INFORMAL GROUP ON GASEOUS FUEL VEHICLES Within the UN GRPE (WP29)

Name of Organisation submitting Amendment/Work Item Expert from Poland to GRPE

Person submitting Item: Stanislaw Radzimirski

Address/phone/email coordinates

Stanislaw Radzimirski, DSc Head of Environment Protection Centre Motor Transport Institute 03-301 Warszawa Poland Ph.: + 48 22 675 39 37 Fax: + 48 22 811 09 06 e-mail: stanislaw.radzimirski@its.waw.pl

Date Submitted: 18.02.08

Regulation name and reference number: Regulation 49 and 83

Name of Amendment/Work Item: Regulations 49 and 83 - LPG reference fuel

Specific language for Amendment/Work Item: English

Rationale: (Why is it important/required?)

The provisions in Regulations 49 and 83 related to LPG reference fuels have the following defects that may need correcting:

- composition of LPG reference fuels in Regulation 83 is not precisely defined,
- composition of LPG reference fuels B in Regulations 49 and 83 is different what is not justified,
- H/C ratio for LPG is not correct in Regulations 49 and 83.

It is proposed that GFV gives attention to the matter.

Analysis/testing or data requirements to support the Amendment/Work item (could be anticipated or existing supporting documentation)

1. Composition of LPG reference fuels in Regulation 83

The composition of LPG reference fuels specified in Annex 10 A to Regulation 83 is as follows (Table 1).

Table 1

			Table 1
		Fuel A	Fuel B
Composition			
C3-content	per cent vol.	30±2	85±2
C4-content	per cent vol.	balance	balance

<c3,>C4</c3,>	per cent vol.	max. 2	max. 2
Olefins	per cent vol.	max. 12	max. 15

It is not clear what "balance" means:

- balance = 100 C3 (if so, the total may be higher than 100, e.g. C3 31, C4 − 69, <C3 − 2, total = 102) or
- balance = 100 C3 (C3 C4) (the most probable) or even
- balance = 100 C3 (C3 C4) Olefins.

It is proposed to clarify this problem and correct Regulation 83.

2. Different composition of LPG reference fuels B in Regulations 49 and 83

The composition of LPG reference fuels specified in Annex 7 to Regulation 49 is as follows (Table 2).

Table 2

		Fuel A		Fuel B	
		Minimum	Maximum	Minimum	Maximum
Composition					
C3-content	% vol.	48	52	83	87
C4-content	% vol.	48	52	13	17
Olefins	% vol.	0	12	0	14

There are the following differences between fuels B in Regulation 49 and Regulation 83:

- if "balance" in Regulation 83 means "balance = 100 C3 <C3 >C4", C4 content may be different, e.g.
 - Regulation 83: C3 = 87, <C3 + >C4 = 2, C4 = 11% vol.,
 - Regulation 49: C4 can not be lower than 13 % vol.,
- <C3, >C4 are not permitted in Regulation 49,
- maximum content of olefins:
 - Regulation 83 15 % vol.,
 - Regulation 49 14 % vol.

These differences do not seem to be justified. It is proposed to harmonize the composition of LPG reference fuel B in both the Regulations.

3. H/C ratio for LPG

The H/C ratio for LPG is assumed to be equal to:

- 2,525 in Regulation 49 (paragraph 2.7),
- 2,525 in Regulation 83 (paragraph 2.4).

To verify the above ratios, the calculation has been made based on the compositions specified in Tables 1 and 2 and on the following assumptions:

- H/C ratio for LPG should be the mean value for the average composition of fuels A and B,
- H/C ratio is equal to:
 - 2,667 for C3 (without olefins),
 - 2,5 for C4 (without olefins),
 - 2 for all olefins,
 - 3 for <C3,
 - 2,4 for >C4,
- the average composition of fuels A and B is similar to that specified in Table 3 for Regulation 49 and Table 4 for Regulation 83.

Table 3

H/C	Remark	Fuel A Fuel B		Density*
		[% vol.]	[% vol.]	[kg/dcm ³]
	C3 without			
2,667	olefins	47	79,05	0,5074
	C4 without			
2,5	olefins	47	13,95	0,5727
2	C3 olefins	3	5,95	0,5218
2	C4 olefins	3	1,05	0,6081

* Source: Keith Owen, Trevor Coley: Automotive Fuels Handbook.

Table 4

H/C	Remark	Fuel A	Fuel B	Density*
		[% vol.]	[% vol.]	[kg/dcm ³]
	C3 without			
2,667	olefins	28,2	78,625	0,5074
	C4 without			
2,5	olefins	64,8	12,875	0,5727
2	C3 olefins	1,8	6,375	0,5218
2	C4 olefins	4,2	1,125	0,6081
3	<c3< td=""><td>0,5</td><td>0,5</td><td>0,3730</td></c3<>	0,5	0,5	0,3730
2,4	>C4	0,5	0,5	0,6297
		- · ·		

* Source: Keith Owen, Trevor Coley: Automotive Fuels Handbook.

The results of calculation are shown in Table 5 where the following properties are specified:

- the average density and H/C ratio for fuel A,
- the average density and H/C ratio for fuel B,
- the average density and H/C ratio for fuels A and B.

Table 5

Regulation 49	Regulation 83

	Fuel A	Fuel B	Mean	Fuel A	Fuel B	Mean
Density	0,5416	0,5184	0,5300	0,5542	0,5178	0,5360
$[kg/dcm^3]$						
H/C ratio	2,542	2,593	2,568	2,512	2,589	2,550

To confirm the above results, the calculation for different compositions of the LPG reference fuels has been made. The average values of H/C ratio has been similar to those shown in Table 5. It proves that the average H/C ratio for LPG reference fuels differs from that specified in Regulations 49 and 83. It is important to note that the average H/C ratio for LPG specified in Regulation 49 should be different from that specified in Regulation 83 as the composition of fuels A is different (Table 1 and Table 2).

In light of the above, it is proposed to assume the following H/C ratio:

- 2.55 in Regulation 83,
- 2.57 in Regulation 49.

The HC density calculated for the above ratio is equal:

- 0.651 in Regulation 83,
- 0.652 in Regulation 49.

The following corrections are required, among other things:

- Regulation 83 paragraph 2.4 in the body, paragraph 8.2 in Annex 4, paragraph 1.5.2.3 in Appendix 8 to Annex 4,
- Regulation 49 paragraph 2.7 in the body, paragraph 4.3.1.1 in Appendix 2 to Annex 4.

Please submit comments to e-mail: stanislaw.radzimirski@its.waw.pl with copies to:

Andre Rijnders, Chairman (RDW, Netherlands) <u>arijnders@rdw.nl</u> Acting secretariat(s) Jeffrey Seisler (IANGV/Clean Fuels Consulting) <u>iseisler@cleanfuelsconsulting.org</u> Arnaud Duvielbuerbigny (AEGPL) <u>arnaud.duvielguerbigny@aegpl.be</u>