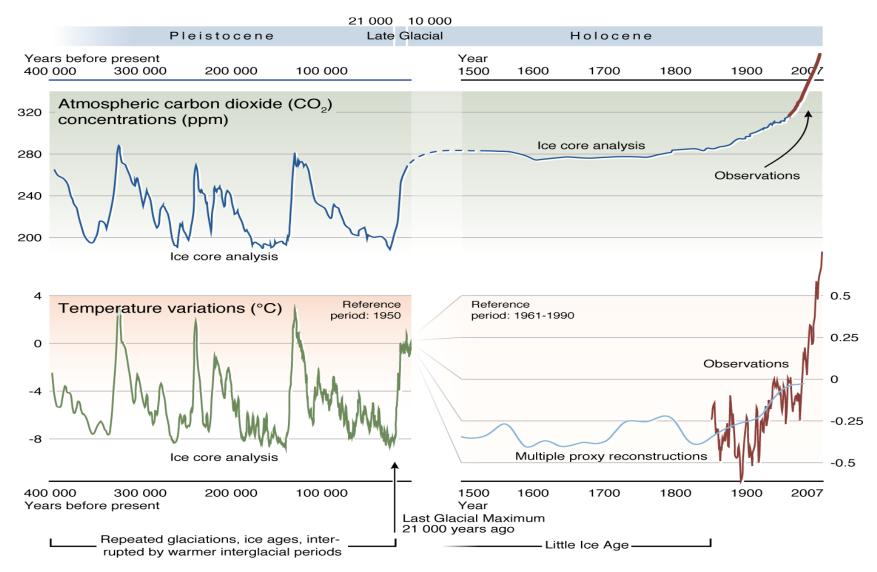
Economic Assessment of Climate Change Impacts on Biodiversity, Ecosystem Services and Human Wellbeing

An Application to European Forest Ecosystems

By Helen Ding University of Padova, Italy

ORMAN 2011: FORESTS IN A GREEN ECONOMY 10-14 Oct 2011, Antalya, Turkey



Research Context and Objectives

• Research Architecture and Approaches

• Results and Key Messages

RESEARCH CONTEXT: GLOBAL WARMING

Source: by Hugo Ahlenius, UNEP/GRID-Arendal, available at: http://maps.grida.no/go/graphic/historical-trends-incarbon-dioxide-concentrations-and-temperature-on-a-geological-and-recent-time-scale

RESEARCH CONTEXT: CLIMATE CHANGE IMPACTS ON ECOSYSTEMS

Estimate of A complete the Design of A contraction by Region terrestrial ecosystem carbon stocks, recently estimated at **1,640 billion** tor stocks, recently al., 200 Marking Mediterranean

area

• Foreste finde avvill transform forests directly as outheast sink to carbon source ub-Saharan South

America America 1: Countries reported 2 million ha. Sources: FAO 2006a; Global Burnt Area 2000 Project (GBA2000). 7

RESEARCH CONTEXT: CLIMATE CHANGE IMPACTS ON BIODIVERSITY

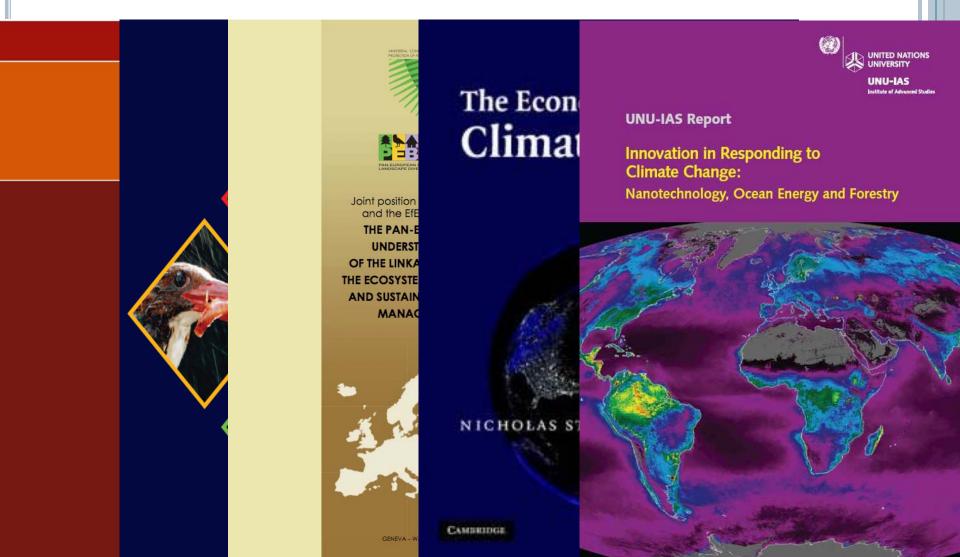
Biodiversity, as ratio of species abundance before human impacts

High impacts	0	-	25
High-medium impacts	25	-	50
Medium-low impacts	50	_	75
Low impacts	75	T.	100 %
Mean species abundance (%)			

Loss of biodiversity with continued agricultural expansion, pollution, climate change and infrastructure development.

Source: GLOBIO - Alkemade et al., 2009.

RESEARCH CONTEXT: CLIMATE CHANGE IMPACTS ON HUMAN LIVELIHOODS

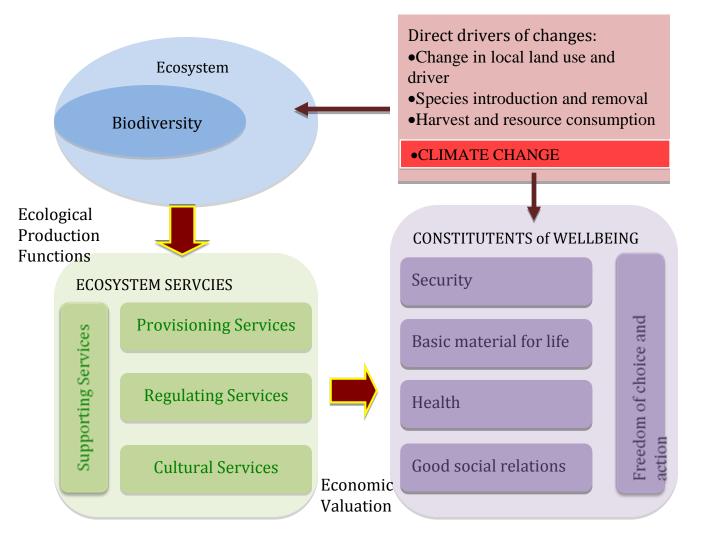

• Increased Ecosystem Vulnerability:

- Extreme weathers and storm events
- Threatened systems
-
- Long-term and Irreversible Impacts on Forest Ecosystem Services:
 - Wood forest products
 - Cultural value of forests

• • • • • • •

• Directly or Indirectly Relate to Human Livelihoods

<u>CLIMATE ECONOMICS, ECOSYSTEM</u> <u>APPROACH ON THE TOP OF POLICY AGENDA</u>



WHY IS THIS RESEARCH RELEVANT TO POLICYMAKING IN EUROPE?

• Understanding the overall magnitudes of climate change impacts on European forest ecosystems

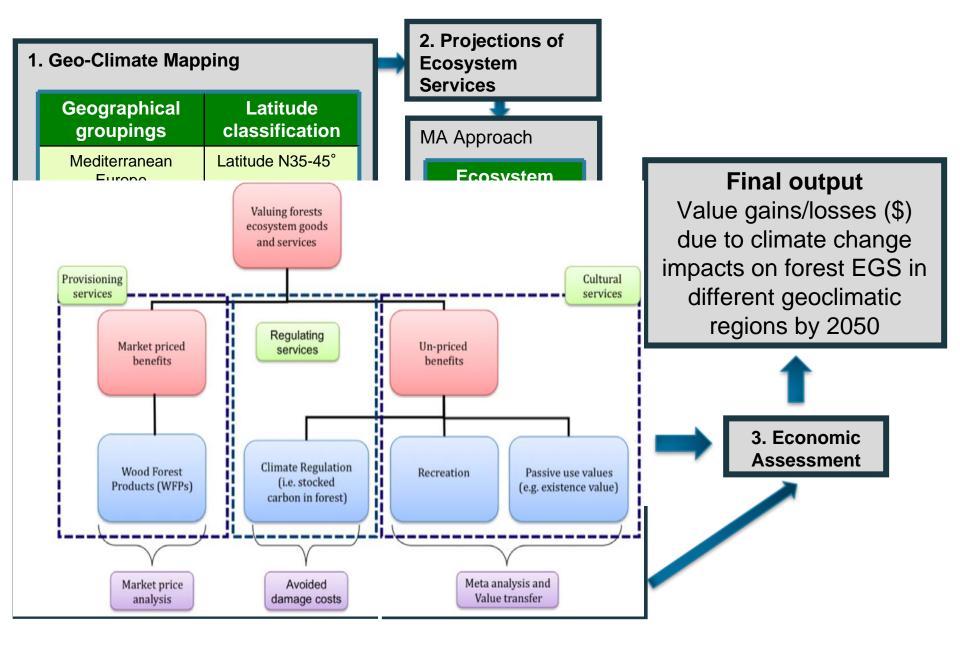
- Understanding the regional and global welfare impacts of altered European forest ecosystems
- Identifying cost-effective policies for SFM to cope with both climate change threats and biodiversity degradation in Europe

RESEARCH OBJECTIVES

Source: adapted from (MEA, 2005)

RESEARCH ARCHITECTURE

Valuing forest ecosystem service (ES) across 34 European countries.


Scaling up: Regional CC impact -> global welfare effects

Creating a new composite biodiversity indicator to measure CC impacts.

Mapping biodiversity resources and vulnerable groups.

Welfare Impacts of Climate Change on European Forests by 2050

VALUATION FRAMEWORK

IPCC SCENARIO FAMILIES

Economic

Global	A (Rapid and succe develop • Population (10 ⁶): 376 • High savings and high and innovation at nation level • Cumulative CO2 (pproved) • Δ Temperature (°C): 4 • Precipitation Europe(B (Global sustainat	essful economic ment) h rate of investments nal & international Note that for the p emissions scenario	es as a result of this IPCC assumes that on is taken in	ited world) 9 uneven in the	Regional
	 Population (10⁶): 376 High investment in restribution Efficience Distribution Efficience Cumulative CO2 (pproduct of C): 3 △ Temperature (°C): 3 △ Precipitation Europerature 	ey: Hgih n): 518 3.1	 Human welfare, equention (10). 39 Human welfare, equencies of the environmental protect Cumulative CO2 (pp △ Temperature (°C): △ Precipitation Euro 		

Source: IPCC Special Report: Emission Scenarios(2000)

RESULTS I: WFPS

Benchmark: /	42	Mediterranean Europe (N35- 45)	Central Europe (N45- 55)	Northern Europe (N55- 65)	Scandinavian Europe (N65- 71)	Europe
Absolute	A1 vs. A2	-40	-6,306	-1,802	1,597	-6,551
value difference	B1 vs. A2	1,565	-6,115	-2,503	-2,171	-9,223
(Million\$, 2005)	B2 vs. A2	2,283	1,186	-405	-1,999	1,065
Percentage	A1 vs. A2	-0.6%	-13.3%	-25.0%	4.7%	-6.9%
change	B1 vs. A2	24.3%	-12.9%	-34.7%	-6.4%	-9.7%
	B2 vs. A2	35.4%	2.5%	-5.6%	-5.9%	1.1%

RESULTS II: STOCKED CARBON

Benchmark: A2		Mediterranean Europe (N35-45)	Central Europe (N45-55)	Northern Europe (N55-65)	Scandinavian Europe (N65- 71)	Europe
Absolute value	A1 vs. A2	-8,614	-42,212	-5,874	212	-56,489
difference (Million\$,	B1 vs. A2	20,785	31,303	5,317	13,705	71,109
2005)	B2 vs. A2	17,819	30,888	6,183	3,128	58,018
Percentage	A1 vs. A2	-18.8%	-26.5%	-33.8%	0.6%	-22%
change	B1 vs. A2	45.4%	19.6%	30.6%	42.0%	27.9%
	B2 vs. A2	38.9%	19.4%	35.6%	9.6%	22.7%

RESULTS III: CULTURAL VALUE

Benchmark: A2		Mediterranean Europe (N35-45)	Central Europe (N45-55)	Northern Europe (N55-65)	Scandinavian Europe (N65- 71)	Europe
Absolute value	A1 vs. A2	-862	-352	-121	18	-1,317
difference (Million\$, 2005)	B1 vs. A2	4,156	1,795	393	1,808	8,152
	B2 vs. A2	3,607	633	182	1,038	5,460
Percentage A1 vs. A2 change B1 vs. A2	A1 vs. A2	-17.8%	-14.2%	-28.3%	1.5%	-14.7%
	B1 vs. A2	85.7%	72,5%	92.3%	152.5%	91.2%
	B2 vs. A2	74.4%	25.6%	42.9%	87.5%	61.1%

<u>A SUMMARY OF THE REGIONAL WELFARE</u> <u>IMPACTS OF CLIMATE CHANGE IMPACTS BY</u> 2050

Scenario	EGS	European Regions Better-Off			
A1: Global Economic Development	WFPs	Scandinavian Europe			
	Stocked Carbon	Scandinavian Europe			
	Cultural Value	Scandinavian Europe			
B1: Global Sustainable Development	WFPs	Mediterranean Europe			
	Stocked Carbon	All European regions			
	Cultural Value	All European regions			
B2: Regional	WFPs	Med. Central (Average Europe)			
Sustainable Development	Stocked Carbon	All European regions			
	Cultural Value	All European regions			

Other Key Findings

GLOBAL IMPACTS

(measured in Billion USD, at real prices in 2005)

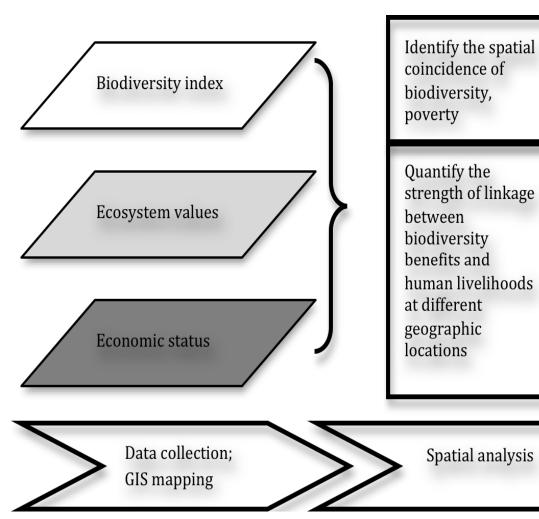
Region Model	CGE (1)	
Δ°C	1.2	3.1	
Med. Europe	-34	-65	
North Europe	+488	+1,360	
East Europe	-21	-102	
World	-1,491	-5,576	
NB: CGE = Co Services.	omputable	General E	Equilibrium Model; BES = Biodiversity and Ecosyster

• Key Messages:

Carbon sequestrated by European forest ecosystems can reduce the pressure of global warming and considerably affect economics in different world regions.

Prov	isioning	g Service	;	C	ultural S	Service		R	egulatir	ng Servio	
Eq.	"R-sq"	chi2	Р	Eq.	"R-sq"	chi2	Р	Eq.	"R-sq"	chi2	Р
(1)	0.582	111.16	0.000	(1)	0.985	3704.47	0.000	(1)	0.874	345.85	0.000
(2)	0.533	77.07	0.000	(2)	0.537	79.38	0.000	(2)	0.537	79.37	0.000
(3)	0.643	154.25	0.000	(3)	0.643	152.49	0.000	(3)	0.642	157.07	0.000
	Equation (1)				Equation	on (1)			Equation	on (1)	
Γ	Dep. Var.	: InEV _i			Dep. Var	$\therefore lnEV_{i}$]	Dep. Var	$\therefore lnEV_i$	
Var.	Coef.		P> z	Var.	Coef.	Z	P> z	Var.	Coef.	Z	P> z
lnfa	0.863		0.000	lnfa	1.011	43.18	0.000	lnfa	0.769		0.000
lnt	0.193		0.680	lnt	-0.290	-2.77	0.006	lnt	-0.156	-0.62	0.536
cfbi_ts	-0.041		0.786	cfbi_ts	-0.059	-1.74	0.082	cfbi_ts	0.085		0.296
cfbi_tm	-0.493		0.012	cfbi_tm	0.279	6.31	0.000	cfbi_tm	0.251		0.018
cfbi tc	0.062	0.57	0.571	cfbi tc	-0.027	-1.10	0.272	cfbi tc	0.259	4.38	0.000
	Equatio	<u> </u>			Equati				Equation		
	Dep. Var			Dep. Var.: <i>lnfa</i>			Dep. Var.: <i>lnfa</i>				
Var.	Coef.		P> z	Var.	Coef.	Z	P> z	Var.	Coef.		P> z
InGDP	0.844		0.000	InGDP	0.846	7.93	0.000	InGDP	0.838	7.89	0.000
lnt	0.859		0.030	lnt	0.821	2.08	0.038	lnt	0.820		0.038
lnpd	-0.446		0.000	lnpd	-0.524		0.000	lnpd	-0.532		0.000
	Equatio				Equation				Equation		
]	Dep. Var				Dep. Var.: CFBI				Dep. Var.: CFBI		
Var.	Coef.		P> z	Var.	Coef.	Z	P> z	Var.	Coef.		P> z
ts	-0.536		0.000	ts	-0.538		0.000	ts	-0.503		0.000
tc	-0.513		0.000	tc	-0.514	-4.40	0.000	tc	-0.483		0.000
tm	-0.575		0.000	tm	-0.578	-4.76	0.000	tm	-0.553		0.000
t^2	0.061		0.000	t^2	0.061		0.000	t^2	0.057		0.000
nts	0.017		0.000	nts	0.017		0.000	nts	0.018		0.000
nbs	-0.001		0.669	nbs	-0.001	-0.60	0.550	nbs	-0.001		0.513
nps	-0.000		0.674	nps	-0.000	-0.38	0.702	nps	-0.001	-0.57	0.570
nhs	0.007		0.083	nhs	0.007	1.72	0.086	nhs	0.009	2.11	
lngdp	0.035		0.119	lngdp	0.037	1.64	0.102	lngdp	0.038	1.69	0.091
lnpd	-0.008		0.781	lnpd	-0.018	-0.57	0.566	Inpd	-0.022	-0.71	0.477
	bservati			с <u>с</u> .							
U				-	a						
Endogenous variables: lnEV _i , lnfa, cfbi Exogenous variables: lnt cfbi ts cfbi tm cfbi tc lngdn lnnd ts tc tm t ² nts nbs nns nbs											

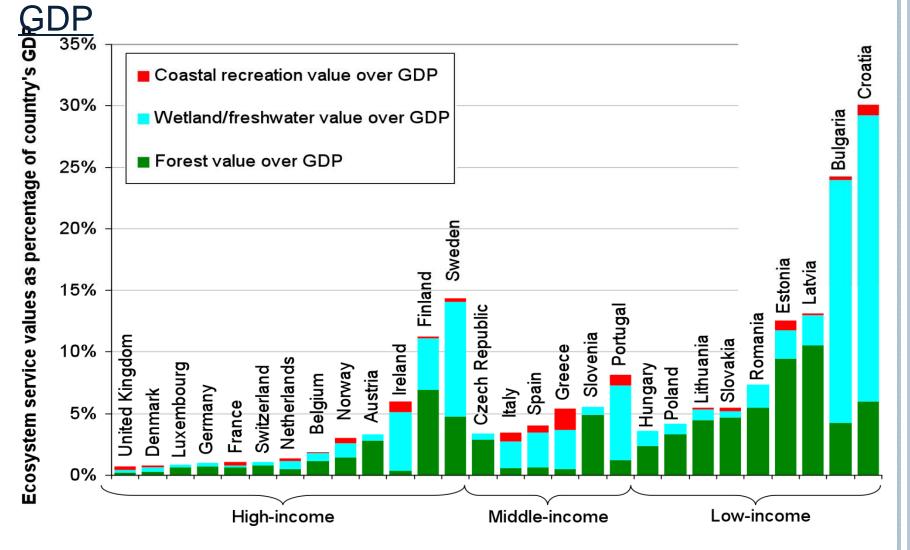
Exogenous variables: lnt, cfbi_ts, cfbi_tm, cfbi_tc, lngdp, lnpd, ts, tc, tm, t², nts, nbs, nps, nhs

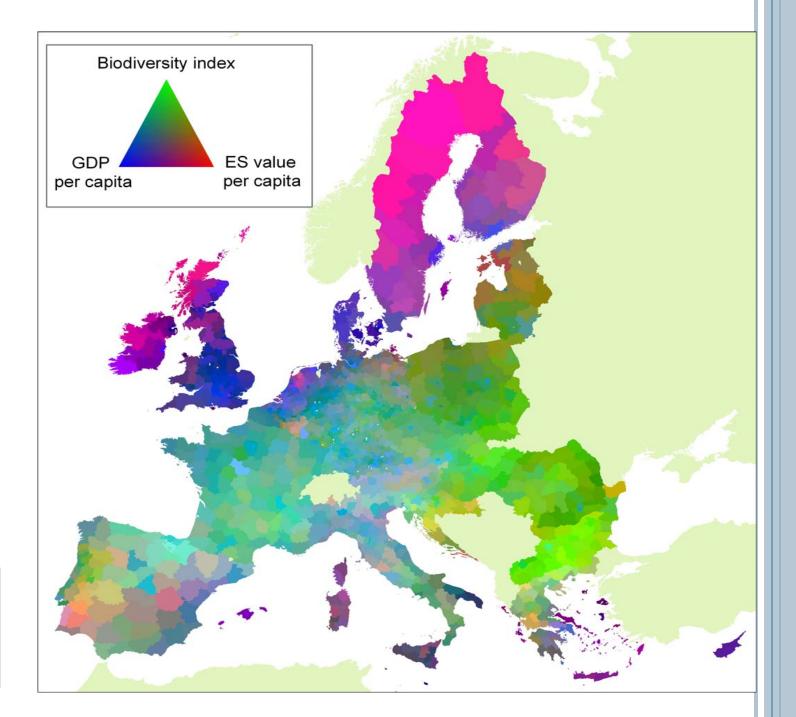

• Key Messages:

Depending on the region and type of EGS, better managed biodiversity and forest ecosystems can:

1. Mitigate negative CC impacts

2.Help to enhance local livelihoods


MAPPING BIODIVERSITY, EGS AND HUMAN LIVELIHOODS


Identify spatial location of policy priorities, where both biodiversity conservation and poverty alleviation can be achieved efficiently.

> Identify policy priority and efficiency instruments

<u>CONTRIBUTION OF FORESTS, WETLANDS/</u> <u>FRESHWATER AND COASTAL ECOSYSTEM</u> <u>SERVICE VALUES TO EUROPEAN COUNTRIES'</u>

ECOSYSTEM RESULTS: SPATIAL COINCIDENCE OF AND GDP \ BIODIVERSITY VALUES

• Key Messages:

1. Highest values of biodiversity and ES value over GDP are concentrated in low-income economies in Europe.

2.Conservation activities have a large potential to improve the local economies and livelihoods through:

- Creating employment opportunities,
- Sustaining the utilization of EGS.

<u>ACKNOWLEDGEMENTS</u>

o Research Team:

 Paulo A.L.D. Nunes, Silvia Silvestri, Aline Chiabai, Andrea Ghermandi, Francesco Bosello

• International Institutions:

- PIK (Germany), IEEP (UK/Belgium), GHK (UK), Ecologic (Germany), World Bank
- Financial Support:
 - European Investment Bank
 - Research grants from DG Environment at European Commission

THANK YOU FOR YOUR ATTENTION!

References:

Ding et al. (2010) "A Hybrid Approach to the Valuation of Climate Change Effects on Ecosystem Services: Evidence from the European Forests" FEEM Working Paper No. 2010.050

Ding H. and P.A.L.D. Nunes. (2011) "Modeling the Links between Biodiversity, Ecosystem Services and Human Wellbeing in the Context of Climate Change: Results of an Econometric Exercises to the European Forests", the 17th annual EAERE conference, Rome – Italy, 29 June - 2 July, 2011 Ding et al (2010) "Assessing the Impacts of Biodiversity and Ecosystem Service in Response to Climate Change in Europe: Results from Partial-General Equilibrium Valuation Model", the Fourth World Congress of Environmental and Resource Economists, Montreal - Canada, 28 June - 2 July, 2010

Contact information:

Helen Ding, Ph.D. Email: <u>hongyu.ding@unipd.it;</u> <u>helending0623@gmail.com</u> Tel: +39.049.827.2743; Fax: +39.049.827.2772