Harvested Wood Products in the context of climate change policies Workshop, Geneva Sept. 9th – 10th 2008

HWP versus forest sinks CO2-effects of Swiss forestry and timber industry

Peter Hofer GEO Partner AG Zurich

Based on a study for the Swiss confederation

Partners: Dr. Frank Werner, Environment & Development WSL, Swiss Federal Institute for Forests, Snow, Landscape Research EMPA, Materials Science and Technology eawag, Swiss Federal Institute of Aquatic Science and Technology

Dr. Frank Werner Umwelt & Entwicklung

> The CO₂ Effects of the Swiss Forestry and Timber Industry

Scenarios of future potential for climate-change mitigation

Swiss Confederation

Federal Office for the Environment FOEN

The publication of the study is available at the following address:

www.bafu.admin.ch/publikationen

Geneva, Sept. 9th 2008

Contents

- Aims and Methodology of the Swiss study
- Important results
 - CO₂-effects in Switzerland and abroad
 - Socio-economic effects
- Results of a Swedish study
- HWP accounting

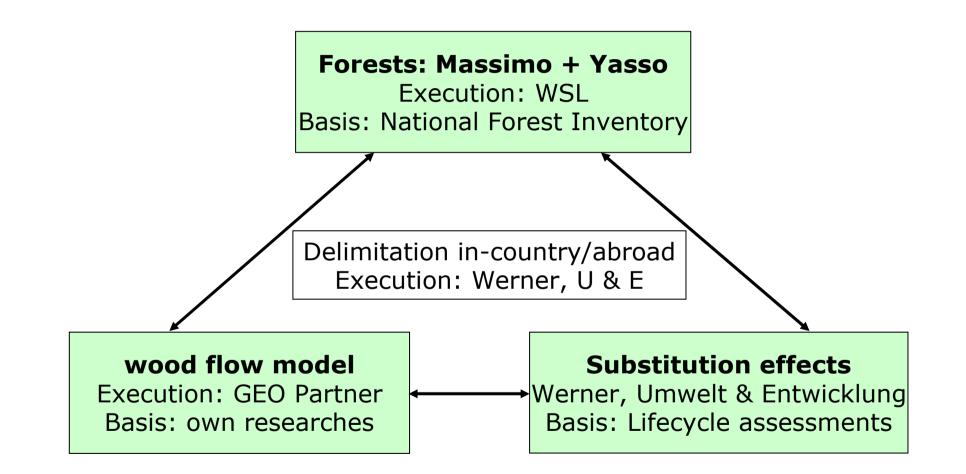
page 3/16

Aims of the Swiss study

Working hypothesis

"National greenhouse gas balance will come off best, if

- maximised increment in forests is currently completely harvested,
- converted to long-lived wood products,
- if possible recycled and in the end used as a fuel."


Aim of the study

develop a range of management options for a future CO_2 -optimized policy for Switzerland

page 4/16

Methodological Approach

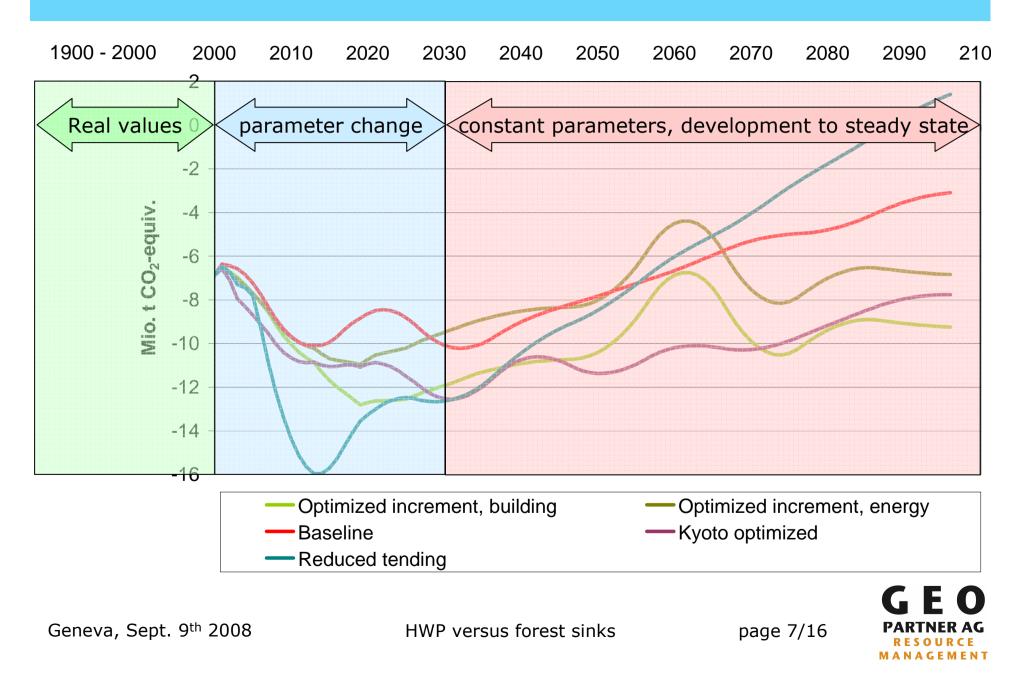
Geneva, Sept. 9th 2008

HWP versus forest sinks

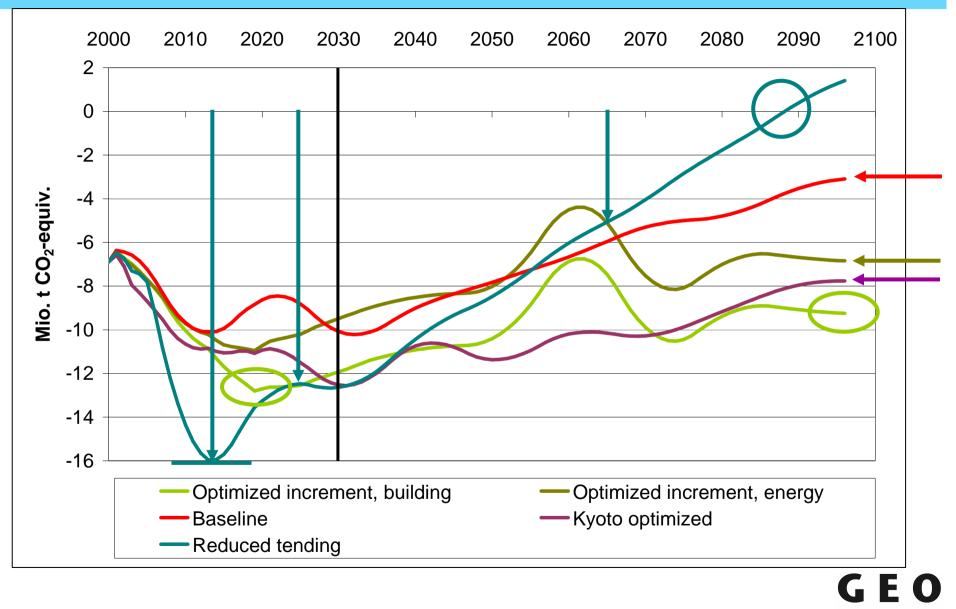
page 5/16

GEO PARTNER AG RESOURCE MANAGEMENT

Scenarios and their main elements

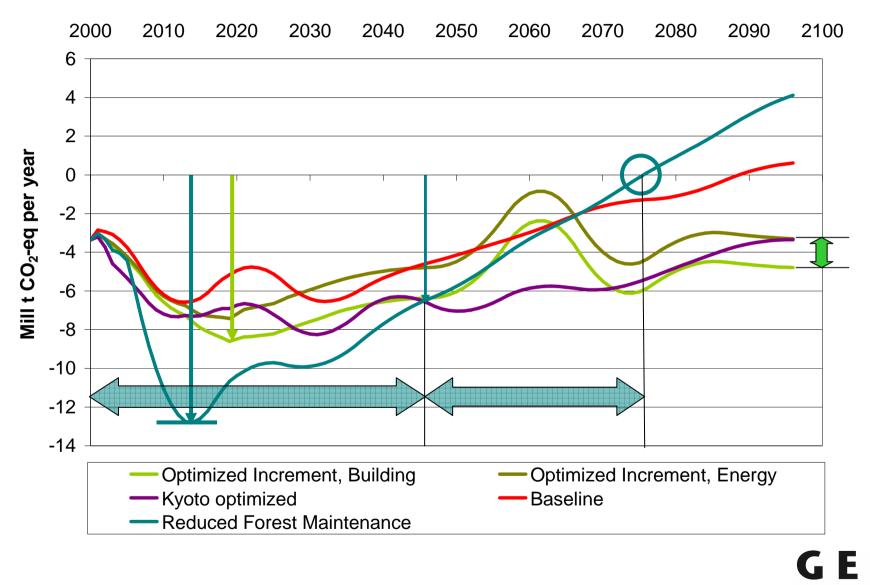

Basic principle of scenario building

Scenarios are based on elements of realistic policies as regards harvesting, consumption, domestic wood processing / production.

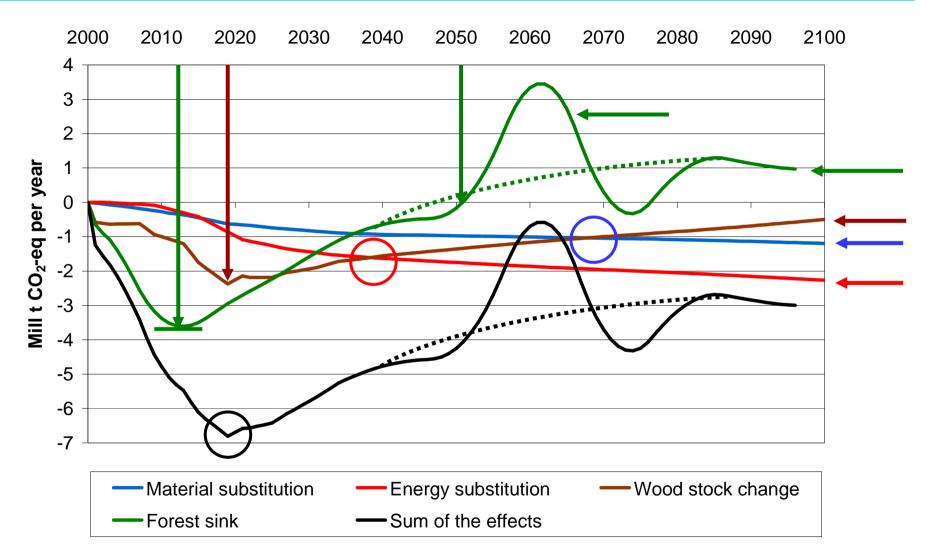

	Optimized increment [Mio. m ³]		Kyoto optimized [Mio. m ³]	Reduced tending [Mio. m ³]	Baseline [Mio. m ³]
Yield	9,2		8,5	3,0	5,9
Swiss harvest	+ 90%		+ 75%	- 40%	+ 20%
	Building	Energy	Building		
Consumption					
HWP (without p&p)	4,5 + 80%	2,5 + 0%	4,5 + 80%	1,9 - 24%	3,0 + 20%
Forest fuelwood	2,8 +122%	4,9 +344%	2,1 + 67%	0,2 - 81%	1,5 + 20%
Foreign trade					
Exports / Imports of wood products	constant	constant	constant	constant	constant

NAGFMFN1

Presentation of the results



Results: Global effects (in-country and abroad)


Geneva, Sept. 9th 2008

Results: Effects in Switzerland

Geneva, Sept. 9th 2008

Results: "optimized increment, building" net effects of scenario in Switzerland

Geneva, Sept. 9th 2008

HWP versus forest sinks

page 10/16

Estimation of employment effect in forest sector 2000 to 2030

	Optimized	increment	Kyoto	Reduced	Baseline
Production sector	Building	Energy	optimized	tending	
Forestry	2′030	2′030	1′690	-2′900	650
1 st process level	1′520		1′520	-1′350	760
2 nd process level	3′860		3′860	-3′430	1′950
3 rd process level	20′220		20′220	-17′950	8′060
Total (27′600	2′000	27′300	-25′600	11′400

GEO

The Swedish study "Forest and Carbon"

	2005	Baseline 2035				Increased	
(Mill t dm)		Regular		Full potential		Increment 2035	
Yield							
Compact wood	31.2	35.1 🤇	+12%	35.1	+12%	48.6	+56%
Slash	1.6	1.7	+3%	3.8	+140%	3.8	+140%
Stumps	0	0	0%	1.7	New	1.7	New
Consumption							
Building products, other wood prod.	2.3	2.5	+12%	2.5	+12%	3.5	+56%
Paper	2.1	2.3	+12%	2.3	+12%	2.3	+12%
Total fuel wood	8.1	8.8	+8%	12.6	+55%	21.5	+165%
Foreign trade							
Exports wood prod.	7.9	8.9	+12%	8.9	+12%	12.6	+60%
Export of p&p	13.7	15.1	+11%	15.1	+11%	15.1	+11%
Imports wood prod.	7.1	7.1	const.	7.1	const.	7.1	const.
Import of p&p	2.1	2.3	+12%	2.3	+12%	2.3	+12%

Geneva, Sept. 9th 2008

GEO

1980

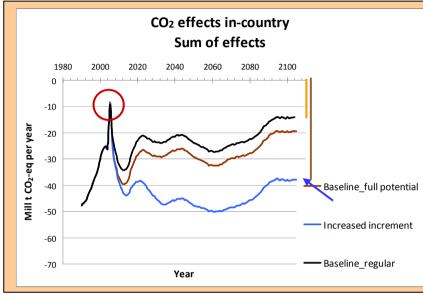
-10

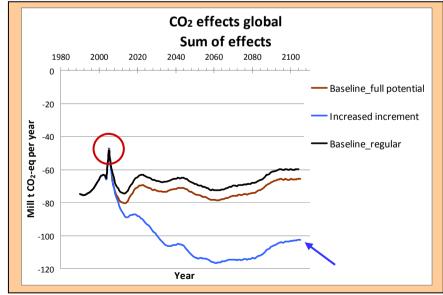
-20

-30

-40

-50


-60


-70

Mill t CO₂-eq per year

2000

2020

Best results: Scenario Increased increment

CO₂ effects abroad

Sum of effects

2080

2100

Baseline full potential

Increased increment

Baseline regular

2040 2060

Year

Effects in-country: 14 to 38 Mill t CO_2 eq. Effects global: 60 to 103 Mill t CO_2 eq.

Effects abroad are higher than in-country

Reduction of growing stock increase in baseline scenarios can only be compensated by substitution effects abroad.

Storm Gudrun is clearly noticeable

Geneva, Sept. 9th 2008

HWP versus forest sinks

page 13/16

GEO PARTNER AG RESOURCE MANAGEMENT

Harvested Wood Products vs. Forest sinks Findings

- It is interesting to invest in forest sinks as long as the average increment can be increased.
- Forest sinks can turn to be sources in case of storms or other forest catastrophes.
- The important CO₂-effects of wood utilization are the material and energetic substitution. The firstly material and secondly energetic use of wood is the most advantageous way.
- Only at the beginning of the period stock change effect of wood products is more important than the substitution effects. In the systems steady state situation it is zero.

Reflexions for the accounting of HWP

- The accounting of HWP is an incentive for the increased utilization of wood products in the phases of growing wood stocks.
- In a long range perspective, wood stock change effect is marginal to zero. Wood stocks in the technosphere are stable. There is low risk, that they are destroyed or reduced on a large scale, as it can happen in forests.
- Substitution effects are reflected in the balance of fossil fuels, though it is indiscernible how much of balance change is due to increased use of wood products.
- The longer the lifetime of the products, the larger the stock capacity. Accounting of HWP should reward long-lived wood products.
- A new accounting approach should give more incentives for creating a high increment in forests than high growing stocks.

Geneva, Sept. 9th 2008

HWP versus forest sinks

page 15/16

Thank you for your attention

