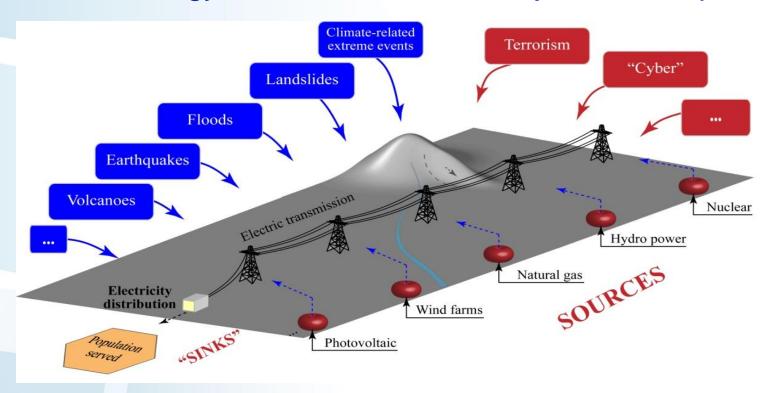
Risk governance of critical energy infrastructure: benefits of a multi-risk approach


Nadejda Komendantova

Ninth International Forum on Energy for Sustainable Development

Kiev, 12-15 November, 2018

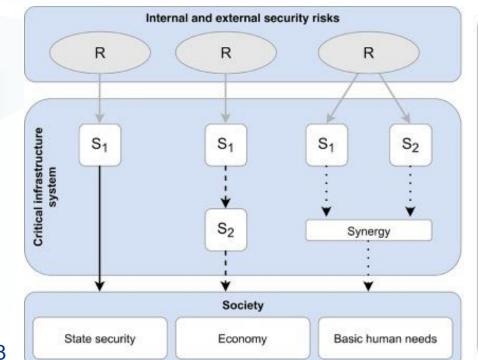
Critical energy infrastructure is a subject to multiple risks

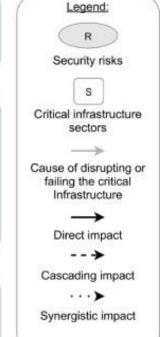
Source: Garcia, 2016

Grids are already subject to impacts of natural hazards such as extreme weather and space events, earthquakes, cyclones, storms and heat waves

Impacts affect physical integrity of electricity transmission grids and decrease transmission capacity

Some examples

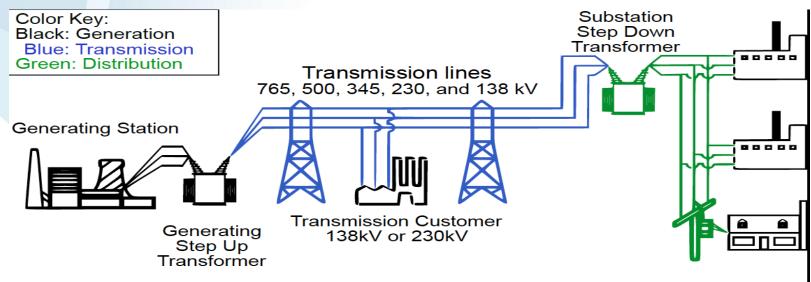

	Earthquake	Space weather	Flood
Damage types	Structural damage due to inertial loading Foundation/ground failure	Damage to transmission and generation equipment from GICs Potential for system-wide impact	Damage to transmission tower foundations due to erosion and/or landslides Moisture and dirt
Contributing factors	Soil liquefaction No warning time	Early warning possible	Early warning possible
Most vulnerable equipment	Heavy equipment (e.g. generators, LPTs) Ceramic parts (e.g. bushings, bus bars) or equipment (e.g. transformers)	Equipment vulnerable to direct current (e.g. transformers) Equipment protected from DC excitation (tripping)	Transmission towers Substation equipment
Recovery time is driven by	Number of items in need of repair or replacement Access to conduct repairs	System-wide impact Delayed effects	Floodwaters recession (access) Number of items in need of repair or replacement
Recovery time range	A few hours to months; most commonly, 1 to 4 days	Power to areas serviced by equipment which has only tripped offline restored within less than 24 hours after the end of the storm Repairs of damaged equipment may take several months	Less than 24 hours to 3 weeks Longer recovery times (up to 5 weeks) with hurricane and/or storm damage



Source: JRC, 2017

Cascading impacts on other infrastructure

	Earthquake	Space weather	Flood
Transportation	Structural damage to ports, airports, bridges, roads and railroad tracks. Debris may block road and rail transportation. Tsunamis may damage port infrastructure.	GNSS unavailability and/or positioning errors (navigation). Radiation risk to avionics. Minor disruption to road and railway transportation.	Flooding of roads and railway tracks. Obstruction of roads due to debris left by floods. Traffic congestion associated with evacuation may delay preventive shut down.
Communications	Structural damage to cell towers and two-way radio repeaters. Cell phone network congestion.	HF radio communications blackout. Satellite communications affected. Cellular network base stations and two-way radio repeaters could experience increased static at dawn and dusk.	Inundation of telecommunications systems facilities and assets.


Source: Rehak et al., 2018

Risk governance for critical energy infrastructure means

Various ways in which stakeholders:

- Policy-makers
- Practitioners
- Infrastructure operators
- Insurance companies
- Researchers
- General public

manage their common risk issues

Risk governance

- Risk assessment should use a consistent set of scenarios
- Risk management efforts should be integrated to maximize efficiency
- Building resilience into power grid to enable to function under disaster conditions and recover quickly
- Spare items should be stockpiled to expedite the repair or replacement of key assets and equipment
- TSOs/DSOs should develop, implement and exercise outage management plans
- Interoperability among neighboring TSOs/DSOs, and between TSOs/DSOs and emergency management organizations should be ensured

Source: JRC, 2017

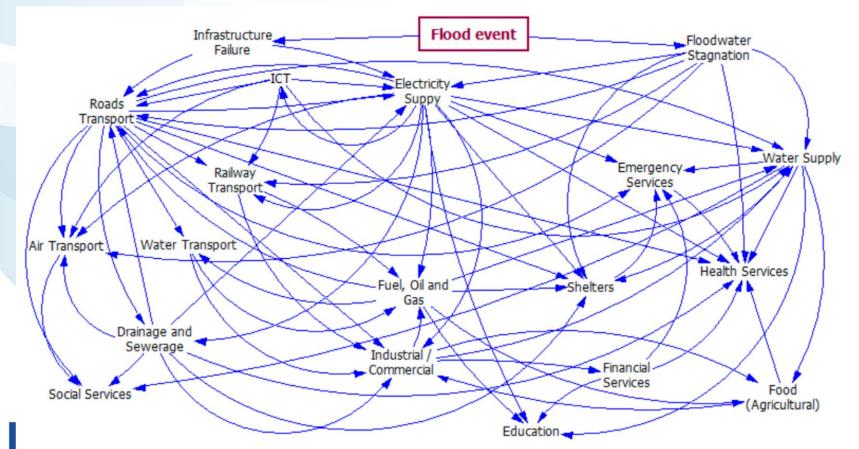
Risk governance not only for risk mitigation but also for risk management

Component	Repair strategy	Repair time
Transmission Tower	Replacement	10 days
Transmission Tower	Erect temporary tower	1-2 days
	Inspect, reset and re-energize	14-20 hours
	Refill oil, onsite	2 days
Large Dawer Transformer	Minor repair, onsite	1-2 weeks
Large Power Transformer	Change windings, onsite	3 months
	Replace (no existing spare)	1 year or more
	Replace with spare	5 days

Source: JRC, 2017

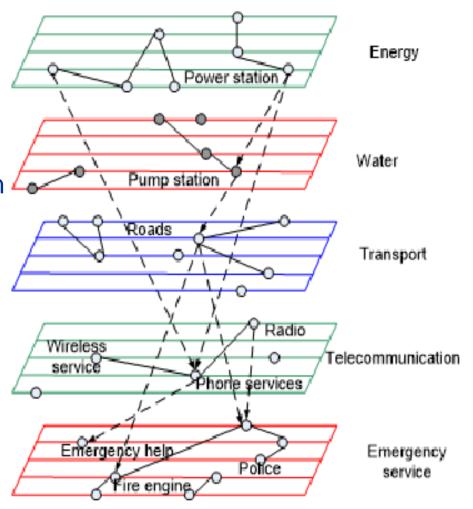
Today

- Frequent prioritization of risks which can be significantly reduced and not necessarily risks with highest impacts
- Absence of systematic consideration of cascades and associated impacts


Benefits of multi-risk approach

- Multi-risk approach comparing and ranking of different risks, holistic view of interactions and conflicts of risks
- Improvement of spatial planning, emergency management and multi-risk governance
- Cost reduction, improvements in efficiency of risk mitigation and management measures and better identification of actions priorities

Single risk centred regulation and institutional frameworks


- lack of integrated practices for risk management (that could support the implementation of a multi-risk approach)
- domino effects usually not included in risk zoning and urban planning

Different goals and priorities of the agencies in charge of hazard management

- priority identification is single-risk centred and decisions are based on the risks that could be most reduced and not necessarily the highest assessed risks
- resources and capacities focused on hazards considered as major and primary (e.g., earthquakes) with induced effects (e.g. tsunami) being secondary

Source: Kirov et al., 2015

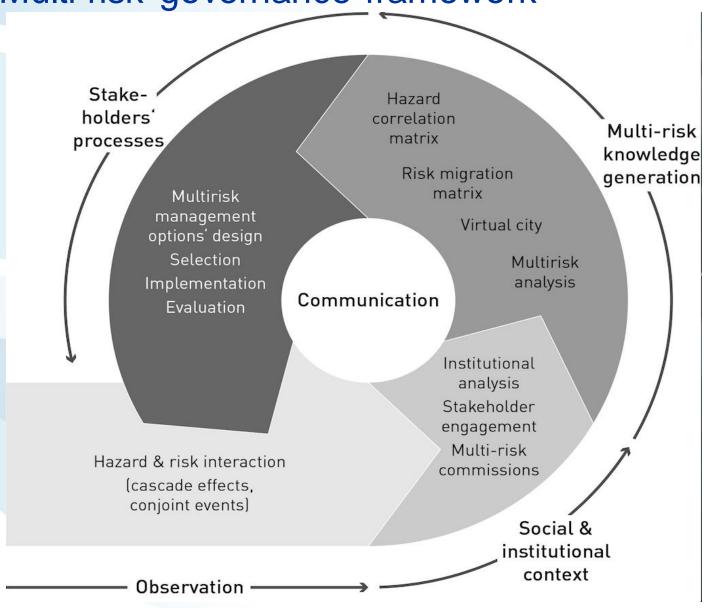
Unsatisfactory public private partnership

- lack of communication between public and private actors (especially between industrial and natural risk sector)
- contradictory results of risk assessment

But

 Multi-risk governance demands a higher degree of cooperation between the public and private sector in order to understand and better manage unexpected events and their consequences

Lack of interagency communication


- Cooperation and communication difficult for authorities acting at different levels
- Lack of harmonisation of the practices and decision making processes across hazards

Recommendation

 multi-risk commissions acting as boundary organisations would improve inter-agency cooperation, communication, or create opportunities for collaboration at the local level

Multi-risk governance framework

The framework foresees the following four phases:

- Observation of hazard and risk interactions, with a focus on the identification of cascades and associated effects;
- Analysis of the social and institutional context, including stakeholder engagement and the creation of forums/hubs to discuss, make decisions and set priorities for actions regarding multi-risk issues;
- Generation of multi-risk knowledge, including the use of different methods and tools such as multi-risk assessment, hazard correlation matrix and risk migration matrix, etc. in order to provide a preliminary scientific background for the following phase of multi-risk knowledge coproduction and decision-making;
- Stakeholder process, aimed at designing and selecting multi-risk management/reduction options; implementing the chosen options, and evaluating them.

Conclusion

- Multi-risk assessment have been developed in the past decade, the same is not true for multi-risk governance
- New multi-risk science can considerably improve planning and emergency management, it is still not yet clear how it can drive governance innovation in risk decision-making, legislation and policy
- Science-policy divide is apparent and needs to be addressed to mainstream multi-risk approaches in national and local risk policies

Contact Information Nadejda Komendantova komendan@iiasa.ac.at

