GRPE/HDH-03-04

Engine-Base Emissions Regulation using HILS for Commercial Hybrid Vehicles

JASIC

Regulation of Emissions from Commercial Vehicles--- Needs for Engine-Base

- Compared to passenger cars, heavy commercial vehicles have much wider variety of configurations. In addition, different engines, transmissions, gear ratios, tyres and equipments are selected based on each user's needs.
- Separate engine performance standards are an important part of a successful regulatory program for commercial vehicles. This is beneficial not only for emissions certification, but also for the whole engine and vehicle development process.
- In the current Japanese exhaust emission regulatory framework, both engine dynamo testing and chassis dynamo testing are available, and none of Japanese heavy-duty manufacturer request chassis approach.

Regulation of Emissions from Commercial Vehicles--- Needs for Engine-Base (continued)

- WHTC adopt "micro-transient" engine operation, and includes frequent small accelerations and decelerations.
- The operation can be obtained only through preprogramming of electronically controlled engine dynamometer operation. In the case of chassis dynamo testing with driver's manual operation, the accuracy of micro-transient operation will not be acquired.
- Dynamometer-based certification of engines using micro-transient test cycle has proven to be successful in achieving the desired reductions of criteria emissions output for a wide range of vehicles and applications in Japan. In principle, the engine should be the regulated entity for heavy commercial vehicle emissions performance regulation.

Japanese hybrid commercial engine emissions certification using HILS

- Japan introduced engine-base certification procedure for commercial hybrid vehicles by applying HILS. Criteria emissions output are measured by engine only, the operation is simulated by HILS.
- Performances of the engine and the hybrid components are measured and certified as a set.
- The accuracy of simulated interactions between engine and hybrid components is certified by comparing measured and simulated results. Total fuel consumption etc. are the criteria for determining the accuracy.
- For the measurement, so-called "system in bench method", chassis dynamo testing or actual driving on test course are applied.

Comparison of Chassis Dyno, HILS and Bench Test Methods

Chassis Dyno Method

Comparison of Chassis Dyno, HILS and Bench Test Methods (continued)

Comparison of Chassis Dyno, HILS and Bench Test Methods (continued)

- Examination accuracy Chassis dyno \geq Bench test \geq HILS
- Certification efficiency
 Chassis dyno < Bench test < HILS

The examination accuracy of HILS method can be put in the tolerance.

The maximum advantage of the HILS method is a time and cost efficiency improvements of the certification.

Appendix

Why HILS Method?

Flow-chart of certification-test

Correlation Between test course driving and HILS for pre-transmission parallel hybrid architectures

Simulation Method for HD Conventional Vehicles

