gear i-1 : Limit $_{i-1}(N) = L$ wot $_{i-1} + b$ $(N - N_{i-1}) + [x]dB$ Line limit concept for Gear i-2 : Limit $_{i-2}(N) = ...$

with b = [6] dB / 1000 rpm for N > Ni and <math>b = [3] dB / 1000 rpm for N < Ni

→ L wot _{i-1} is calculated by L wot _i and L tyre 50 kph*

Determination of L wot i-1:

Basis datas: L wot; from Annex 3 and additionnal measurements L tyre 50 kph*

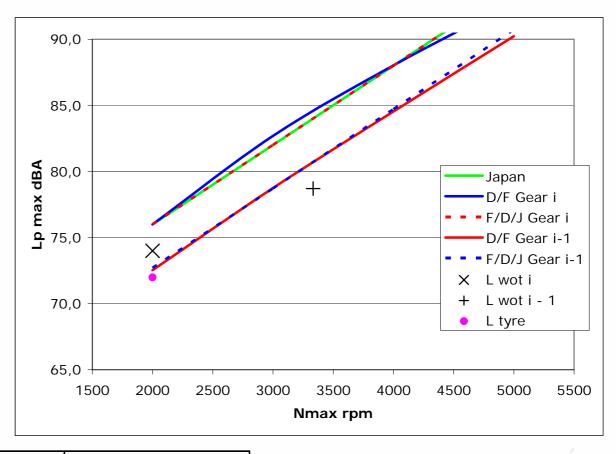

L wot $_{i-1}$ = [L engine (N_i) + b (N_{i-1} - N_i)] « + » [L tyre 50 kph] with L engine (N_i) = L wot $_i$ « - » L tyre 50 kph N_i is engine speed at 50 kph* on gear i N_{i-1} is engine speed at 50 kph* on gear i - 1

* Nota: 50 kph can be in fact the real speed value V _{Lmax} at L max (L wot i)

Difference between F/D proposal and this limit line(s) concept

Comparison of D/F limit concept and this liimit line(s) concept:

L wot i	74
Ni	2000
L tyre 50	69
Tyre slope	40
ci	25
cj	15
Nj	3333
L engine i	72,3
L engine i-1	80,3
L wot i-1	80,7
slope vehicle	6



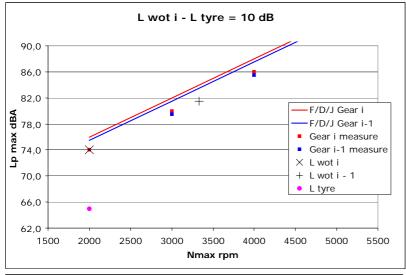
	Gear i		Gear i-1		
	F/D/J	F/D	F/D/J	F/D	Japan
2000	76,0	76,0	74,7	74,6	76,0
3000	82,0	82,4	80,7	80,7	82,0
4000	88,0	88,0	86,7	86,6	88,0
5000	94,0	93,4	92,7	92,5	94,0

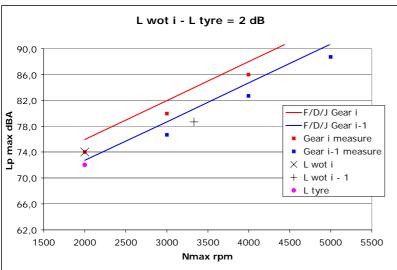
Difference between F/D proposal and this limit line(s) concept

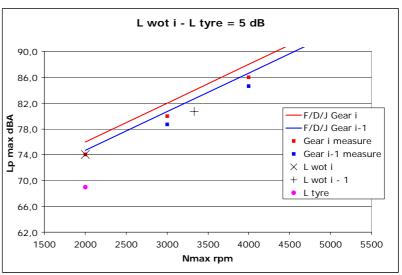
Comparison of D/F limit concept and this liimit line(s) concept:

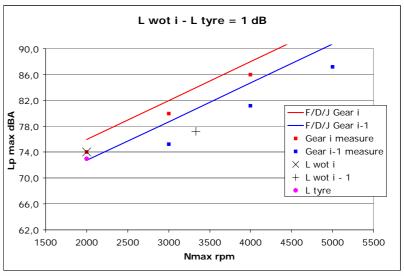
L wot i	74
Ni	2000
L tyre 50	72
Tyre slope	40
ci	25
cj	15
Nj	3333
L engine i	69,7
L engine i-1	77,7
L wot i-1	78,7
slope vehicle	6

	Gear i		Gear i-1		
	F/D/J	F/D	F/D/J	F/D	Japan
2000	76,0	76,0	72,7	72,5	76,0
3000	82,0	82,7	78,7	78,7	82,0
4000	88,0	88,0	84,7	84,5	88,0
5000	94,0	92,8	90,7	90,2	94,0


Description of F/D proposal and J Proposal


Limit line(s) instead of Limit Points –
 A possibility to converge to Japan Proposal


Tyre noise close to vehicle noise –
 A possibility to solve the problem


FOR VEHICLE NOISE CLOSE TO TYRE NOISE

For L wot i – L tyre50 < 2 dB \rightarrow L tyre50 is fixed to L wot i – 2dB

CONCLUSIONS

- It seems to be possible to simply F/D proposal to converge to Japan proposal on a simple model which take account of tyre noise with a quite good precision.
- It seems to be possible to take into account of tyre noise close to vehicle noise in the F/D proposal.
- More studying must be done to validate these approaches.
- One question to choose method :
 Is « non linearity » level be in relation to audible trouble ?