Substitution effects of wood-based construction materials

Harvested wood products in the context of climate change policies September 9-10, 2008, Palais des Nations, Geneva, Switzerland

Professor Leif Gustavsson

Department of Engineering and Sustainable Development Mid Sweden University Östersund, Sweden

Outline

- Net CO₂ emission effects on wood-based construction
- Uncertainties
- Integrated analysis of forest production, soil carbon and wood substitution
- How could wood substitution be expanded

Greenhouse gas balances in building construction a complex issue to analyse

- Few estimates based on few buildings
- The reference could be difficult to choose and define
- Primary energy use for the production of building materials varies
- Forest practices and wood product industries vary
- Energy supply systems vary

CO₂ balance of building production

- Fossil CO₂ emission from primary energy use for production and distribution of building materials and for assembly and demolition of buildings
- Substitution of fossil fuels with biomass by-products from forestry, wood processing, and demolition
- CO₂ balance of cement reactions (calcination and carbonation)
- Carbon storage in wood products

Building production material and energy flows – From natural resources to a building

A case study approach - Wälludden building

Case-study building: Wood frame

Built in Växjo, Sweden Construction cost ≈ 1,221,000 €₂₀₀₄ Reference building: Reinforced-concrete frame

Hypothetical building with identical size and function Construction cost ≈ 1,231,000 \in_{2004}

4 stories, 16 apartments 1190 usable m²

We have considered

- Primary energy use for production of buildings
- Electricity production in fossil condensing plants
- Fossil CO₂ emission from the full fuel cycle
- Substitution of fossil fuels by biomass by-products
- CO₂ balance of cement reactions
- Carbon cycle for wood products

All materials in the building are included

Primary and final energy use for material production

Source: Gustavsson et al. 2006, Sathre and Gustavsson 2007a

MID SWEDEN UNIVERSITY

Sources of biomass residues

Wood processing residues

Demolition residues itetet

Potential biomass residue recovery

Carbon balance of producing the buildings over a 100-year lifecycle

Increased life-cycle net emission of CO₂ if building is built with concrete frame instead of wood frame

Coal or natural gas is reference fuel

Conclusions

- Production of materials for wood-frame building uses less primary energy than for concrete-frame building
- Use of wood instead of concrete reduces net CO₂ emission
- Recovery of biomass residues to replace fossil fuels is important for the reduction of net CO₂ emission
- In lifecycle perspective, small net change in carbon stocks (forest stand and wood building)

Uncertainties

- Amount of each building material used vary with architectural and engineering design of building
- Primary energy used for the production of building materials varies with time, place, and technology

Primary energy use for material production – Input data from Norwegian, Dutch and Swedish studies

- Fossdal does not specify the type of fossil fuel used. We have disaggregated fossil fuel type using average values from Worrell and Björklund.
- Data for plywood are not included in the studies. We have used data from FAO.

Source: Gustavsson and Sathre 2006

Variation in CO₂ emission due to different parameters

Difference between wood and concrete building (t C) Coal is reference fuel

Conclusions

- Variation of system parameters, within practical limits, has moderate effects on the C-balance difference between wood and concrete frame buildings
- Wood-frame building consistently has lower net CO₂ emission: robust result
- Uncertainty remains in e.g. variation in material quantities in different types of buildings: more case studies needed

Different forest management practices and wood substitution: Integrated carbon analysis

Traditional and intensive forest management

Norway spruce stands in central Sweden. Fertilized regime had 12 applications of CAN (125-150 kg N ha⁻¹) and NPK (125-150 kg N ha⁻¹)

Characteristic	Traditional regime	Fertilised regime
Total age (yr) of trees at time of thinnings	37, 47, 62	27, 32, 42
Total age (yr) of trees at time of clear-cutting	92	67
Stem volume production per rotation (m ³ ha ⁻¹)	669	680
Mean volume production (m ³ ha ⁻¹ yr ⁻¹)	7.3	10.0
Mean biomass production (t d.w. ha ⁻¹ yr ⁻¹)	5.0	7.1

Average CO₂ emission reduction of different forest management scenarios and product uses

tonne carbon per year and hectare of forest land

Accumulated CO₂ emission reduction - maximum

- recovery of slash and stumps
- product used as construction materials and bioenergy
- coal is the substituted fossil fuel

Conclusions

- Product substitution most important for carbon benefits
- More intensive forest management gives greater carbon benefits:
 - More wood production allows more material and fossil fuel substitution
 - Increased soil carbon content because of more litter
- Wood product use for construction and bioenergy gives greater carbon benefit than only for biofuel
- Using forest residues for biofuel more than compensates for soil carbon reduction

Effects of carbon taxes* on building material competitiveness

- Competitiveness is complex: depends on functionality, preferences, traditions, economics, etc.
- We consider two mechanisms that affect relative costs:
 - Energy for material manufacture
 - Use of biomass residues as biofuel

*Or a similar economic instrument used to promote the reduction of CO_2 emission

Material production – Cost for energy use and CO₂ emissions

Cost for energy use and CO₂ emissions – Advantage of wood building compared to concrete building

Conclusions

- Cost for energy use for material production is 1-2% of building cost, and is lower for wood building
- Without economic policy instruments, it is not profitable to use biomass residues to substitute for fossil coal
- Economic competitiveness of wood construction increases with increased CO₂ taxation
- Social cost of CO₂ emission estimated by Stern Report is higher than current Swedish industrial tax rate

Summarising conclusions ...

- Primary energy use and CO₂ emission are lower for producing wood-frame buildings than concrete-frame buildings
- Using biomass by-products to substitute for fossil fuels reduces CO₂ emission
- In a life cycle perspective, the net change in carbon stock (in forest stand and building) is small

Summarizing conclusions

- Wood construction gives high CO₂ emission reduction per hectare of forest land
- Competitiveness of wood construction increases with higher carbon taxes
- Product substitution most important for carbon benefits

References:

Eriksson, E., Gillespie, A., Gustavsson, L., Langvall, O., Olsson, M., Sathre, R. and Stendahl, J. 2007. Integrated carbon analysis of forest management practices and wood substitution. *Canadian Journal of Forest Research*, 37(3): 671-681.

Gustavsson, L., Pingoud, K. and Sathre, R. 2006. Carbon dioxide balance of wood substitution: comparing concrete- and wood-framed buildings. *Mitigation and Adaptation Strategies for Global Change*, 11(3): 667-691.

Gustavsson, L. and Sathre, R. 2006. Variability in energy and carbon dioxide balances of wood and concrete building materials. *Building and Environment*, 41(7): 940-951.

Mahapatra, K. and Gustavsson, L. 2008 Multi-storey timber buildings – breaking industry path dependency. *Building Research & Information* (Forthcoming)

Sathre, R. and Gustavsson, L. 2007a. Effects of energy and carbon taxes on building material competitiveness. *Energy and Buildings*, 39(4): 488-494.

Sathre, R. and Gustavsson, L. 2007b. Process-based analysis of added value in forest product industries. Manuscript.

Wood is a limited resource that needs to be used wisely and efficiently

Thank you

Material production energy for a wood-frame and a concrete-frame building

Functionally equivalent wood-frame and concreteframe versions of multistorey apartment building

Mittuniversitetet

Wood construction gives high value added per hectare of forest land

Promoting use of wood in (multi-story) construction

- Implementing policies to internalize the external costs of producing the building materials
- Education of professionals, policy and decision makers, the general public about wood constructions
- Encourage entry of new firms
- Facilitate existing firms to move beyond small-scale experiments
- Co-ordination and collaboration between different sectors and actors

Harmonize European standard for wood construction Source: Mahapatra and Gustavsson 2008