Economic and Social Council Distr.: General 30 March 2020 Original: English Informal document GRPE-81-16 81st GRPE, 9-11 June 2020 Agenda item 3(c) ## **Economic Commission for Europe** **Inland Transport Committee** World Forum for Harmonization of Vehicle Regulations Working Party on Pollution and Energy **Eighty-first session** Geneva, 9-12 June 2020 Item 3(c) of the provisional agenda **Light vehicles:** Worldwide harmonized Real Driving Emissions test procedure Proposal for a new UN Regulation on uniform provisions concerning the approval of light duty passenger and commercial vehicles with regards to real driving emissions (RDE) Submitted by the experts of the European Union and Japan* The text reproduced below was prepared by the experts from the European Commission and Japan and discussed with the Informal Working Group on Global Real Driving Emissions (IWG on Global RDE). 1 ^{*} In accordance with the programme of work of the Inland Transport Committee for 2020 as outlined in proposed programme budget for 2020 (A/74/6 (part V sect. 20) para 20.37), the World Forum will develop, harmonize and update UN Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate. # Proposal for a new UN Regulation on uniform provisions concerning the approval of light duty passenger and commercial vehicles with regards to real driving emissions (RDE) ## Contents | 1. | Scope and application. | |---------|--| | 2. | Abbreviations | | 3. | Definitions | | 4. | Application for Approval | | 5. | Approval | | 6. | General requirements | | 7. | Performance requirements for instrumentation | | 8. | Test conditions | | 9. | Test procedure | | 10. | Test data analysis | | 11. | Modifications and extensions to Type Approval | | 12. | Conformity of Production | | 13. | Penalties for non-conformity of production | | 14. | Production definitively discontinued | | 15. | Transitional provisions | | 16. | Names and Addresses of Technical Services | | Annexes | | | 1 | Engine and vehicle characteristics and information concerning the conduct of tests | | 2 | Communication | | 3 | Arrangement of the Approval Mark | | 4 | Test procedure for vehicle emissions testing with a portable emissions measurement system (PEMS) | | 5 | Specifications and calibration of PEMS components and signals | | 6 | Validation of PEMS and non-traceable exhaust mass flow rate | | 7 | Determination of instantaneous emissions | | 8 | Assessment of overall trip dynamics validity using the moving averaging window method | | 9 | Assessment of excess or absence of trip dynamics | | 10 | Procedure to determine the cumulative positive elevation gain of a PEMS trip | | 11 | Calculation of the final RDE emissions results | | 12 | Manufacturer's RDE certificate of compliance | ## 1. Scope and application This Regulation aims at providing a worldwide harmonized method to determine the levels of Real Driving Emissions (RDE) of gaseous compounds and particles from light-duty vehicles. This Regulation applies to the type approval of vehicles of categories M1 with a reference mass not exceeding 2,610 kg and vehicles of categories M2 and N1 with a reference mass not exceeding 2,610 kg and a technical permissible maximum laden mass not exceeding 3,500 kg with regard to their Real Driving Emissions. At the manufacturer's request, type approval granted under this Regulation may be extended from vehicles mentioned above to vehicles of categories M1 with a reference mass not exceeding 2,840 kg and vehicles of categories M2 and N1 with a reference mass not exceeding 2,840 kg and a technical permissible maximum laden mass not exceeding 3,500 kg and which meet the conditions laid down in this Regulation. Pure Electric Vehicles and Fuel Cell Vehicles are out of the scope of this Regulation. #### 2. Abbreviations Abbreviations refer generically to both the singular and the plural forms of abbreviated terms. | CLD | — | ChemiLuminescence Detector | |---------|---|--| | DCT | — | Dual Clutch Transmission | | ECU | _ | Engine Control Unit | | EFM | _ | Exhaust mass Flow Meter | | FID | _ | Flame Ionisation Detector | | FS | _ | full scale | | GNSS | _ | Global Navigation Satellite System | | HCLD | _ | Heated ChemiLuminescence Detector | | HEV | _ | Hybrid Electric Vehicle | | LPG | _ | Liquid Petroleum Gas | | NDIR | _ | Non-Dispersive InfraRead analyser | | NDUV | _ | Non-Dispersive UltraViolet analyser | | NEDC | _ | New European Driving Cycle | | NG | _ | Natural Gas | | NMC | _ | Non-Methane Cutter | | NMC-FID | _ | Non-Methane Cutter in combination with a Flame-Ionisation Detector | | OBD | _ | On-Board Diagnostics | | PEMS | _ | Portable Emissions Measurement System | | PHEV | _ | Plug-in Hybrid Electric Vehicle | | RPA | _ | Relative Positive Acceleration | | SCR | | Selective Catalytic Reduction | | SEE | | Standard Error of Estimate | | THC | | Total HydroCarbons | | VIN | _ | Vehicle Identification Number | | | | l l | | WLTC | — | Worldwide harmonized Light vehicles Test
Cycle | |-------------|---|---| | WWH-
OBD | | WorldWide Harmonized On-Board
Diagnostics | #### 3. Definitions For the purposes of this Regulation, the following definitions shall apply: - 3.1. "Vehicle type with regard to Real Driving Emissions" means a group of vehicles which do not differ with respect to the criteria constituting a "PEMS test family" as defined in point 6.3.1. - 3.2. Test equipment - 3.2.1. "Accuracy" means the difference between a measured value and a reference value, traceable to a national or international standard and describes the correctness of a result (Figure 1). - 3.2.2. "Adapter" means a pipe attachment that connects the exhaust tailpipe of the tested vehicle to the exhaust mass flow meter. - 3.2.3. "Analyser" means any measurement device that is not part of the vehicle but installed to determine the concentration or the amount of gaseous or particle pollutants. - 3.2.4. "Calibration" means the process of setting a measurement system's response so that its output agrees with a range of reference signals. - 3.2.5. "Calibration gas" means a gas mixture used to calibrate gas analysers. - 3.2.6. "Delay time" means the difference in time between the change of the component to be measured at the reference point and a system response of 10 per cent of the final reading (t₁₀) with the sampling probe being defined as the reference point. - 3.2.7. "Full scale" means the full range of an analyser, flow-measuring instrument or sensor as specified by the equipment manufacturer or the highest range used for the specific test. - 3.2.8. "Hydrocarbon response factor" of a particular hydrocarbon species means the ratio between the reading of a FID and the concentration of the hydrocarbon species under consideration in the reference gas cylinder, expressed as ppmC1. - 3.2.9. "Major maintenance" means the adjustment, repair or replacement of a component or module that could affect the accuracy of a measurement. - 3.2.10. "Noise" means two times the root mean square of ten standard deviations, each calculated from the zero responses measured at a constant frequency which is a multiple of 1.0 Hz during a period of 30 seconds. - 3.2.11. "Non-methane hydrocarbons" (NMHC) means the Total Hydrocarbons (THC) minus the methane (CH4) contribution. - 3.2.12. "Precision" means the degree to which repeated measurements under unchanged conditions show the same results (Figure 1). - 3.2.13. "Reading" means the numerical value displayed by an analyser, flow-measuring instrument, sensor or any other measurement devise applied in the context of vehicle emission measurements. - 3.2.14. "Reference value" means a value traceable to a national or international standard (Figure 1). - 3.2.15. "Response time" (t₉₀) means the difference in time between the change of the component to be measured at the reference point and a system response of 90 per cent of the final reading (t₉₀) with the sampling probe being defined as the reference point, whereby the change of the measured component is at least 60 per cent full scale (FS) and takes place in less than 0.1 second. The system response time consists of the delay time to the system and of the rise time of the system - 3.2.16. "Rise time" means the difference in time between the 10 per cent and 90 per cent response of the final reading $(t_{10} \text{ to } t_{90})$ - 3.2.17. "Sensor" means any measurement device that is not part of the vehicle itself but installed to determine parameters other than the concentration of gaseous and particle pollutants and the exhaust mass flow. - 3.2.18. "Set point" means the target value a control system aims to reach. - 3.2.19. "Span" means to adjust an instrument so that it gives a proper response to a calibration standard that represents between 75 per cent and 100 per cent of the maximum value in the instrument range or expected range of use. - 3.2.20. "Span response" means the mean response to a span signal over a time interval of at least 30 seconds. - 3.2.21. "Span response drift" means the difference between the mean response to a span signal and the actual span signal that is measured at a defined time period after an analyser, flow-measuring instrument or sensor was accurately spanned. - 3.2.22. "Total hydrocarbons" (THC) means the sum of all volatile compounds measurable by a flame ionization detector (FID). - 3.2.23. "*Traceable*" means the ability to relate a measurement or reading through an unbroken chain of comparisons to a national or international standard. - 3.2.24. "Transformation time" means the time difference between a change of concentration or flow (t₀) at the reference point and a system response of 50 per cent of the final reading
(t₅₀). - 3.2.25. "Type of analyser", also referred to as "analyser type" means a group of analysers produced by the same manufacturer that apply an identical principle to determine the concentration of one specific gaseous component or the number of particles. - 3.2.26. "Type of exhaust mass flow meter" means a group of exhaust mass flow meters produced by the same manufacturer that share a similar tube inner diameter and function on an identical principle to determine the mass flow rate of the exhaust gas. - 3.2.27. "Verification" means the process of evaluating whether the measured or calculated output of an analyser, flow-measuring instrument, sensor or signal or method agrees with a reference signal or value within one or more predetermined thresholds for acceptance. - 3.2.28. "Zero" means the calibration of an analyser, flow-measuring instrument or sensor so that it gives an accurate response to a zero signal. - 3.2.29. "Zero gas" means a gas containing no analyte, which is used to set a zero response on an analyser. - 3.2.30. "Zero response" means the mean response to a zero signal over a time interval of at least 30 seconds. - 3.2.31. "Zero response drift" means the difference between the mean response to a zero signal and the actual zero signal that is measured over a defined time period after an analyser, flow-measuring instrument or sensor has been accurately zero calibrated. Figure 2 Definition of delay, rise, transformation and response times - 3.3. Vehicle characteristics and driver - 3.3.1. "Actual mass of the vehicle" means the mass in running order plus the mass of the fitted optional equipment to an individual vehicle. - 3.3.2. "Auxiliary devices" means energy consuming, converting, storing or supplying non-peripheral devices or systems which are installed in the vehicle for purposes other than the propulsion of the vehicle and are therefore not considered to be part of the powertrain. - 3.3.3. "Mass in running order" means the mass of the vehicle, with its fuel tank(s) filled to at least 90 per cent of its or their capacity/capacities, including the mass of the driver, fuel and liquids, fitted with the standard equipment in accordance with the manufacturer's specifications and, when they are fitted, the mass of the bodywork, the cabin, the coupling and the spare wheel(s) as well as the tools. - 3.3.4. "Maximum Permissible Test mass of the vehicle" means the sum of: - the actual mass of the vehicle; - 90 per cent of the difference between the technically permissible maximum laden mass and the actual mass of the vehicle (Figure 3). - 3.3.5. "Odometer" means an instrument indicating to the driver the total distance driven by the vehicle since its production. - 3.3.6. "Optional equipment" means all the features not included in the standard equipment which are fitted to a vehicle under the responsibility of the manufacturer, and that can be ordered by the customer. - 3.3.7. "Power-to-test mass-ratio" corresponds to the ratio of the rated engine power of the internal combustion engine over the test mass. - 3.3.8. "*Power-to-mass-ratio*" is the ratio of rated power to the mass in running order. - 3.3.9. "Rated engine power (P_{rated}) " means maximum net power of the engine or motor in kW as per the requirements of UN Regulation No. 85. - 3.3.10. "Technically permissible maximum laden mass" means the maximum mass allocated to a vehicle on the basis of its construction features and its design performances. - 3.3.11. "Vehicle OBD information" means information relating to an on-board diagnostic system for any electronic system on the vehicle Figure 3 Mass definitions - (1) means the mass of the vehicle, with its fuel tank(s) filled to at least 90 per cent of its or their capacity/capacities, including the mass of the driver, fuel and liquids, fitted with the **standard equipment** in accordance with the manufacturer's specifications and, when they are fitted, the mass of the bodywork, the cabin, the coupling and the spare wheel(s) as well as the tools. - (2) means all the features not included in the standard equipment which are fitted to a vehicle under the responsibility of the manufacturer, and that can be ordered by the customer. - 3.4. Pure electric, pure ICE, hybrid electric, fuel cell and alternatively-fuelled vehicles - 3.4.1. *"Flex fuel vehicle"* means a vehicle with one fuel storage system that can run on different mixtures of two or more fuels. - 3.4.2. "Mono-fuel vehicle" means a vehicle that is designed to run primarily on one type of fuel. - 3.4.3. "Not off-vehicle charging hybrid electric vehicle" (NOVC-HEV) means a hybrid electric vehicle that cannot be charged from an external source. - 3.4.4. "Off-vehicle charging hybrid electric vehicle" (OVC-HEV) means a hybrid electric vehicle that can be charged from an external source. - 3.5. Calculations - 3.5.1. "Coefficient of determination" (r^2) means: $$r^{2} = 1 - \frac{\sum_{i=1}^{n} (\{y_{i} - a_{0} - (a_{1} \times x_{i})\}\}^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$ where: a_0 is the axis intercept of the linear regression line a_1 is the slope of the linear regression line x_i is the measured reference value y_i is the measured value of the parameter to be verified \overline{y} is the mean value of the parameter to be verified *n* is the number of values 3.5.2. "Cross-correlation coefficient" (r) means: $$r = \frac{\sum_{i=1}^{n-1} (x_i - \overline{x}) \times (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n-1} (x_i - \overline{x})^2} \times \sqrt{\sum_{i=1}^{n-1} (y_i - \overline{y})^2}}$$ where: x_i is the measured reference value y_i is the measured value of the parameter to be verified \overline{x} is the mean reference value \overline{y} is the mean value of the parameter to be verified n is the number of values 3.5.3. "Root mean square" (x_{rms}) means the square root of the arithmetic mean of the squares of values and defined as: $$x_{rms} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$ where: x_i is the measured or calculated value n is the number of values 3.5.4. "Slope" of a linear regression (a_1) means: $$a_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \times (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$ where: x_i is the actual value of the reference parameter y_i is the actual value of the parameter to be verified \overline{x} is the mean value of the reference parameter \overline{y} is the mean value of the parameter to be verified n is the number of values 3.5.5. "Standard error of estimate" (SEE) means: $$SEE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \acute{y})^2}{n-2}}$$ where: \dot{y} is the estimated value of the parameter to be verified y_i is the actual value of the parameter to be verified n is the number of values - 3.6. General - 3.6.1. "Cold start period" means the period from the test start until the point when the vehicle has run for 5 minutes. If the coolant temperature is determined, the cold start period ends once the coolant is at least 70 °C for the first time but no later than 5 minutes after test start. In the case that measuring the coolant temperature is not feasible, on request of the manufacturer and with approval of the approval authority, instead of using the coolant temperature, the engine oil temperature may be used. - 3.6.2. "Criteria emissions" means those emission compounds for which limits are set in regional legislation - 3.6.3. "Deactivated internal combustion engine" means an internal combustion engine for which two-one of the following criteria apply: - the recorded engine speed is < 50 rpm; - or when the engine speed is not recorded, the exhaust mass flow rate is measured at $\leq 3 \text{ kg/h}$; - the measured exhaust mass flow rate drops to < 15% of the typical steady-state exhaust mass flow rate at idling. - 3.6.4. "Engine capacity" means either of the following: - for reciprocating piston engines, the nominal engine swept volume; - for rotary piston (Wankel) engines, double the nominal engine swept volume. - 3.6.5. "Engine control unit" means the electronic unit that controls various actuators to ensure the optimal performance of the engine. - 3.6.6. "Exhaust emissions" means the emission of gaseous, solid and liquid compounds from the tailpipe. - 3.6.7. "Extended factor" means a factor which accounts for the effect of extended ambient temperature or altitude conditions upon criteria emissions - 3.7. Particles The term "particle" is conventionally used for the matter being characterised (measured) in the airborne phase (suspended matter), and the term "particulate" for the deposited matter. - 3.7.1. "Particle number emissions" (PN) means the total number of solid particles emitted from the vehicle exhaust quantified according to the dilution, sampling and measurement methods as specified in this UNR. - 3.8. Procedure - 3.8.1. "Cold start PEMS trip" means a trip with conditioning of the vehicle prior to the test as described in paragraph 8.3.2. - 3.8.2. "Hot start PEMS trip" means a trip without conditioning of the vehicle prior to the test as described in paragraph 8.3.2, but with a warm engine with coolant temperature above 70 °C. In the case that measuring the coolant temperature is not feasible, on request of the manufacturer and with approval of the approval authority, instead of using the coolant temperature, the engine oil temperature may be used. - 3.8.3. "Periodically regenerating system" means an exhaust emissions control device (e.g. catalytic converter, particulate trap) that requires a periodical regeneration - 3.8.4. "Reagent" means any product other than fuel that is stored on-board the vehicle and is provided to the exhaust after-treatment system upon request of the emission control system. - 3.8.5. "Test start" means (Figure 4) whichever occurs first from: - the first activation of the internal combustion engine; - the first movement of the vehicle with speed greater than 1 km/h for OVC-HEVs and NOVC-HEVS. Figure
4 **Test start definition** - 3.8.6. "Test end" means (Figure 5) that the vehicle has completed the trip and whichever occurs last from: - the final deactivation of the internal combustion engine; - the vehicle stops and the speed is lower than or equal to $1\ \text{km/h}$ for OVC-HEVs and NOVC-HEVS finishing the test with deactivated internal combustion engine. Figure 5 **Test end definition** 3.8.7. "Validation of PEMS" means the process of evaluating on a chassis dynamometer the correct installation and functionality within the given accuracy limits of a Portable Emissions Measurement System and exhaust mass flow rate measurements as obtained from one or multiple non-traceable exhaust mass flow meters or as calculated from sensors or ECU signals. ## 4. Application for Approval - 4.1. The application for approval of a vehicle type with regard to the requirements of this Regulation shall be submitted by the vehicle manufacturer or by their authorized representative, who is any natural or legal person who is duly appointed by the manufacturer to represent him before the approval authority and to act on his behalf in matters covered by this Regulation. - 4.1.1. The application referred to in paragraph 4.1. shall be drawn up in accordance with the model of the information document set out in Annex 1 to this Regulation. - 4.2. An appropriate number of vehicles representative of the vehicle type to be approved shall be submitted to the Technical Service responsible for the approval tests. - 4.3. Changes to the make of a system, component or separate technical unit that occur after a type approval shall not automatically invalidate a type approval, unless its original characteristics or technical parameters are changed in such a way that the functionality of the engine or pollution control system is adversely affected. - 4.4. The manufacturer shall confirm compliance with this Regulation by completing the RDE compliance certificate set out in Annex 12. ## 5. Approval - 5.1. If the vehicle type submitted for approval meets all the relevant requirements of paragraphs 6., 7., 8., 9., 10. and 11. of this Regulation, approval of that vehicle type shall be granted. - 5.2. An approval number shall be assigned to each type approved. - 5.2.1. The type approval number shall consist of four sections. Each section shall be separated by the '*' character. - Section 1: The capital letter 'E' followed by the distinguishing number of the Contracting Party which has granted the type approval. - Section 2: The number [of this UN Regulation,] followed by the letter 'R', successively followed by: - (a) Two digits (with leading zeros as applicable) indicating the series of amendments incorporating the technical provisions of the UN Regulation applied to the approval (00 for the UN Regulation in its original form); - (b) A slash (/) and two digits (with leading zeros as applicable) indicating the number of supplements to the series of amendments applied to the approval (00 for the series of amendments in its original form); - Section 3: A four-digit sequential number (with leading zeros as applicable). The sequence shall start from 0001. - Section 4: A two-digit sequential number (with leading zeros if applicable) to denote the extension. The sequence shall start from 00. All digits shall be Arabic digits. 5.2.2. Example of an Approval Number to this Regulation: E11*[XXX]R01/00/02*0123*01 The first extension of the Approval numbered 0123, issued by the United Kingdom to Series of Amendments 01 which is a Level 2 Approval. - 5.2.3. The same Contracting Party shall not assign the same number to another vehicle type. - 5.3. Notice of approval or of extension or refusal of approval of a vehicle type pursuant to this Regulation shall be communicated to the Contracting Parties to the 1958 Agreement which apply this Regulation by means of a form conforming to the model in Annex 1 to this Regulation. - 5.3.1. In the event of amendment to the present text, for example, if new limit values are prescribed, the Contracting Parties to the 1958 Agreement shall be informed which vehicle types already approved comply with the new provisions. - 5.4. There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation, an international approval mark consisting of: - 5.4.1. A circle surrounding the letter "E" followed by the distinguishing number of the country that has granted approval¹. - 5.4.2. The number of this Regulation, followed by the letter "R", a dash and the approval number to the right of the circle described in paragraph 5.4.1. - 5.5. If the vehicle conforms to a vehicle type approved, under one or more other Regulations annexed to the 1958 Agreement, in the country which has granted approval under this Regulation, the symbol prescribed in paragraph 5.4.1. need not be repeated; in such a case, the Regulation, approval numbers and the additional symbols of all the Regulations under which approval has been granted in the country which has granted approval under this Regulation shall be placed in vertical columns to the right of the symbol prescribed in paragraph 5.4.1. The distinguishing numbers of the Contracting Parties to the 1958 Agreement are reproduced in Annex 3 to the Consolidated Resolution on the Construction of Vehicles (R.E.3), document ECE/TRANS/WP.29/78/Rev.3 – Annex 3, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html. - 5.6. The approval mark shall be clearly legible and be indelible. - 5.7. The approval mark shall be placed close to or on the vehicle data plate. - 5.7.1. Annex 3 to this Regulation gives examples of arrangements of the approval mark. ## 6. General requirements #### 6.1. Compliance requirements For vehicle types approved according to this Regulation, the final emissions at any possible RDE test performed in accordance with the requirements of this Regulation, shall be calculated for evaluation with a 3-phase and a 4-phase dataset WLTC. | Requirements for evaluation with 4 Phase WLTC | Requirements for evaluation with 3 Phase WLTC | |---|---| | analysis shall not be higher than any of the limits for the relevant criteria emissions (i.e. NOx and PN) found in Table 1A of paragraph 6.3.10. of the 01 series | For vehicles with a diesel engine the final emissions for the 3-phase analysis shall not be higher than any of the limits for the relevant criteria emissions (i.e. NOx and PN) found in Table 1B of paragraph 6.3.10. of the 01 series of Amendments to UN Regulation No. [XXX] on WLTP. | The final emissions for the 4 phase analysis shall not be higher than any of the emission limits for the emissions (i.e. NOx and PN) found in Table 1A of paragraph 6.3.10. of the 01 series of Amendments to UN Regulation No. [XXX] on WLTP. The final emissions for the 3 phase analysis shall not be higher than any of the emission limits for the relevant criteria emissions (i.e. NOx and PN) found in Table 1B of paragraph 6.3.10. of the 01 series of Amendments to UN Regulation No. [XXX] on WLTP The requirements of emission limits shall be fulfilled for the urban operation and the complete PEMS trip. The RDE tests required by this Regulation provide a presumption of conformity. The presumed conformity may be reassessed by additional RDE tests The manufacturer shall ensure that all vehicles within the PEMS test family are compliant with Level 2, 1A or 1B of the 00 and 01 series of Amendments to-UN Regulation No. [XXX] on WLTP, including conformity of production requirements. The RDE performance shall be demonstrated by performing the necessary tests in the PEMS test family on the road operated over their normal driving patterns, conditions and payloads. The necessary tests shall be representative for vehicles operated on their real driving routes, with their normal load. #### 6.2. Facilitation of PEMS testing A Contracting Party shall ensure that vehicles can be tested with PEMS on public roads in accordance with the procedures under their own national law, while respecting local road traffic legislation and safety requirements. Manufacturers shall ensure that vehicles can be tested with PEMS. This shall include: - (a) constructing the exhaust pipes in order to facilitate sampling of the exhaust, or making available suitable adapters for exhaust pipes for testing by the authorities; - (b) for Contracting Parties applying Regulation 83, 08 Series, in case the exhaust pipe construction does not facilitate sampling of the exhaust, the manufacturer shall also make available to independent parties, adapters for purchase or rent via their spare parts or service tools network (e.g. RMI portal), through authorised dealers or via a contact point on the referred publically accessible website; - (c) providing guidance available online, without the need of registration or login, on how to attach a PEMS system to vehicles approved under this Regulation; - (d) granting access to ECU signals relevant to this Regulation, as mentioned in Table A4/1 of Annex 4; and - (e) making the necessary administrative arrangements. #### 6.3. Selection of vehicles for PEMS testing PEMS tests shall not be required for each 'vehicle type with regard to emissions' as defined in UN Regulation No. [XXX] on WLTP, hereinafter 'vehicle emission type'. Several vehicle emission types may be put together by the vehicle manufacturer to form a 'PEMS test family' in accordance with the
requirements of paragraph 6.3.1., which shall be validated in accordance with the requirements of paragraph 6.4. #### Symbols, parameters and units | N | | Number of vehicle emission types | |------------------|---|---| | NT | _ | Minimum number of vehicle emission types | | PMR _H | | highest power-to-mass-ratio of all vehicles in the PEMS test family | | PMR _L | | lowest power-to-mass-ratio of all vehicles in the PEMS test family | | V_eng_max | | maximum engine volume of all vehicles within the PEMS test family | #### 6.3.1. PEMS test family building A PEMS test family shall comprise finished vehicles of a manufacturer with similar emission characteristics. Vehicle emission types may be included in a PEMS test family only as long as the vehicles within a PEMS test family are identical with respect to the characteristics in all the administrative and technical criteria listed below. #### 6.3.1.1. Administrative criteria - (a) The approval authority issuing the emission type approval in accordance with this Regulation ('authority') - (b) The manufacturer having received the emission type approval in accordance with this Regulation ('manufacturer'). #### 6.3.1.2. Technical criteria - (a) Propulsion type (e.g. ICE, HEV, PHEV) - (b) Type(s) of fuel(s) (e.g. petrol, diesel, LPG, NG, ...). Bi- or flex-fuelled vehicles may be grouped with other vehicles, with which they have one of the fuels in common. - (c) Combustion process (e.g. two stroke, four stroke) - (d) Number of cylinders - (e) Configuration of the cylinder block (e.g. in-line, V, radial, horizontally opposed, ...) - (f) Engine volume The vehicle manufacturer shall specify a value V_eng_max (= maximum engine volume of all vehicles within the PEMS test family). The engine volumes of vehicles in the PEMS test family shall not deviate more than -22 % from V_eng_max if V_eng_max ≥ 1500 ccm and -32 % from V eng max if V eng max < 1500 ccm. - (g) Method of engine fuelling (e.g. indirect or direct or combined injection) - (h) Type of cooling system (e.g. air, water, oil) - (i) Method of aspiration such as naturally aspirated, pressure charged, type of pressure charger (e.g. externally driven, single or multiple turbo, variable geometries ...) - Types and sequence of exhaust after-treatment components (e.g. threeway catalyst, oxidation catalyst, lean NOx trap, SCR, lean NOx catalyst, particulate trap) - (k) Exhaust gas recirculation (with or without, internal/external, cooled/non-cooled, low/high pressure) #### 6.3.2. Alternative PEMS test family definition As an alternative to the provisions of paragraph 6.3.1. the vehicle manufacturer may define a PEMS test family that is identical to a single vehicle emission type or a single WLTP IP-family. In this case, only one vehicle has to be tested from the family in either a hot or a cold test, at the choice of the authority and there is no need to validate the PEMS test family as in paragraph 6.4. - 6.4. <u>validation Validation of a PEMS test family</u> - 6.4.1. General requirements for validating a PEMS test family - 6.4.1.1. The vehicle manufacturer shall present a representative vehicle of the PEMS test family to the authority. The vehicle shall be subject to a PEMS test carried out by a Technical Service to demonstrate compliance of the representative vehicle with the requirements of this Regulation. - 6.4.1.2. The authority <u>may shall</u> select additional vehicles according to the requirements of paragraph 6.4.3. for PEMS testing carried out by a Technical Service to demonstrate compliance of the selected vehicles with the requirements of this Regulation. The technical criteria for selection of an additional vehicle according to paragraph 6.4.2. shall be recorded with the test results. - 6.4.1.3. With agreement of the authority, a PEMS test can also be driven by a different operator witnessed by a Technical Service, provided that at least the tests of the vehicles required by paragraphs 6.4.2.2. and 6.4.2.6. and in total at least 50 per cent of the PEMS tests required by point 6.4.3.7. for validating the PEMS test family are driven by a Technical Service. In such case the Technical Service remains responsible for the proper execution of all PEMS tests pursuant to the requirements of this Regulation. - 6.4.1.4. A PEMS test results of a specific vehicle may be used for validating different PEMS test families under the following conditions: - the vehicles included in all PEMS test families to be validated are approved by a single authority according to this Regulation and this authority agrees to the use of the specific vehicle's PEMS test results for validating different PEMS test families; - each PEMS test family to be validated includes a vehicle emission type, which comprises the specific vehicle. - 6.4.2. For each validation, the applicable responsibilities are considered to be borne by the manufacturer of the vehicles in the respective family, regardless of whether this manufacturer was involved in the PEMS test of the specific vehicle emission type. - 6.4.3. Selection of vehicles for PEMS testing when validating a PEMS test family When selecting vehicles from a PEMS test family, it shall be ensured that the following technical characteristics relevant for criteria emissions are covered by a PEMS test. A particular vehicle selected for testing can be representative for different technical characteristics. For the validation of a PEMS test family vehicles shall be selected for PEMS testing as follows: - 6.4.3.1. For each combination of fuels (e.g. petrol-LPG, petrol-NG, petrol only), on which some vehicles of the PEMS test family can operate, at least one vehicle that can operate on such combination of fuels shall be selected for PEMS testing. - 6.4.3.2. The manufacturer shall specify a value PMR_H (= highest power-to- mass-ratio of all vehicles in the PEMS test family) and a value PMR_L (= lowest power-to- mass-ratio of all vehicles in the PEMS test family). At least one vehicle configuration representative for the specified PMR_H and one vehicle configuration representative for the specified PMR_L of a PEMS test family shall be selected for testing. The power-to- mass ratio of a vehicle shall not deviate by more than 5 per cent from the specified value for PMR_H, or PMR_L for the vehicle to be considered as representative for this value. - 6.4.3.3. At least one vehicle for each transmission type (e.g., manual, automatic, DCT) installed in vehicles of the PEMS test family shall be selected for testing. - 6.4.3.4. At least one vehicle per each configuration of driven axles shall be selected for testing if such vehicles are part of the PEMS test family. - 6.4.3.5. For each engine volume associated with a vehicle in the PEMS test family at least one representative vehicle shall be tested. - 6.4.3.6. At least one vehicle in the PEMS test family shall be tested in hot start testing. - 6.4.3.7. Notwithstanding the provisions in paragraphs 6.4.3.1. to 6.4.3.6., at least the following number of vehicle emission types of a given PEMS test family shall be selected for testing: | Number of vehicle emission
types in a PEMS test family (N) | Minimum number of vehicle
emission types selected for PEMS
cold start testing (NT) | Minimum number of vehicle emission types selected for PEMS hot start testing | |---|--|--| | 1 | 1 | 1 ⁽²⁾ | | From 2 to 4 | 2 | 1 | | from 5 to 7 | 3 | 1 | | from 8 to 10 | 4 | 1 | | from 11 to 49 | $NT = 3 + 0.1 \times N^{(1)}$ | 2 | | more than 49 | $NT = 0.15 \times N^{(1)}$ | 3 | ⁽¹⁾ NT shall be rounded to the next higher integer number - 6.5. Reporting for type approval - 6.5.1. The vehicle manufacturer shall provide a full description of the PEMS test family, which shall include the technical criteria described in paragraph 6.3.1.2. and submit it to the authority. - 6.5.2. The manufacturer attributes a unique identification number of the format *PF-CP-nnnnnnnnn...-WMI* to the PEMS test family and communicates it to the authority: where: PF denotes that this is a PEMS test Family CP is the Contracting Party issuing the type approval according to this Regulation² nnnnnnnn... is a string with a maximum of twenty five characters, restricted to using the characters 0-9, A-Z and the underscore character '_'. WMI (world manufacturer identifier) is a code that identifies the manufacturer in a unique manner defined in ISO 3780:2009. It is the responsibility of the owner of the WMI to ensure that the combination of the string *nnnnnnnnn*... and the WMI is unique to the family and that the string *nnnnnnnn*... is unique within that WMI to the approval tests performed to obtain the approval. 6.5.3. [The authority and the vehicle manufacturer shall maintain a list of vehicle emission types as defined in the UN Regulation No. [XXX] on WLTP being part of a given PEMS test family on the basis of emission type approval numbers or equivalent information. For each emission type all corresponding combinations of vehicle type approval numbers or equivalent information, types, variants and versions shall be provided as well. ⁽²⁾ When there is only one vehicle emission type in a PEMS test family, the type approval authority shall decide whether the vehicle shall be tested in hot or cold start. ² The distinguishing numbers of the Contracting Parties to the 1958 Agreement are reproduced in Annex 3 to the Consolidated Resolution on the Construction of Vehicles (R.E.3), document ECE/TRANS/WP.29/78/Rev.3 – Annex 3, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html. 6.5.4. The authority and the vehicle manufacturer shall maintain a list of vehicle emission types selected for PEMS testing in order
validate a PEMS test family in accordance with paragraph 6.4., which shall provide the necessary information on how the selection criteria of paragraph 6.4.3. are covered. This list shall also indicate whether the provisions of paragraph 6.4.1.3. were applied for a particular PEMS test.] #### 6.6. Rounding requirements: Rounding of data in the <u>data</u> exchange file, created according to Annex 7, paragraph 10., is not permitted. In the <u>evaluation-pre-processing</u> [files], the data may be rounded to the same order of magnitude of the accuracy of the measurement of a respective parameter. The <u>The intermediate and final emission test results</u>, as calculated in Annex 11, shall be rounded in one step to the number of places to the right of the decimal point indicated by the applicable emission standard plus one additional significant figure. <u>Intermediate Preceding</u> steps in the calculations shall not be rounded. ## 7. Performance requirements for instrumentation The instrumentation used for RDE tests shall comply with the requirements found in Annex 5. #### 8. Test conditions Only an RDE test fulfilling the requirements of this Section shall be accepted as valid. Tests performed outside the test conditions specified in this Section shall be considered as invalid. #### 8.1. Ambient conditions The test shall be conducted under the ambient conditions laid down in this section. The ambient conditions become 'extended' when at least one of the temperature or altitude conditions is extended. The extended factor for extended conditions as defined in paragraph 10.5. shall only be applied once even if both conditions are extended in the same time period. Notwithstanding the opening paragraph of this section, if a part of the test or the entire test is performed outside of extended conditions, the test shall be invalid only when final emissions as calculated in Annex 11, are above the applicable emission limits. The conditions are as follows: | Moderate altitude conditions | Altitude lower or equal to 700 meters above sea level. | |---------------------------------|--| | Extended altitude conditions | Altitude higher than 700 meters above sea level and lower or equal to 1300 meters above sea level. | | Moderate temperature conditions | Greater than or equal to 273.15 K (0 °C) and lower than or equal to 308.15 K (35 °C). | | Extended temperature conditions | Greater than or equal to 266.15 K (-7 °C) and lower than 273.15 K (0 °C) or greater than 308.15 K (35 °C) and lower than or equal to 311.15 K (38 °C). | #### 8.2. Dynamic conditions of trip The dynamic conditions encompass the effect of road grade, head wind and driving dynamics (accelerations, decelerations) and auxiliary systems upon energy consumption and emissions of the test vehicle. The validity of the trip for the dynamic conditions shall be checked after the test is completed, using the recorded data. This verification shall be conducted in 2 steps: STEP Ai: The excess or insufficiency of driving dynamics during the trip shall be checked using the methods described in Annex 9. STEP Bii: If the trip is valid following the verifications in accordance with STEP Ai, the methods for verifying the validity of the trip as laid down in Annexes 8 and 10 shall be applied. #### 8.3. Vehicle condition and operation #### 8.3.1. Vehicle condition The vehicle, including the emission related components, shall be in good mechanical condition and shall have been run in and driven at least 3,000 km before the test. The mileage and the age of the vehicle used for RDE testing shall be recorded. All vehicles, and in particular OVC-HEVs vehicles may be tested in any selectable mode, including battery charge mode. On the basis of technical evidence provided by the manufacturer and with the agreement of the responsible authority, the dedicated driver-selectable modes for very special limited purposes shall not be considered (e.g. maintenance mode, race driving, crawler mode). All remaining modes used for forward driving shall be considered and the criteria emissions limits shall be fulfilled in all these modes. Modifications that affect the vehicle aerodynamics are not permitted, with the exception of the PEMS installation. The tyre types and pressure shall be according to the vehicle's manufacturer recommendations. The tyre pressure shall be checked prior to the pre-conditioning and adjusted to the recommended values if needed. Driving the vehicle with snow chains is not permitted. Vehicles should not be tested with an empty starter battery. In case the vehicle has problems starting, the battery shall be replaced following the recommendations of the vehicle's manufacturer. The vehicle's test mass comprises of the driver, a witness of the test (if applicable), the test equipment, including the mounting and the power supply devices and any artificial payload. It shall be between the actual mass of the vehicle and the maximum permissible test mass of the vehicle at the beginning of the test and shall not increase during the test. The test vehicles shall not be driven with the intention to generate a passed or failed test due to extreme driving that do not represent normal conditions of use. If necessary, verification of normal driving may be based on expert judgement made by or on behalf of the granting type approval authority through cross-correlation on several signals, which may include exhaust flow rate, exhaust temperature, CO₂, O₂ etc. in combination with vehicle speed, acceleration and GNSS data and potentially further vehicle data parameters like engine speed, gear, accelerator pedal position etc. #### 8.3.2. Vehicle conditioning for cold engine-start testing Before RDE testing, the vehicle shall be preconditioned in the following way: The vehicle shall be driven, preferably on the same route as the planned RDE testing or for at least 10 min per type of operation (e.g. urban, rural, motorway) or 30 minutes with a minimum average velocity of 30 km/h. The validation test in the laboratory, as in paragraph 8.4., also counts as preconditioning. The vehicle shall subsequently be parked with doors and bonnet closed and kept in engine-off status within moderate or extended altitude and temperatures, in accordance with paragraph 8.1., for between 6 and 72 hours. Exposure to extreme atmospheric conditions (such as heavy snowfall, storm, hail) and excessive amounts of dust or smoke should be avoided. Before the test start, the vehicle and equipment shall be checked for damages and the presence of warning signals that may suggest malfunctioning. In the case of a malfunction the source of the malfunctioning shall be identified and corrected or the vehicle shall be rejected. #### 8.3.3. Auxiliary devices The air conditioning system or other auxiliary devices shall be operated in a way which corresponds to their typically intended use during real driving on the road. Any use shall be documented. The vehicle windows shall be closed when the air conditioning or heating are used. - 8.3.4. Vehicles equipped with periodically regenerating systems - 8.3.4.1. All results shall be corrected with the K_i factors or with the K_i offsets developed by the procedures in Appendix 1 to Annex B6 of the UN Regulation No. [XXX] on WLTP for type-approval of a vehicle type with a periodically regenerating system. The K_i factor or the K_i offset shall be applied to the final results after evaluation in accordance with Annex 11. - 8.3.4.2. If the final emissions as calculated in Annex 11 are above the applicable emission limits, then the occurrence of regeneration shall be verified. The verification of a regeneration may be based on expert judgement through cross-correlation of several of the following signals, which may include exhaust temperature, PN, CO₂, O₂ measurements in combination with vehicle speed and acceleration. If the vehicle has a regeneration recognition feature, it shall be used to determine the occurrence of regeneration. The manufacturer may advise how to recognise whether regeneration has taken place in case such a signal is not available. - 8.3.4.3. If regeneration occurred during the test, the final emission result without the application of either the K_i -factor or the K_i offset shall be checked against applicable emission limits. If the final emissions are above the emission limits, then the test shall be invalid and repeated once. The completion of the regeneration and stabilisation, through approximately 1 hour of driving, shall be done prior to the start of the second test. The second test is considered valid even if regeneration occurs during it. Even if the final emission results fall below the applicable emission limits, the occurrence of regeneration may be verified as in paragraph 8.3.4.2. If the presence of regeneration can be proved and with the agreement of the Type Approval Authority, the final results shall be calculated without the application of either the K_i factor or the Ki offset. #### 8.4. PEMS operational requirements The trip shall be selected in such a way that the testing is uninterrupted and the data continuously recorded to reach the minimum test duration defined in paragraph 9.3.3. Electrical power shall be supplied to the PEMS by an external power supply unit and not from a source that draws its energy either directly or indirectly from the engine of the test vehicle. The installation of the PEMS equipment shall be done in a way to minimise the influence on the vehicle's emissions or performance or both to the greatest extent possible. Care should be exercised to minimise the mass of the installed equipment and potential aerodynamic modifications of the test vehicle. During type approval, a validation test in the laboratory shall be performed before running an RDE test according to
Annex 6. For OVC-HEV the applicable WLTP test shall be conducted in the Charge Sustaining modevehicle operation. #### 8.5. Lubricating oil, fuel and reagent For the test performed during type approval, the fuel used for RDE testing shall be either the reference fuel defined in Annex B3 of the UN Regulation No. [XXX] on WLTP or within the specifications issued by the manufacturer for vehicle operation by the customer. The reagent (where applicable) and lubricant used shall be within the specifications recommended or issued by the manufacturer. ## 9. Test procedure #### 9.1. Types of speed bins **Urban speed bin** (for both 3 and 4 phase analysis) is characterised by vehicle speeds lower than or equal to 60 km/h. **Rural speed bin** (for 4 phase analysis) is characterised by vehicle speeds higher than 60 km/h and lower than or equal to 90 km/h. For those vehicles that are equipped with a device permanently limiting vehicle speed to 90 km/h, rural speed bin is characterised by vehicle speed higher than 60 km/h and lower than or equal to 80 km/h. **Motorway speed bin** (for 4 phase analysis) is characterised by speeds above 90 km/h. For those vehicles that are equipped with a device permanently limiting vehicle speed to 90 km/h, motorway speed bin is characterised by speed higher than 80 km/h. **Expressway speed bin** (for 3 phase analysis) is characterised by speeds above 60 km/h and up to 100 km/h. #### 9.1.1. Other requirements The average speed (including stops) of the urban speed bin shall be between 15 and 40 km/h. The speed range of the motorway driving shall properly cover a range between 90 and at least 110 km/h. The vehicle's velocity shall be above 100 km/h for at least 5 minutes. For M2 category vehicles that are equipped with a device permanently limiting vehicle speed to 100 km/h, the speed range of the motorway driving shall properly cover a range between 90 and 100 km/h. The vehicle's velocity shall be above 90 km/h for at least 5 minutes. In the case that the local speed limits for the specific vehicle being tested prevent compliance with the requirements of this paragraph, the requirements of the following paragraph shall apply: The speed range of the motorway driving shall properly cover a range between X-10 and X km/h. The vehicle's velocity shall be above x-10 km/h for at least 5 minutes. Where X=10 the local speed limit for the tested vehicle. #### 9.2. Required distance shares of trip speed bins The following is the distribution of the speed bins in an RDE trip that are required for respecting the needs of evaluation for both the 4 phase WLTC and 3 phase WLTC: | Requirements | for | evaluation | with | 4 | Phase | WLTC | |--------------|-----|------------|------|---|-------|------| | | | | | | | | Requirements for evaluation with 3 Phase WLTC The trip shall consist of approximately 34 % per cent urban, 33 % per cent rural and 33 % per cent motorway speed bins. 'Approximately' shall mean the interval of ± 10 per cent points around the stated percentages. The urban speed bin shall however never be less than 29% of the total trip distance. The trip shall consist of approximately 55 % per cent urban and 45 % per cent expressway speed bins. 'Approximately' shall mean the interval of ± 10 per cent points around the stated percentages. The urban speed bin however can be lower than 45% but never be less than 40% of the total trip distance. The shares of urban, rural and motorway speed bins shall be expressed as a percentage of the total trip distance for analysis with 4-Phase WLTC. The shares of urban and expressway speed bins shall be expressed as a percentage of the trip distance with velocity not exceeding 100km/h for analysis with 3-Phase WLTC. The minimum distance of each, urban, rural and motorway or expressway speed bins shall be 16 km. 9.3. RDE test to be performed The RDE performance shall be demonstrated by testing vehicles on the road, operated over their normal driving patterns, conditions and payloads. RDE tests shall be conducted on paved roads (e.g. off-road operation is not permitted). An RDE trip shall be driven in order to prove compliance with the emission requirements against both 3-Phase WLTC and 4-Phase WLTC. 9.3.1. The design of the trip shall be such as to comprise driving that would in principle cover all of the required shares of speed bins in paragraph 9.2 and comply with all other requirements described in paragraphs 9.1.1., 9.3, 4.5.1. and 4.5.2. of Annex 8 and paragraph 4. of Annex 9. In case, that a single RDE trip is not capable of complying with all requirements described in paragraph 9.2., this paragraph, paragraph 4.5.1. and 4.5.2. of Annex 8 and paragraph 4. of Annex 9 simultaneously, then a second RDE trip shall be done. During the second RDE trip, the requirements which were not satisfied in the first RDE trip shall be satisfied. During the second trip, it is not necessary to re evaluate the requirements which were satisfied during the first trip. - 9.3.2. The planned RDE trip shall always start with urban operation followed by rural, then motorway or expressway operation, in accordance with the required shares for speed bins in paragraph 9.2. The urban, rural and motorway/expressway operation shall be run consecutively, but may also include a trip which starts and ends at the same point. Rural operation may be interrupted by short periods of urban speed bin when driving through urban areas. Motorway/expressway operation may be interrupted by short periods of urban or rural speed bins, e.g., when passing toll stations or sections of road work. - 9.3.3. The vehicle speed shall normally not exceed 145 km/h. This maximum speed may be exceeded by a tolerance of 15 km/h for not more than 3 per cent of the time duration of the motorway operation. Local speed limits remain in force during a PEMS test, notwithstanding other legal consequences. Violations of local speed limits per se do not invalidate the results of a PEMS test. Stop periods, defined by vehicle speed of less than 1 km/h, shall account for 6-30 per cent of the time duration of urban operation. Urban operation may contain several stop periods of 10 s or longer. However, individual stop periods shall not exceed 300 consecutive seconds; else the trip shall be invalid. If stop periods in urban driving part are over 30 per cent or there are individual stop periods exceeding 300 consecutive seconds, the test shall be invalid only if the emission limits are not met. The trip duration shall be between 90 and 120 minutes. The start and the end points of a trip shall not differ in their elevation above sea level by more than 100 m. In addition, the proportional cumulative positive altitude gain over the entire trip and over the urban operation shall be less than 1,200 m/100 km and be determined in accordance with Annex 10. 9.3.4. The average speed (including stops) during cold start period shall be between 15 and 40 km/h. The maximum speed during the cold start period shall not exceed 60 km/h. At the test start, the vehicle shall move within 15 seconds. The vehicle stop periods during the entire cold start period, as defined in paragraph 3.6.1., shall be kept to the minimum possible and it shall not exceed 90 s in total. #### 9.4. Other trip requirements If the engine stalls during the test, it may be restarted, but the sampling shall not be interrupted. If the engine stops during the test, the sampling shall not be interrupted. In general the exhaust mass flow shall be determined by measurement equipment functioning independently from the vehicle. With agreement of the authority vehicle ECU data may be used in this respect. If the approval authority is not satisfied with the data quality check and validation results of a PEMS test conducted in accordance with Annex 4, the approval authority may consider the test to be invalid. In such case, the test data and the reasons for invalidating the test shall be recorded by the approval authority. The manufacturer shall demonstrate to the approval authority that the chosen vehicle, driving patterns, conditions and payloads are representative of the PEMS test family. The ambient conditions and payload requirements, as specified in paragraph 8.1. and paragraph 8.3.1. repectively respectively, shall be used ex-ante to determine whether the conditions are acceptable for RDE testing. The approval authority shall propose a test trip in urban, rural and motorway/expressway operation meeting the requirements of paragraph 9.2. If applicable, for the purpose of trip design, the urban, rural and motorway/expressway parts shall be selected based on a topographic map. If for a vehicle the collection of ECU data influences the vehicle's emissions or performance, the entire PEMS test family to which the vehicle belongs shall be considered as non-compliant. For RDE tests performed during type approval, the type approval authority may verify if the test setup and the equipment used fulfil the requirements of Annexes 4 and 5 through a direct inspection or an analysis of the supporting evidence (e.g. photographs, records). #### 9.5. Compliance of software tools Any software tool used to verify the trip validity and calculate emissions compliance with the provisions laid down in <u>paragraphs 8 and 9 and</u> Annexes 7, 8, 9 10 and 11 shall be validated by an entity defined by the Contracting Party. Where such software tool is incorporated in the PEMS instrument, proof of the validation shall be provided along with the instrument. ## 10. Test data analysis 10.1. Emissions and trip evaluation The test shall be conducted in accordance with Annex 4. 10.2. The trip validity shall be assessed in a three-step procedure as follows: STEP A: The trip complies with the general requirements, boundary conditions, trip and operational requirements, and the specifications for lubricating oil, fuel and reagents set out in Sections 8 and 9 and Annex 10.; STEP B: The trip complies with the
requirements set out in Annex 9. STEP C: The trip complies with the requirements set out in Annex 8. The steps of the procedure are detailed in Figure 6. If at least one of the requirements is not fulfilled, the trip shall be declared invalid. If at least one of the requirements is not fulfilled, the trip shall be declared invalid. - 10.3. In order to preserve data integrity, it shall not be permitted to combine data of different RDE trips in a single data set or to modify or remove data from an RDE trip, except for cases mentioned explicitly in this Regulation. - 10.4. After establishing the validity of a trip in accordance with paragraph 10.2., eEmission results shall be calculated using the methods laid down in Annex 7 and Annex 11. The emissions calculations shall be made between test start and test end, as defined in paragraphs 5.1. and 5.3. of Annex 4 respectively. - 10.5. The extended factor for this Regulation is set at 1.6. If during a particular time interval the ambient conditions are extended, in accordance with paragraph 8.1., then the criteria emissions calculated according to Annexes 7 and 11, during that particular time interval, shall be divided by the extended factor. This provision does not apply to carbon dioxide emissions. - 10.6. Gaseous pollutant and particle number emissions during the cold start period, as defined in paragraph 3.6.1., shall be included in the normal evaluation in accordance with Annexes 7, 8 and 11. If the vehicle was conditioned for the last three hours prior to the test at an average temperature that falls within the extended range in accordance with paragraph 8.1., then the provisions of paragraph 10.5. apply to the data collected during the cold start period, even if the test ambient conditions are not within the extended temperature range. - 10.7. Separate Where applicable, separate data-sets shall be created for 3-phase and 4-phase evaluation. The data collected during the entire trip shall be the basis of the 4-phase RDE emission results, while the data with the exclusion of any data point with speed above 100 km/h shall be the basis of the 3-phase RDE trip validity and emission results calculations according to Sections 8 and 9 and Annexes 8, 9 and 11. For data analysis continuity Annex 10 will begin with the entire data set for both analyses. - In case, that a single RDE trip is not capable of complying with all validity requirements described in paragraphs 9.1.1., 9.2., 9.3., 4.5.1. and 4.5.2. of Annex 8 and paragraph 4. of Annex 9 simultaneously, then a second RDE trip shall be done. The second trip shall be designed to meet either the 3 phase or 4 phase WLTC trip requirements not yet satisfied, as well as all other relevant trip validity requirements, but it is not necessary to satisfy again the 4 phase or 3 phase WLTC trip requirements previously met by the first trip. - 10.7.2. In case the emission calculated for the 3-phase RDE trip exceed the emission limits for the total trip due to the exclusion of all data points with speed above 100 km/h even though the trip is compliant, then a second trip with the speed limited to less than or equal to 100 km/h shall be made and evaluated for compliance with the 3-phase requirements. - 10.8. Data Reporting Files: All data of a singlen RDE test shall be recorded according to the data reporting filess found in the same weblink as the UN Regulation³-at the following UNECE weblink: #### at the following UNECE weblink: #### [xxx] A test report shall be prepared by the Technical Service in accordance with the Data Reporting Files and shall be made available to the Contracting Party. ³ Weblink accessed on ## 11. Modifications and extensions to Type Approval - 11.1. Every modification of a vehicle emission type shall be notified to the Type Approval Authority that approved the vehicle type. The Type Approval Authority may then either: - 11.1.1. Consider that the modifications made are contained within the families covered by the approval or are unlikely to have an appreciable adverse effect on the values of any of the criteria emissions and that, in this case, the original approval will be valid for the modified vehicle type; or - 11.1.2. Require a further test report from the Technical Service responsible for conducting the tests. - 11.2. Confirmation or refusal of approval, specifying the alterations, shall be communicated by the procedure specified in paragraph 5.3. to the Contracting Parties to the Agreement which apply this Regulation. - 11.3. The Type Approval Authority issuing the extension of approval shall assign a series number to the extension and inform thereof the other Contracting Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in Annex 2 to this Regulation. - 11.4. Extension of a PEMS test family An existing PEMS test family may be extended by adding new vehicle emission types to it. The extended PEMS test family and its validation must also fulfil the requirements of paragraphs 6.3. and 6.4. This may require the PEMS testing of additional vehicles to validate the extended PEMS test family according to paragraph 6.4. ## 12. Conformity of Production - 12.1. The conformity of production of emissions is already covered by the rules specified in UN Regulation No. [XXX] on WLTP. Therefore, the conformity of production for vehicles covered by both UN Regulation No. [XXX] on WLTP and UN Regulation on RDE are sufficient to cover this requirement. - 12.2. The manufacturer shall ensure that all vehicles within the PEMS test family are compliant with the Type 1 conformity of production requirements of the UN Regulation No. [XXX] on WLTP. ## 13. Penalties for non-conformity of production - 13.1. The approval granted in respect of a vehicle type pursuant to this Regulation, may be withdrawn if the requirements of this Regulation are not complied with. - 13.2. If a Contracting Party to the 1958 Agreement which applies this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation, by means of a communication form conforming to the model in Annex 2 to this Regulation. ## 14. Production definitively discontinued 14.1. If the holder of the approval completely ceases to manufacture a type of vehicle approved in accordance with this Regulation, they shall so inform the Type Approval Authority which granted the approval. Upon receiving the relevant communication, that authority shall inform thereof the other Contracting Parties to the 1958 Agreement applying this Regulation by means of copies of the communication form conforming to the model in Annex 2 to this Regulation. ## 15. Transitional provisions 15.1. As from the official date of entry into force of the 00 series of amendments to this Regulation, and by way of derogation to the obligations of Contracting Parties, the Contracting Parties applying this Regulation and also applying the 08 or a later series of amendments to UN Regulation No. 83 may refuse to accept type approvals granted on the basis of this Regulation which are not accompanied by an approval to the 08 or a later series of amendments to UN Regulation No. 83.Compliance requirements #### 16. Names and Addresses of Technical Services 16.1. The Contracting Parties to the 1958 Agreement which apply this Regulation shall communicate to the United Nations Secretariat the names and addresses of the Technical Services responsible for conducting approval tests and of the Type Approval Authorities which grant approval and to which forms certifying approval or extension or refusal or withdrawal of approval, issued in other countries, are to be sent. #### Annex 1 ## Engine and vehicle characteristics and information concerning the conduct of tests #### THIS ANNEX IS TO BE COMPLETED The authority and the vehicle manufacturer shall maintain a list of vehicle emission types as defined in the UN Regulation No. [XXX] on WLTP being part of a given PEMS test family on the basis of emission type approval numbers or equivalent information. For each emission type all corresponding combinations of vehicle type approval numbers or equivalent information, types, variants and versions shall be provided as well. The authority and the vehicle manufacturer shall maintain a list of vehicle emission types selected for PEMS testing in order validate a PEMS test family in accordance with paragraph 6.4., of this Regulation which shall provide the necessary information on how the selection criteria of paragraph 6.4.3. of this Regulation are covered. This list shall also indicate whether the provisions of paragraph 6.4.1.3. of this Regulation were applied for a particular PEMS test. The following information, when applicable, shall be supplied in triplicate and include a list of contents. If there are drawings, they shall be to an appropriate scale and show sufficient detail; they shall be presented in A4 format or folded to that format. Photographs, if any, shall show sufficient detail. If the systems, components or separate technical units have electronic controls, information concerning their performance shall be supplied. Part 1 In the case that all vehicles included in the approval to this Regulation are also approved to Regulation [WLTP]: | Approval number(s) to Regulation [WLTP]: | |--| | | | 0 | <u>GENERAL</u> | |----------|---| | 0.1. | Make (trade name of manufacturer): | | 0.2. | <u>Type:</u> | | 0.2.1. | Commercial name(s) (if available): | | 0.2.2.1. | Allowed Parameter Values for multistage type approval (if
applicable) to use the base vehicle emission values (insert range if applicable): Final Vehicle mass in running order (in kg): Frontal area for final vehicle (in cm²): Rolling resistance (kg/t): Cross-sectional area of air entrance of the front grille (in cm²): | | 0.2.3. | Family identifiers: | | 0.2.3.1. | Interpolation family(s): | | 0.2.3.3. | PEMS family identifier: | | 2. | MASSES AND DIMENSIONS (f) (g) (7) (in kg and mm) (Refer to drawing where applicable) | | 2.6. | Mass in running order (h) (a) maximum and minimum for each variant: | | <u>3.</u> | PROPULSION ENERGY CONVERTER (k) | |-----------------|---| | 3.1. | Manufacturer of the propulsion energy converter(s): | | 3.1.1. | Manufacturer's code (as marked on the propulsion energy converter or other means of identification): | | 3.2. | Internal combustion engine | | 3.2.1.1. | Working principle: positive ignition/compression ignition/dual fuel (1) Cycle: four stroke/two stroke/rotary (1) | | 3.2.1.2. | Number and arrangement of cylinders: | | <u>3.2.1.3.</u> | Engine capacity (m): cm3 | | 3.2.2. | <u>Fuel</u> | | 3.2.2.1. | Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (1), | | 3.2.2.4. | Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (1) | | 3.2.4. | Fuel feed | | 3.2.4.1. | By carburettor(s): yes/no (1) | | 3.2.4.2. | By fuel injection (compression ignition or dual fuel only): yes/no (1) | | 3.2.4.2.1. | System description (common rail/unit injectors/distribution pump etc.): | | 3.2.4.2.2. | Working principle: direct injection/pre-chamber/swirl chamber (1) | | 3.2.4.3. | By fuel injection (positive ignition only): yes/no (1) | | 3.2.4.3.1. | Working principle: intake manifold (single-/multi-point/direct injection (1) /other (specify): | | <u>3.2.7.</u> | Cooling system: liquid/air (1) | | <u>3.2.8.1.</u> | Pressure charger: yes/no (1) | | 3.2.8.1.2. | <u>Type(s):</u> | | 3.2.9. | Exhaust system | | <u>3.2.9.2.</u> | Description and/or drawing of the exhaust system: | | <u>3.2.12.</u> | Measures taken against air pollution | | 3.2.12.1. | Device for recycling crankcase gases (description and drawings): | | 3.2.12.2. | Pollution control devices (if not covered by another heading) | | 3.2.12.2.1. | <u>Catalytic converter</u> | | 3.2.12.2.1.1. | Number of catalytic converters and elements (provide the information below for each separate unit): | | 3.2.12.2.1.2. | Dimensions, shape and volume of the catalytic converter(s): | | 3.2.12.2.1.3. | Type of catalytic action: | | 3.2.12.2.1.9. | Location of the catalytic converter(s) (place and reference distance in the exhaust line): | | 3.2.12.2.4. | Exhaust gas recirculation (EGR): yes/no (1) | | 3.2.12.2.4.1. | Characteristics (make, type, flow, high pressure/low pressure/combined pressure, etc.): | | 3.2.12.2.4.2. | Water-cooled system (to be specified for each EGR system e.g. low pressure/high pressure/combined pressure: yes/no (¹) | |---------------|---| | 3.2.12.2.6. | Particulate trap (PT): yes/no (1) | | 3.2.12.2.11. | Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) | | <u>3.4.</u> | Combinations of propulsion energy converters | | 3.4.1. | Hybrid electric vehicle: yes/no (1) | | 3.4.2. | Category of hybrid electric vehicle: off-vehicle charging/not off-vehicle charging: (1) | Part 2 In the case that any vehicles included in the approval to this Regulation are not approved to Regulation [WLTP]: | Kegulation [WLTF]. | | |---------------------|---| | <u>0</u> | GENERAL | | 0.1. | Make (trade name of manufacturer): | | 0.2. | <u>Type:</u> | | 0.2.1. | Commercial name(s) (if available): | | 0.2.2.1. | Allowed Parameter Values for multistage type approval (if applicable) to use the base vehicle emission values (insert range if applicable): Final Vehicle mass in running order (in kg): | | | Frontal area for final vehicle (in cm ²): Rolling resistance (kg/t): | | | Cross-sectional area of air entrance of the front grille (in cm ²): | | 0.2.3. | Family identifiers: | | 0.2.3.1. | Interpolation family: | | 0.2.3.3. | PEMS family identifier: | | 0.2.3.6. | Periodic regeneration family(s): | | 0.2.3.10. | ER family(s): | | 0.2.3.11. | Gas Fuelled Vehicle family(s): | | 0.2.3.12. | other family(s): | | 0.4. | Category of vehicle (°): | | 0.8. | Name(s) and address(es) of assembly plant(s): | | 0.9. | Name and address of the manufacturer's representative (if any): | | <u>1.</u> | GENERAL CONSTRUCTION CHARACTERISTICS | | 1.1. | Photographs and/or drawings of a representative vehicle/component/separate technical unit (¹): | | <u>1.3.3.</u> | Powered axles (number, position, interconnection): | | <u>2.</u> | MASSES AND DIMENSIONS (f) (g) (7) (in kg and mm) (Refer to drawing where applicable) | | <u>2.6.</u> | Mass in running order (h) (a) maximum and minimum for each variant: | | 2.8. | 2.6.3. | Rotational mass: 3 % of the sum of mass in running order and 25 kg or value, per axle (kg): | |--|------------------|---| | 3.1.1. Manufacturer of the propulsion energy converter(s): 3.1.1. Manufacturer's code (as marked on the propulsion energy converter or other means of identification): 3.2. Internal combustion engine 3.2.1.1. Working principle: positive ignition/compression ignition/dual fuel (¹) Cycle: four stroke/two stroke/rotary (¹) 3.2.1.2. Number and arrangement of cylinders: 3.2.1.2.1. Bore (¹): mm 3.2.1.2.2. Stroke (¹): mm 3.2.1.2.3. Firing order: 3.2.1.3. Engine capacity ("): cm¹ 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power ("): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque ("): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E-85)/Biodiesel/Hydrogen (¹), 3.2.2.3. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value) 3.2.2.4. Yehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2. Type(s): | 2.8. | Technically permissible maximum laden mass stated by the manufacturer (i) (3): | | 3.1.1. Manufacturer's code (as marked on the propulsion energy converter or other means of identification): 3.2. Internal combustion engine 3.2.1.1. Working principle; positive ignition/compression ignition/dual fuel (¹) Cycle; four stroke/two stroke/rotary (¹) 3.2.1.2. Number and arrangement of cylinders: 3.2.1.2.1. Bore (¹): mm 3.2.1.2.2. Stroke (¹): mm 3.2.1.2.3. Firring order: 3.2.1.3. Engine capacity (**): cm² 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min ¹ 3.2.1.8. Rated engine power (**): kW at min ¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min ¹ 3.2.1.10. Maximum net torque (**): Nm at min ¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E. 85)/Biodiesel/Hydrogen (¹), 3.2.2.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.1 Jacetion/Delivery pump 3.2.4.2.2. Type(s): | <u>3.</u> | PROPULSION ENERGY CONVERTER (k) | | 3.2. Internal combustion
engine 3.2.1.1. Working principle; positive ignition/compression ignition/dual fuel (¹) Cycle; four stroke/two stroke/rotary (¹) 3.2.1.2. Number and arrangement of cylinders; 3.2.1.2.1. Bore (¹);, mm 3.2.1.2.2. Stroke (¹);, mm 3.2.1.2.3. Firing order; 3.2.1.3. Engine capacity (**);, cm³ 3.2.1.4. Volumetric compression ratio (²); 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings; 3.2.1.6. Normal engine idling speed (²); min ¹ 3.2.1.8. Rated engine power (**);, kW at min ¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer; min ¹ 3.2.1.10. Maximum net torque (**);, Nm at, min ¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E. 85)/Biodiesel/Hydrogen (¹), 3.2.2.1. RON, unleaded; 3.2.2.4. Vehicle fuel type; Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value);, % by volume 3.2.4. Euel feed 3.2.4.1. By carburettor(s); yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only); yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.); 3.2.4.2.2. Working principle; direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3.1 Jajection/Delivery pump 3.2.4.2.3.2. Type(s); | 3.1. | Manufacturer of the propulsion energy converter(s): | | 3.2.1.1. Working principle: positive ignition/compression ignition/dual fuel (¹) Cycle: four stroke/two stroke/rotary (¹) 3.2.1.2. Number and arrangement of cylinders: 3.2.1.2.1. Bore (¹): mm 3.2.1.2.2. Stroke (¹): mm 3.2.1.2.3. Firing order: 3.2.1.3. Engine capacity (**): cm¹ 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power (**): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (**): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (£ 85)/Biodiesel/Hydrogen (¹), 3.2.2.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): 3.2.4. Euel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirt chamber (¹) 3.2.4.2.1. Make(s): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirt chamber (¹) 3.2.4.2.3.1 Injection/Delivery pump 3.2.4.2.3.1 Make(s): 3.2.4.2.2. Type(s): | 3.1.1. | | | Cycle: four stroke/two stroke/rotary (¹) 3.2.1.2. Number and arrangement of cylinders: 3.2.1.2.1. Bore (¹): mm 3.2.1.2.2. Stroke (¹): mm 3.2.1.2.3. Firing order: 3.2.1.3. Engine capacity (""): cm² 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.6.1. High engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power ("): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque ("): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2.1. System description (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.2. Type(s): | 3.2. | Internal combustion engine | | 32.1.2.1. Bore (¹): mm 32.1.2.2. Stroke (¹): mm 32.1.2.3. Firing order: 32.1.3. Engine capacity (""): cm¹ 32.1.4. Volumetric compression ratio (²): 32.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 32.1.6. Normal engine idling speed (²): min⁻¹ 32.1.6.1. High engine idling speed (²): min⁻¹ 32.1.8. Rated engine power (°): kW at min⁻¹ (manufacturer's declared value) 32.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 32.1.10. Maximum net torque (°): Nm at min⁻¹ (manufacturer's declared value) 32.2. Fuel 32.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 32.2.1.1 RON, unleaded: 32.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 32.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 32.4. Fuel feed 32.4.1. By carburettor(s): yes/no (¹) 32.4.2.1 System description (compression ignition or dual fuel only): yes/no (¹) 32.4.2.1 System description (common rail/unit injectors/distribution pump etc.): 32.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 32.4.2.3. Injection/Delivery pump 32.4.2.3.1 Make(s): | 3.2.1.1. | | | 3.2.1.2.2. Stroke (¹): mm 3.2.1.2.3. Firgine order: 3.2.1.3. Engine capacity (***): cm³ 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.6.1. High engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power (***): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (***): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON. unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.1. Make(s): 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Type(s): | 3.2.1.2. | Number and arrangement of cylinders: | | 3.2.1.2.3. Engine capacity (***): cm³ 3.2.1.3. Volumetric compression ratio (**): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (**): min⁻¹ 3.2.1.6.1. High engine idling speed (**): min⁻¹ 3.2.1.8. Rated engine power (***): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (**): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (£ 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.1. Make(s): 3.2.4.2.2. Type(s): | 3.2.1.2.1. | Bore (1): mm | | 3.2.1.3. Engine capacity (""): cm³ 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.6.1. High engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power ("): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque ("): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹). 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2. Make(s): 3.2.4.2.1. Make(s): 3.2.4.2.2. Type(s): | 3.2.1.2.2. | <u>Stroke (¹): mm</u> | | 3.2.1.4. Volumetric compression ratio (²): 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.6.1. High engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power (°): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (°): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Injection/Delivery pump
3.2.4.2.3.1. Make(s): | 3.2.1.2.3. | Firing order: | | 3.2.1.5. Drawings of combustion chamber, piston crown and, in the case of positive ignition engines, piston rings; 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.6.1. High engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power (°): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (°): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.1.3. | Engine capacity (m): cm ³ | | engines, piston rings: 3.2.1.6. Normal engine idling speed (²): min⁻¹ 3.2.1.6.1. High engine idling speed (²): min⁻¹ 3.2.1.8. Rated engine power (°): kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (°): Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Type(s): Type(s): | 3.2.1.4. | Volumetric compression ratio (2): | | 3.2.1.6.1. High engine idling speed (²); min⁻¹ 3.2.1.8. Rated engine power (°); kW at min⁻¹ (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min⁻¹ 3.2.1.10. Maximum net torque (°); Nm at min⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.1.5. | | | 3.2.1.8. Rated engine power (**): kW at min-1 (manufacturer's declared value) 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min-1 3.2.1.10. Maximum net torque (**): Nm at min-1 (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2.1. System description (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Morking principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.1.6. | Normal engine idling speed (2): min ⁻¹ | | 3.2.1.9. Maximum permitted engine speed as prescribed by the manufacturer: min ⁻¹ 3.2.1.10. Maximum net torque (**): Nm at min ⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (*), 3.2.2.1.1. RON, unleaded; 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (*) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (*) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (*) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (*) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.1.6.1. | High engine idling speed (2): min ⁻¹ | | 3.2.1.10. Maximum net torque (**): Nm at min ⁻¹ (manufacturer's declared value) 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.1.8. | Rated engine power (n): kW at min-1 (manufacturer's declared value) | | 3.2.2. Fuel 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | <u>3.2.1.9.</u> | Maximum permitted engine speed as prescribed by the manufacturer: min ⁻¹ | | 3.2.2.1. Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (¹), 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | <u>3.2.1.10.</u> | Maximum net torque (n): Nm at min-1 (manufacturer's declared value) | | 3.2.2.1.1. RON, unleaded: 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.2. | <u>Fuel</u> | | 3.2.2.4. Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (¹) 3.2.2.5. Maximum amount of biofuel acceptable in fuel (manufacturer's declared value): % by volume 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.2.1. | Diesel/Petrol/LPG/NG or Biomethane/Ethanol (E 85)/Biodiesel/Hydrogen (1), | | 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.2.1.1. | RON, unleaded: | | 3.2.4. Fuel feed 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.2.4. | Vehicle fuel type: Mono fuel, Bi fuel, Flex fuel (1) | | 3.2.4.1. By carburettor(s): yes/no (¹) 3.2.4.2. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.2.5. | | | 3.2.4.2.1. By fuel injection (compression ignition or dual fuel only): yes/no (¹) 3.2.4.2.1. System description (common rail/unit injectors/distribution pump
etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.4. | Fuel feed | | 3.2.4.2.1. System description (common rail/unit injectors/distribution pump etc.): 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.4.1. | By carburettor(s): yes/no (¹) | | 3.2.4.2.2. Working principle: direct injection/pre-chamber/swirl chamber (¹) 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): Type(s): | 3.2.4.2. | By fuel injection (compression ignition or dual fuel only): yes/no (¹) | | 3.2.4.2.3. Injection/Delivery pump 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.4.2.1. | System description (common rail/unit injectors/distribution pump etc.): | | 3.2.4.2.3.1. Make(s): 3.2.4.2.3.2. Type(s): | 3.2.4.2.2. | Working principle: direct injection/pre-chamber/swirl chamber (1) | | 3.2.4.2.3.2. <u>Type(s):</u> | 3.2.4.2.3. | Injection/Delivery pump | | | 3.2.4.2.3.1. | <u>Make(s):</u> | | 3.2.4.2.3.3. Maximum fuel delivery (1) (2): mm ³ /stroke or cycle at an engine speed of: | 3.2.4.2.3.2. | <u>Type(s):</u> | | | 3.2.4.2.3.3. | Maximum fuel delivery (1) (2): mm ³ /stroke or cycle at an engine speed of: | | | min ⁻¹ or, alternatively, a characteristic diagram: (When boost control is supplied, state the characteristic fuel delivery and boost pressure versus engine speed) | |---------------------|--| | 3.2.4.2.4. | Engine speed limitation control | | 3.2.4.2.4.2.1. | Speed at which cut-off starts under load: min ⁻¹ | | 3.2.4.2.4.2.2. | Maximum no-load speed: min ⁻¹ | | 3.2.4.2.6. | Injector(s) | | 3.2.4.2.6.1. | <u>Make(s):</u> | | <u>3.2.4.2.6.2.</u> | <u>Type(s):</u> | | 3.2.4.2.8. | Auxiliary starting aid | | 3.2.4.2.8.1. | <u>Make(s):</u> | | 3.2.4.2.8.2. | <u>Type(s):</u> | | 3.2.4.2.8.3. | System description: | | 3.2.4.2.9. | Electronic controlled injection: yes/no (¹) | | <u>3.2.4.2.9.1.</u> | <u>Make(s):</u> | | 3.2.4.2.9.2. | Type(s): | | 3.2.4.2.9.3 | Description of the system: | | 3.2.4.2.9.3.1. | Make and type of the control unit (ECU): | | 3.2.4.2.9.3.1.1. | Software version of the ECU: | | 3.2.4.2.9.3.2. | Make and type of the fuel regulator: | | 3.2.4.2.9.3.3. | Make and type of the air-flow sensor: | | 3.2.4.2.9.3.4. | Make and type of fuel distributor: | | 3.2.4.2.9.3.5. | Make and type of the throttle housing: | | 3.2.4.2.9.3.6. | Make and type or working principle of water temperature sensor: | | 3.2.4.2.9.3.7. | Make and type or working principle of air temperature sensor: | | 3.2.4.2.9.3.8. | Make and type or working principle of air pressure sensor: | | 3.2.4.3. | By fuel injection (positive ignition only): yes/no (1) | | 3.2.4.3.1. | Working principle: intake manifold (single-/multi-point/direct injection (¹) /other (specify): | | 3.2.4.3.2. | <u>Make(s):</u> | | 3.2.4.3.3. | <u>Type(s):</u> | | 3.2.4.3.4. | System description (In the case of systems other than continuous injection give equivalent details): | | 3.2.4.3.4.1. | Make and type of the control unit (ECU): | | 3.2.4.3.4.1.1. | Software version of the ECU: | | 3.2.4.3.4.3. | Make and type or working principle of air-flow sensor: | | 3.2.4.3.4.8. | Make and type of throttle housing: | | 3.2.4.3.4.9. | Make and type or working principle of water temperature sensor: | | | 2 2 4 2 4 10 | Make and true or weaking minerials of air termonetrue concern | |--|-----------------|---| | 3.2.4.3.5.1. Make: 3.2.4.3.5.1. Make: 3.2.4.3.5.2. Type: 3.2.4.3.7. Cold start system 3.2.4.3.7.1. Operating principle(s): 3.2.4.3.7.2. Operating limits/settings (¹) (²): 3.2.4.3.7.2. Operating limits/settings (¹) (²): 3.2.4.4. Feed pump 3.2.4.4.1. Pressure (²): kPa or characteristic diagram (²): 3.2.4.2. Make(s): 3.2.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6. Make: 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.7.2. Liquid 3.2.7.2. Liquid 3.2.7.2. Cooling system: liquid/air (¹) 3.2.7.2. Circulating pump(s): ves/no (²) 3.2.7.2. Circulating pump(s): ves/no (²) 3.2.7.2.3. Characteristics: or | 3.2.4.3.4.10. | Make and type or working principle of air temperature sensor: | | 3.2.4.3.5.1. Make: | | | | 3.2.4.3.7. Cold start system 3.2.4.3.7.1. Operating principle(s): 3.2.4.3.7.2. Operating limits/settings (¹) (²): 3.2.4.4. Feed pump 3.2.4.4.1. Pressure (²): kPa or characteristic diagram (²): 3.2.4.4.2. Make(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6.3. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.2. Type: 3.2.6.3. Gan setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.7. Cooling system: liquid/air (¹) 3.2.7. Cooling system: liquid/air (¹) 3.2.7. Cooling system: liquid <td></td> <td></td> | | | | 3.2.4.3.7. Cold start system 3.2.4.3.7.1. Operating principle(s): 3.2.4.3.7.2. Operating limits/settings (¹) (²): 3.2.4.4.1. Feed pump 3.2.4.4.2. Make(s): 3.2.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6.3. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3.1 Make(s): | 3.2.4.3.5.1. | <u>Make:</u> | | 3.2.4.3.7.1. Operating principle(s): 3.2.4.3.7.2. Operating limits/settings (¹) (²): 3.2.4.4. Feed pump 3.2.4.4.1. Pressure (²): kPa or characteristic diagram (²): 3.2.4.4.2. Make(s): 3.2.4.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignifion engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.6.7. Vooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): ves/no (¹) 3.2.7.2.3.1 Make(s): | 3.2.4.3.5.2. | <u>Type:</u> | | 3.2.4.3.7.2. Operating limits/settings (¹) (²): 3.2.4.4. Feed pump 3.2.4.4.1. Pressure (²): kPa or characteristic diagram (²): 3.2.4.2. Make(s): 3.2.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1 Type: 3.2.5.2.2 Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6. Make: 3.2.6.6. Type: 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.6.7. Type: 3.2.6.7. Ocoling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): ves/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.4.3.7. | <u>Cold start system</u> | | 3.2.4.4. Feed pump
3.2.4.4.1. Pressure (?): kPa or characteristic diagram (?): 3.2.4.4.2. Make(s): 3.2.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.4.3.7.1. | Operating principle(s): | | 3.2.4.4.1. Pressure (²): kPa or characteristic diagram (²): 3.2.4.4.2. Make(s): 3.2.4.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2 Type: 3.2.6.6.3 Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.7.1. Naminal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.4.3.7.2. | Operating limits/settings (¹) (²): | | 3.2.4.4.2. Make(s): 3.2.4.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.4.4. | Feed pump | | 3.2.4.4.3. Type(s): 3.2.5. Electrical system 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7.1. Ignition coil(s) 3.2.6.7.2. Type: 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.4.4.1. | Pressure (2): kPa or characteristic diagram (2): | | Section Sect | 3.2.4.4.2. | <u>Make(s):</u> | | 3.2.5.1. Rated voltage: V, positive/negative ground (¹) 3.2.5.2. Generator 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): ves/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.4.4.3. | <u>Type(s):</u> | | 32.5.2. | <u>3.2.5.</u> | Electrical system | | 3.2.5.2.1. Type: 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.7.2. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3.1. Make(s): | 3.2.5.1. | Rated voltage: V, positive/negative ground (1) | | 3.2.5.2.2. Nominal output: VA 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): ves/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.5.2. | Generator | | 3.2.6. Ignition system (spark ignition engines only) 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.5.2.1. | <u>Type:</u> | | 3.2.6.1. Make(s): 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.5.2.2. | Nominal output: VA | | 3.2.6.2. Type(s): 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6. | Ignition system (spark ignition engines only) | | 3.2.6.3. Working principle: 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.1. | <u>Make(s):</u> | | 3.2.6.6. Spark plugs 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.2. | <u>Type(s):</u> | | 3.2.6.6.1. Make: 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.3. | Working principle: | | 3.2.6.6.2. Type: 3.2.6.6.3. Gap setting: mm 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.6. | Spark plugs | | 3.2.6.6.3. | 3.2.6.6.1. | <u>Make:</u> | | 3.2.6.7. Ignition coil(s) 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.6.2. | <u>Type:</u> | | 3.2.6.7.1. Make: 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.6.3. | Gap setting: mm | | 3.2.6.7.2. Type: 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | <u>3.2.6.7.</u> | Ignition coil(s) | | 3.2.7. Cooling system: liquid/air (¹) 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.7.1. | <u>Make:</u> | | 3.2.7.1. Nominal setting of the engine temperature control mechanism: 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.6.7.2. | <u>Type:</u> | | 3.2.7.2. Liquid 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.7. | Cooling system: liquid/air (¹) | | 3.2.7.2.1. Nature of liquid: 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.7.1. | Nominal setting of the engine temperature control mechanism: | | 3.2.7.2.2. Circulating pump(s): yes/no (¹) 3.2.7.2.3.
Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.7.2. | <u>Liquid</u> | | 3.2.7.2.3. Characteristics: or 3.2.7.2.3.1. Make(s): | 3.2.7.2.1. | Nature of liquid: | | 3.2.7.2.3.1. Make(s): | 3.2.7.2.2. | Circulating pump(s): yes/no (¹) | | | 3.2.7.2.3. | Characteristics: or | | 3.2.7.2.3.2. Type(s): | 3.2.7.2.3.1. | Make(s): | | | 3.2.7.2.3.2. | <u>Type(s):</u> | | 3.2.7.2.4. | Drive ratio(s): | |--------------|--| | 3.2.7.2.5. | Description of the fan and its drive mechanism: | | 3.2.7.3. | Air | | 3.2.7.3.1. | Fan: yes/no (¹) | | 3.2.7.3.2. | Characteristics: or | | 3.2.7.3.2.1. | Make(s): | | 3.2.7.3.2.2. | <u>Type(s):</u> | | 3.2.7.3.3. | Drive ratio(s): | | 3.2.8. | <u>Intake system</u> | | 3.2.8.1. | Pressure charger: yes/no (¹) | | 3.2.8.1.1. | <u>Make(s):</u> | | 3.2.8.1.2. | <u>Type(s):</u> | | 3.2.8.1.3. | Description of the system (e.g. maximum charge pressure: kPa; wastegate if applicable): | | 3.2.8.2. | Intercooler: yes/no (¹) | | 3.2.8.2.1. | Type: air-air/air-water (¹) | | 3.2.8.3. | Intake depression at rated engine speed and at 100 % load (compression ignition engines only) | | 3.2.8.4. | Description and drawings of inlet pipes and their accessories (plenum chamber, heating device, additional air intakes, etc.): | | 3.2.8.4.1. | Intake manifold description (include drawings and/or photos): | | 3.2.8.4.2. | Air filter, drawings: or | | 3.2.8.4.2.1. | <u>Make(s):</u> | | 3.2.8.4.2.2. | <u>Type(s):</u> | | 3.2.8.4.3. | Intake silencer, drawings: or | | 3.2.8.4.3.1. | <u>Make(s):</u> | | 3.2.8.4.3.2. | <u>Type(s):</u> | | 3.2.9. | Exhaust system | | 3.2.9.1. | Description and/or drawing of the exhaust manifold: | | 3.2.9.2. | Description and/or drawing of the exhaust system: | | 3.2.9.3. | Maximum allowable exhaust back pressure at rated engine speed and at 100 % load (compression ignition engines only): kPa | | 3.2.10. | Minimum cross-sectional areas of inlet and outlet ports: | | 3.2.11. | Valve timing or equivalent data | | 3.2.11.1. | Maximum lift of valves, angles of opening and closing, or timing details of alternative distribution systems, in relation to dead centres. For variable timing system, minimum and maximum timing: | | 3.2.11.2. | Reference and/or setting ranges (¹): | | 3.2.12. | Measures taken against air pollution | | | |-----------------|---|--|--| | 3.2.12.1. | Device for recycling crankcase gases (description and drawings): | | | | 3.2.12.2. | Pollution control devices (if not covered by another heading) | | | | 3.2.12.2.1. | <u>Catalytic converter</u> | | | | 3.2.12.2.1.1. | Number of catalytic converters and elements (provide the information below for each separate unit): | | | | 3.2.12.2.1.2. | Dimensions, shape and volume of the catalytic converter(s): | | | | 3.2.12.2.1.3. | Type of catalytic action: | | | | 3.2.12.2.1.4. | Total charge of precious metals: | | | | 3.2.12.2.1.5. | Relative concentration: | | | | 3.2.12.2.1.6. | Substrate (structure and material): | | | | 3.2.12.2.1.7. | Cell density: | | | | 3.2.12.2.1.8. | Type of casing for the catalytic converter(s): | | | | 3.2.12.2.1.9. | Location of the catalytic converter(s) (place and reference distance in the exhaust line): | | | | 3.2.12.2.1.11. | Normal operating temperature range: °C | | | | 3.2.12.2.1.12. | Make of catalytic converter: | | | | 3.2.12.2.1.13. | Identifying part number: | | | | 3.2.12.2.2. | Sensors | | | | 3.2.12.2.2.1. | Oxygen and/or lambda sensor(s): yes/no (¹) | | | | 3.2.12.2.2.1.1. | <u>Make:</u> | | | | 3.2.12.2.2.1.2. | Location: | | | | 3.2.12.2.2.1.3. | Control range: | | | | 3.2.12.2.2.1.4. | Type or working principle: | | | | 3.2.12.2.2.1.5. | Identifying part number: | | | | 3.2.12.2.2.2. | NO_x sensor: yes/no (1) | | | | 3.2.12.2.2.1. | <u>Make:</u> | | | | 3.2.12.2.2.2. | <u>Type:</u> | | | | 3.2.12.2.2.3. | Location | | | | 3.2.12.2.2.3. | Particulate sensor: yes/no (¹) | | | | 3.2.12.2.2.3.1. | <u>Make:</u> | | | | 3.2.12.2.2.3.2. | <u>Type:</u> | | | | 3.2.12.2.2.3.3. | Location: | | | | 3.2.12.2.3. | Air injection: yes/no (¹) | | | | 3.2.12.2.3.1. | Type (pulse air, air pump, etc.): | | | | 3.2.12.2.4. | Exhaust gas recirculation (EGR): yes/no (¹) | | | | 3.2.12.2.4.1. | Characteristics (make, type, flow, high pressure/low pressure/combined pressure, | | | | 3.2.12.2.4.2 Water-cooled system (to be specified for each EGR system e.g. low pressure/high pressure/combined pressure; versino (¹) | | etc.): | |--|--------------------|--| | 32.12.2.6.1. Dimensions, shape and capacity of the particulate trap: 32.12.2.6.2. Design of the particulate trap: 32.12.2.6.3. Location (reference distance in the exhaust line): 32.12.2.6.4. Make of particulate trap: 32.12.2.6.5. Identifying part number: 32.12.2.10. Periodically regenerating system: (provide the information below for each separate unit) 32.12.2.10.1. Method or system of regeneration, description and/or drawing: 32.12.2.10.2. The number of Type 1 operating eyeles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 32.12.2.10.2. The number of complete applicable test cycles required for regeneration (distance 'd') 32.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: 32.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 32.12.2.10.5. Description of method used to load system: 32.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) vexino (') 32.12.2.11. Type and concentration of reagent needed: 32.12.2.11.2. Normal operational temperature range of reagent: 32.12.2.11.3. International standard: 32.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 32.12.2.11.6. Reagent indicator: (description and location) 32.12.2.11.6. Reagent tank 32.12.2.11.6. Reagent tank 32.12.2.11.7. Reagent control unit: vex/no (') 32.12.2.11.7. Reagent control unit: vex/no (') 32.12.2.11.7. Reagent injector (make type and location): | 3.2.12.2.4.2. | | | 3.2.12.2.10.2. Design of the particulate trap: 3.2.12.2.6.3. Location (reference distance in the exhaust line): 3.2.12.2.6.5. Identifying part number: 3.2.12.2.10. Periodically regenerating system: (provide the information below for each separate unit) 3.2.12.2.10.1. Method or system of regeneration, description and/or drawing: 3.2.12.2.10.2. The number of Type I operating cycles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type I test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type I cycle: 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (tic. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.6. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6. Heating system: yes/no 3.2.12.2.11.6. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.8. Reagent
injector (make type and location): | 3.2.12.2.6. | Particulate trap (PT): yes/no (¹) | | 3.2.12.2.10.1. Method or system of regeneration, description and/or drawing: 3.2.12.2.10. Periodically regenerating system: (provide the information below for each separate unit) 3.2.12.2.10.1. Method or system of regeneration, description and/or drawing: 3.2.12.2.10.2. The number of Type 1 operating evoles, or equivalent engine test bench evoles, between two evoles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type 1 eyele: 3.2.12.2.10.2.2. The number of complete applicable test eyeles required for regeneration (distance 'd') 3.2.12.2.10.3. Description of method employed to determine the number of cycles between two eyeles where regenerative phases occur 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (fic. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.6. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Make: 3.2.12.2.11.7. Make: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.6.1. | Dimensions, shape and capacity of the particulate trap: | | 3.2.12.2.10.1 Method or system of regeneration, description and/or drawing: 3.2.12.2.10.2 The number of Type 1 operating cycles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1 Applicable Type 1 cycle: 3.2.12.2.10.2.2 The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.2.2 The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.3 Description of method employed to determine the number of cycles between two cycles where regenerative phases occur 3.2.12.2.10.4 Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5 Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) ves/no (') 3.2.12.2.11.4 Type and concentration of reagent needed: 3.2.12.2.11.5 Reagent indicator: (description and location) 3.2.12.2.11.6 Reagent tank 3.2.12.2.11.6 Reagent tank 3.2.12.2.11.6 Reagent tank 3.2.12.2.11.6 Reagent to description or drawing 3.2.12.2.11.7 Reagent control unit: yes/no (') 3.2.12.2.11.7 Make: 3.2.12.2.11.7 Make: 3.2.12.2.11.8 Reagent injector (make type and location): | 3.2.12.2.6.2. | Design of the particulate trap: | | 32.12.2.10.1. Method or system of regeneration, description and/or drawing: 3.2.12.2.10.2. The number of Type 1 operating eveles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type 1 cycle: 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (') 3.2.12.2.11. Type and concentration of reagent needed: 3.2.12.2.11.1. Normal operational temperature range of reagent: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1 Capacity: 3.2.12.2.11.6.2 Heating system: yes/no (') 3.2.12.2.11.6.1 Description or drawing 3.2.12.2.11.7.1 Reagent control unit: yes/no (') 3.2.12.2.11.7.1 Make: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.6.3. | Location (reference distance in the exhaust line): | | 3.2.12.2.10. Periodically regenerating system: (provide the information below for each separate unit) 3.2.12.2.10.1. Method or system of regeneration, description and/or drawing: 3.2.12.2.10.2. The number of Type 1 operating cycles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type 1 cycle: 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') Description of method employed to determine the number of cycles between two cycles where regenerative phases occur 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (') 3.2.12.2.11. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Make: 3.2.12.2.11.7. Applicable Type 1 operating system: yes/no (¹) 3.2.12.2.11.7. Applicable Type 1 operating system: yes/no (¹) 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent injector (make type and location): | 3.2.12.2.6.4. | Make of particulate trap: | | unit) 3.2.12.2.10.1. Method or system of regeneration, description and/or drawing: 3.2.12.2.10.2. The number of Type 1 operating cycles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type 1 cycle: 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (') 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6. Beagent tank 3.2.12.2.11.7. Reagent control unit: yes/no (') 3.2.12.2.11.7. Make: 3.2.12.2.11.7. Make: 3.2.12.2.11.7. Reagent injector (make type and location): | 3.2.12.2.6.5. | Identifying part number: | | 3.2.12.2.10.2. The number of Type 1 operating cycles, or equivalent engine test bench cycles, between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type 1 cycle: 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 2.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.1. Make: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.10. | | | between two cycles where regenerative phases occur under the conditions equivalent to Type 1 test (Distance 'D'): 3.2.12.2.10.2.1. Applicable Type 1 cycle: 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance 'd') 3.2.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no
(¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.6. Reagent indicator: (description and location) 3.2.12.2.11.6.1 Capacity: 3.2.12.2.11.6.2 Heating system: yes/no 3.2.12.2.11.6.1 Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent injector (make type and location): | 3.2.12.2.10.1. | Method or system of regeneration, description and/or drawing: | | 3.2.12.2.10.2.2. The number of complete applicable test cycles required for regeneration (distance id') 3.2.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7. Reagent injector (make type and location): | 3.2.12.2.10.2. | between two cycles where regenerative phases occur under the conditions | | 2.12.2.10.3. Description of method employed to determine the number of cycles between two cycles where regenerative phases occur: 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.7.1 Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1 Make: 3.2.12.2.11.7.2 Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.10.2.1. | Applicable Type 1 cycle: | | cycles where regenerative phases occur: 3.2.12.2.10.4. Parameters to determine the level of loading required before regeneration occurs (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.7.1. Pescription or drawing 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.10.2.2. | | | (i.e. temperature, pressure etc.): 3.2.12.2.10.5. Description of method used to load system: 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.10.3. | | | 3.2.12.2.11. Catalytic converter systems using consumable reagents (provide the information below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.10.4. | | | below for each separate unit) yes/no (¹) 3.2.12.2.11.1. Type and concentration of reagent needed: 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.10.5. | Description of method used to load system: | | 3.2.12.2.11.2. Normal operational temperature range of reagent: 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7.1 Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11. | | | 3.2.12.2.11.3. International standard: 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.1. | Type and concentration of reagent needed: | | 3.2.12.2.11.4. Frequency of reagent refill: continuous/maintenance (where appropriate): 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.2. | Normal operational temperature range of reagent: | | 3.2.12.2.11.5. Reagent indicator: (description and location) 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.3. | International standard: | | 3.2.12.2.11.6. Reagent tank 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.4. | Frequency of reagent refill: continuous/maintenance (where appropriate): | | 3.2.12.2.11.6.1. Capacity: 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.5. | Reagent indicator: (description and location) | | 3.2.12.2.11.6.2. Heating system: yes/no 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.6. | Reagent tank | | 3.2.12.2.11.6.2.1. Description or drawing 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.6.1. | Capacity: | | 3.2.12.2.11.7. Reagent control unit: yes/no (¹) 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.6.2. | Heating system: yes/no | | 3.2.12.2.11.7.1. Make: 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.6.2.1. | Description or drawing | | 3.2.12.2.11.7.2. Type: 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.7. | Reagent control unit: yes/no (1) | | 3.2.12.2.11.8. Reagent injector (make type and location): | 3.2.12.2.11.7.1. | <u>Make:</u> | | | 3.2.12.2.11.7.2. | <u>Type:</u> | | 3.2.12.2.11.9. Reagent quality sensor (make, type and location): | 3.2.12.2.11.8. | Reagent injector (make type and location): | | | 3.2.12.2.11.9. | Reagent quality sensor (make, type and
location): | | 3.2.12.2.12. | Water injection: yes/no (1) | | | |----------------|--|--|--| | 3.2.14. | Details of any devices designed to influence fuel economy (if not covered by other items): | | | | 3.2.15. | LPG fuelling system: yes/no (¹) | | | | 3.2.15.1. | Approval number (approval number of UN Regulation No. 67): | | | | 3.2.15.2. | Electronic engine management control unit for LPG fuelling | | | | 3.2.15.2.1. | <u>Make(s):</u> | | | | 3.2.15.2.2. | <u>Type(s):</u> | | | | 3.2.15.2.3. | Emission-related adjustment possibilities: | | | | 3.2.15.3. | Further documentation | | | | 3.2.15.3.1. | Description of the safeguarding of the catalyst at switch-over from petrol to LPG or back: | | | | 3.2.15.3.2. | System lay-out (electrical connections, vacuum connections compensation hoses, etc.): | | | | 3.2.15.3.3. | Drawing of the symbol: | | | | <u>3.2.16.</u> | NG fuelling system: yes/no (¹) | | | | 3.2.16.1. | Approval number (approval number of UN Regulation No. 110): | | | | 3.2.16.2. | Electronic engine management control unit for NG fuelling | | | | 3.2.16.2.1. | Make(s): | | | | 3.2.16.2.2. | <u>Type(s):</u> | | | | 3.2.16.2.3. | Emission-related adjustment possibilities: | | | | 3.2.16.3. | <u>Further documentation</u> | | | | 3.2.16.3.1. | Description of the safeguarding of the catalyst at switch-over from petrol to NG or back: | | | | 3.2.16.3.2. | System lay-out (electrical connections, vacuum connections compensation hoses, etc.): | | | | 3.2.16.3.3. | Drawing of the symbol: | | | | 3.4. | Combinations of propulsion energy converters | | | | 3.4.1. | Hybrid electric vehicle: yes/no (¹) | | | | 3.4.2. | Category of hybrid electric vehicle: off-vehicle charging/not off-vehicle charging: | | | | <u>3.4.3.</u> | Operating mode switch: with/without (1) | | | | 3.4.3.1. | Selectable modes | | | | 3.4.3.1.1. | Pure electric: yes/no (¹) | | | | 3.4.3.1.2. | Pure fuel consuming: yes/no (¹) | | | | 3.4.3.1.3. | Hybrid modes: yes/no (¹) (if yes, short description): | | | | 3.4.4. | Description of the energy storage device: (REESS, capacitor, flywheel/generator) | | | | 3.4.4.1. | Make(s): | | | | 3.4.4.2. | <u>Type(s):</u> | | | |-----------------|--|--|--| | 3.4.4.3. | Identification number: | | | | 3.4.4.4. | Kind of electrochemical couple: | | | | 3.4.4.5. | Energy: (for REESS: voltage and capacity Ah in 2 h, for capacitor: J,) | | | | 3.4.4.6. | Charger: on board/external/without (1) | | | | 3.4.5. | Electric machine (describe each type of electric machine separately) | | | | <u>3.4.5.1.</u> | <u>Make:</u> | | | | <u>3.4.5.2.</u> | <u>Type:</u> | | | | <u>3.4.5.3.</u> | Primary use: traction motor/generator (1) | | | | 3.4.5.3.1. | When used as traction motor: single-/multimotors (number) (1): | | | | <u>3.4.5.4.</u> | Maximum power: kW | | | | <u>3.4.5.5.</u> | Working principle | | | | 3.4.5.5.5.1 | Direct current/alternating current/number of phases: | | | | 3.4.5.5.2. | Separate excitation/series/compound (1) | | | | 3.4.5.5.3. | Synchronous/asynchronous (1) | | | | <u>3.4.6.</u> | Control unit | | | | 3.4.6.1. | Make(s): | | | | <u>3.4.6.2.</u> | <u>Type(s):</u> | | | | 3.4.6.3. | Identification number: | | | | <u>3.4.7.</u> | Power controller | | | | 3.4.7.1. | <u>Make:</u> | | | | 3.4.7.2. | <u>Type:</u> | | | | 3.4.7.3. | Identification number: | | | | 3.6.5. | <u>Lubricant temperature</u> | | | | | Minimum: K — maximum: K | | | | 3.8. | <u>Lubrication system</u> | | | | 3.8.1. | <u>Description of the system</u> | | | | 3.8.1.1. | Position of lubricant reservoir: | | | | 3.8.1.2. | Feed system (by pump/injection into intake/mixing with fuel, etc.) (1) | | | | 3.8.2. | <u>Lubricating pump</u> | | | | 3.8.2.1. | <u>Make(s):</u> | | | | 3.8.2.2. | <u>Type(s):</u> | | | | 3.8.3. | Mixture with fuel | | | | 3.8.3.1. | Percentage: | | | | 3.8.4. | Oil cooler: yes/no (¹) | | | | <u>3.8.4.1.</u> | Drawing(s): or | | | | 3.8.4.1.1. | Make(s): | | | | |-------------------|--|--|--|-------------------| | 3.8.4.1.2. | Type(s): | | | | | 3.8.5. | Lubricant specification | ı:W | | | | <u>4.</u> | TRANSMISSION (P) | | | | | 4.4. | Clutch(es) | | | | | 4.4.1. | <u>Type:</u> | | | | | 4.4.2. | Maximum torque conv | ersion: | | | | 4.5. | <u>Gearbox</u> | | | | | 4.5.1. | Type (manual/automat | ic/CVT (continuousl | y variable transmission | n)) (¹) | | 4.5.1.4. | Torque rating: | | | | | 4.5.1.5. | Number of clutches: | <u>.</u> | | | | 4.6. | Gear ratios | | | | | | Maximum for CVT 1 2 3 Minimum for CVT | Internal gearbox ratios (ratios of engine to gearbox output shaft revolutions) | Final drive ratio(s) (ratio of gearbox output shaft to driven wheel revolutions) | Total gear ratios | | 4.7. | Maximum vehicle design speed (in km/h) (^q): | | | | | 4.12. | Gearbox lubricant:V | <u>V</u> | | | | <u>6.</u> | SUSPENSION | | | | | 6.6. | Tyres and wheels | | | | | 6.6.1. | Tyre/wheel combination(s) | | | | | 6.6.1.1. | Axles | | | | | 6.6.1.1.1. | <u>Axle 1:</u> | | | | | 6.6.1.1.1.1. | Tyre size designation | | | | | <u>6.6.1.1.2.</u> | <u>Axle 2:</u> | | | | | 6.6.1.1.2.1. | Tyre size designation | | | | | | etc. | | | | | <u>6.6.2.</u> | Upper and lower limits | of rolling radii | | | | <u>6.6.2.1.</u> | <u>Axle 1:</u> | | | | | <u>6.6.2.2.</u> | <u>Axle 2:</u> | | | |-------------------|---|--|--| | <u>6.6.3.</u> | Tyre pressure(s) as recommended by the vehicle manufacturer: kPa | | | | <u>9.</u> | BODYWORK | | | | 9.1. | Type of bodywork (c): | | | | <u>12.</u> | MISCELLANEOUS | | | | 12.10. | Devices or systems with driver selectable modes which influence CO ₂ emissions, electric energy consumption and/or criteria emissions and do not have a predominant mode: yes/no (¹) | | | | <u>12.10.1.</u> | Charge sustaining test (if applicable) (state for each device or system) | | | | <u>12.10.1.0.</u> | Predominant mode under CS condition: yes/no (1) | | | | 12.10.1.0.1. | Predominant mode under CS condition: (if applicable) | | | | 12.10.1.1. | Best case mode: (if applicable) | | | | 12.10.1.2. | Worst case mode: (if applicable) | | | | 12.10.1.3. | Mode which enables the vehicle to follow the reference test cycle: (in case no predominant mode under CS condition and only one mode is able to follow the reference test cycle) | | | | <u>12.10.2.</u> | Charge depleting test (if applicable) (state for each device or system) | | | | 12.10.2.0. | Predominant mode under CD condition: yes/no (1) | | | | 12.10.2.0.1. | Predominant mode under CD condition: (if applicable) | | | | 12.10.2.1. | Most energy consuming mode: (if applicable) | | | | 12.10.2.2. | Mode which enables the vehicle to follow the reference test cycle: (in case no predominant mode under CD condition and only one mode is able to follow the reference test cycle) | | | | 12.10.3. | Type 1 test (if applicable) (state for each device or system) | | | | 12.10.3.1. | Best case mode: | | | | 12.10.3.2. | Worst case mode: | | | #### **Explanatory notes** - (1) Delete where not applicable (there are cases where nothing needs to be deleted when more than one entry is applicable). - (2) Specify the tolerance. - (3) Please fill in here the upper and lower values for each variant. - (7) Optional equipment that affects the dimensions of the vehicle shall be specified. - (c) As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/TRANS/WP.29/78/Rev.6, para. 2. - - $\underline{www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html.}$ - (f) Where there is one version with a normal cab and another with a sleeper cab, both sets of masses and dimensions are to be stated. - (e) Standard ISO 612: 1978 Road vehicles Dimensions of motor vehicles and towed vehicles terms and definitions. - (h) The mass of the driver is assessed at 75 kg. - The liquid containing systems (except those for used water that must remain empty) are filled to 100 % of the capacity specified by the manufacturer. - (i) For trailers or semi-trailers, and for vehicles coupled with a trailer or a semi-trailer, which exert a significant vertical load on the coupling device or the fifth wheel, this load, divided by standard acceleration of gravity, is included in the maximum technically permissible mass. - (k) In the case of a vehicle that can run either on petrol, diesel, etc., or also in combination with another fuel, items shall be repeated. In the case of non-conventional engines and systems, particulars equivalent to those referred to here shall be supplied by the manufacturer. - This value shall be calculated ($\pi = 3.1416$) and rounded off to the nearest cm³. Determined in accordance with the requirements of UN Regulation No. 85. The specified particulars are to be given for any proposed variants. With respect to trailers, maximum speed permitted by the manufacturer. - (q) # Annex 2 # Communication (maximum format: A4 (210 x 297 mm)) | | issued by: | Name of administration: | |------------|------------|-------------------------| | | | | | — \ | | | | 1 N | | | | L/ | | | | | | | Concerning:² Approval granted Approval extended Approval refused Approval withdrawn Production definitively discontinued of a vehicle type with regard to the emission of gaseous pollutants by the engine pursuant to UN Regulation No. RDE | 11 | | | | |------------|---|--|--| | Reason fo | or extension: | | | | Section I | | | | | 0.1. | Make (trade
name of manufacturer): | | | | 0.2. | Type: | | | | 0.2.1. | Commercial name(s) (if available): | | | | 0.3. | Means of identification of type if marked on the vehicle ³ | | | | 0.3.1. | Location of that marking: | | | | 0.4. | Category of vehicle:4 | | | | 0.5. | Name and address of manufacturer: | | | | 0.8. | Name(s) and address(es) of assembly plant(s): | | | | 0.9. | If applicable, name and address of manufacturer's representative: | | | | 1.0. | Remarks: | | | | Section II | | | | | 1. | Additional information (where applicable): [(see addendum)] | | | | 2. | Technical Service responsible for carrying out the tests: | | | | 3. | Dates of RDE test report: | | | Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provisions in the Regulation). ² Strike out what does not apply. ³ If the means of identification of type contains characters not relevant to describe the vehicle, component or separate technical unit types covered by this information document, such characters shall be represented in the documentation by the symbol '?' (e.g. ABC??123??). ⁴ As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/TRANS/WP.29/78/Rev.3, para. 2. - www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html. | 4. | Number of RDE test reports: | | | | |--------------|---|--|--|--| | 5. | Remarks (if any): [(see addendum)] | | | | | 6. | Place: | | | | | 7. | Date: | | | | | 8. | Signature: | | | | | | | | | | | Attachments: | 1. Information package. | | | | | | 2. Test reports (as prescribed in [xxx])paragraph 10.8. of this Regulation) | | | | [THIS ANNEX IS TO BE COMPLETED. AN ADDENDUM MAY BE ADDED] # Annex 3 # **Arrangement of the Approval Mark** In the approval mark issued and affixed to a vehicle in conformity with paragraph $4\underline{5}$ of this Regulation, the type approval number shall be accompanied by an alphanumeric character reflecting the level that the approval is limited to. This annex outlines the appearance of this mark and gives an example how it shall be composed. The following schematic graphic presents the general lay-out, proportions and contents of the marking. The meaning of numbers and alphabetical character are identified, and sources to determine the corresponding alternatives for each approval case are also referred. The following graphic is a practical example of how the marking should be composed. ¹ Number of country according to footnote in paragraph 5.4.1. of this Regulation. ## Annex 4 # Test procedure for vehicle emissions testing with a portable emissions measurement system (PEMS) #### 1. Introduction This annex describes the test procedure to determine exhaust emissions from light passenger and commercial vehicles using a Portable Emissions Measurement System. ## 2. Symbols, Parameters and Units | p_{e} | _ | evacuated pressure [kPa] | | |-------------------|---|--|--| | q_{vs} | | volume flow rate of the system [l/min] | | | ppmC ₁ | | parts per million carbon equivalent | | | V_{s} | | system volume [l] | | ## 3. General requirements # 3.1. PEMS The test shall be carried out with a PEMS, composed of components specified in paragraphs 3.1.1. to 3.1.5. If applicable, a connection with the vehicle ECU may be established to determine relevant engine and vehicle parameters as specified in paragraph 3.2. - 3.1.1. Analysers to determine the concentration of pollutants in the exhaust gas. - 3.1.2. One or multiple instruments or sensors to measure or determine the exhaust mass flow. - 3.1.3. A GNSS receiver to determine the position, altitude and, speed of the vehicle. - 3.1.4. If applicable, sensors and other appliances being not part of the vehicle, e.g., to measure ambient temperature, relative humidity and air pressure. - 3.1.5. An energy source independent of the vehicle to power the PEMS. ## 3.2. Test parameters Test parameters, as specified in Table A4/1, shall be measured at a constant frequency of 1.0 Hz or higher and recorded and reported in accordance with the requirements of paragraph 10. of Annex 7 at a sampling frequency of 1.0 Hz. If ECU parameters are obtained, these may be obtained at a substantially higher frequency but the recording rate shall be 1.0 Hz. The PEMS analysers, flow-measuring instruments and sensors shall comply with the requirements laid down in Annexes 5 and 6. Table A4/1 **Test parameters** | Parameter | Recommended unit | Source ⁴ | |---|--------------------|---------------------| | THC concentration ⁵ , ⁶ (if applicable) | ppm C ₁ | Analyser | ⁴ Multiple parameter sources may be used. ⁵ to be measured on a wet basis or to be corrected as described in paragraph 5.1. of Annex 7 ⁶ parameter only mandatory if measurement required for compliance with the limits | Parameter | Recommended unit | Source ⁴ | |--|--------------------|--| | CH ₄ concentration ^{5,6} (if applicable) | ppm C ₁ | Analyser | | NMHC concentration ^{5,6} (if applicable) | ppm C ₁ | Analyser ⁷ | | CO concentration ^{5,6} | ppm | Analyser | | CO ₂ concentration ⁵ | ppm | Analyser | | NO _X concentration ^{5,6} | ppm | Analyser ⁸ | | PN concentration ⁶ | $\#/m^3$ | Analyser | | Exhaust mass flow rate | kg/s | EFM, any methods described in paragraph 7. of Annex 5. | | Ambient humidity | % | Sensor | | Ambient temperature | K | Sensor | | Ambient pressure | kPa | Sensor | | Vehicle speed | km/h | Sensor, GNSS, or ECU9 | | Vehicle latitude | Degree | GNSS | | Vehicle longitude | Degree | GNSS | | Vehicle altitude ¹⁰ , ¹¹ | m | GNSS or Sensor | | Exhaust gas temperature ¹⁰ | K | Sensor | | Engine coolant temperature ¹⁰ | K | Sensor or ECU | | Engine speed ¹⁰ | RPM | Sensor or ECU | | Engine torque ¹⁰ | Nm | Sensor or ECU | | Torque at driven axle ¹⁰ (if applicable) | Nm | Rim torque meter | | Pedal position ¹⁰ | % | Sensor or ECU | | Engine fuel flow ¹² (if applicable) | g/s | Sensor or ECU | | Engine intake air flow ¹² (if applicable) | g/s | Sensor or ECU | | Fault status ¹⁰ | _ | ECU | | Intake air flow temperature | K | Sensor or ECU | | Regeneration status ¹⁰ (if applicable) | _ | ECU | may be calculated from THC and CH₄ concentrations according to paragraph 6.2. to Annex 7. may be calculated from measured NO and NO₂ concentrations. method to be chosen according to paragraph 4.7. of this annex. to be determined only if necessary to verify the vehicle status and operating conditions. ¹¹ The preferable source is the ambient pressure sensor. ¹² to be determined only if indirect methods are used to calculate exhaust mass flow rate as described in paragraphs 7.2. and 7.4. of Annex 7. | Parameter | Recommended unit | Source ⁴ | |--|------------------|---------------------| | Engine oil temperature ¹⁰ | K | Sensor or ECU | | Actual gear ¹⁰ | # | ECU | | Desired gear (e.g. gear shift indicator) ¹⁰ | # | ECU | | Other vehicle data ¹⁰ | unspecified | ECU | #### 3.4. Installation of PEMS #### 3.4.1. General: The installation of the PEMS shall follow the instructions of the PEMS manufacturer and the local health and safety regulations. When the PEMS is installed inside the vehicle, the vehicle should be equipped with gas monitors or warning systems for hazardous gases (e.g. CO). The PEMS should be installed as to minimise electromagnetic interferences during the test as well as exposure to shocks, vibration, dust and variability in temperature. The installation and operation of the PEMS shall be such that it avoids leakage and minimise heat loss. The installation and operation of PEMS shall not change the nature of the exhaust gas nor unduly increase the length of the tailpipe. To avoid the generation of particles, connectors shall be thermally stable at the exhaust gas temperatures expected during the test. It is recommended to avoid the use elastomer connectors to connect the vehicle exhaust outlet and the connecting tube. Elastomer connectors, if used, shall have no contact with the exhaust gas to avoid artefacts. If the test performed with the use of elastomer connectors fails, the test shall be repeated without the use of elastomer connectors. ## 3.4.2. Permissible backpressure The installation and operation of the PEMS sampling probes shall not unduly increase the pressure at the exhaust outlet in a way that may influence the representativeness of the measurements. It is thus recommended that only one sampling probe is installed in the same plane. If technically feasible, any extension to facilitate the sampling or connection with the exhaust mass flow meter shall have an equivalent, or larger, cross sectional area than the exhaust pipe. ## 3.4.3. Exhaust mass flow meter Whenever used, the exhaust mass flow meter shall be attached to the vehicle's tailpipe(s) in accordance with the recommendations of the EFM manufacturer. The measurement range of the EFM shall match the range of the exhaust mass flow rate expected during the test. It is recommended to select the EFM so that the maximum expected flow rate during the test reaches at least 75 per cent of the EFM full range but does not exceed the EFM full range. The installation of the EFM and any exhaust pipe adaptors or junctions shall not adversely affect the operation of the engine or exhaust after-treatment system. A minimum of four pipe diameters or 150 mm of straight tubing, whichever is larger, shall be placed at either side of the flowsensing element. When testing a multi-cylinder engine with a branched exhaust manifold, it is recommended to position the exhaust mass flow meter downstream of where the manifolds combine and to increase the cross section of the piping such as to
have an equivalent, or larger, cross sectional area from which to sample. If this is not feasible, exhaust flow measurements with several exhaust mass flow meters may be used. The wide variety of exhaust pipe configurations, dimensions and exhaust mass flow rates may require compromises, guided by good engineering judgement, when selecting and installing the EFM(s). It is permissible to install an EFM with a diameter smaller than that of the exhaust outlet or the total cross-sectional area of multiple outlets, providing it improves measurement accuracy and does not adversely affect the operation or the exhaust after-treatment as specified in paragraph 3.4.2. It is recommended to document the EFM set-up using photographs. #### 3.4.4. Global Positioning System (GNSS) The GNSS antenna shall be mounted as near as possible to the highest location on the vehicle, so as to ensure good reception of the satellite signal. The mounted GNSS antenna shall interfere as little as possible with the vehicle operation. #### 3.4.5. Connection with the Engine Control Unit (ECU) If desired, relevant vehicle and engine parameters listed in Table 1 can be recorded by using a data logger connected with the ECU or the vehicle network through national or international standards, such as ISO 15031-5 or SAE J1979, OBD-II, EOBD or WWH-OBD. If applicable, manufacturers shall disclose labels to allow the identification of required parameters. #### 3.4.6. Sensors and auxiliary devices Vehicle speed sensors, temperature sensors, coolant thermocouples or any other measurement device not part of the vehicle shall be installed to measure the parameter under consideration in a representative, reliable and accurate manner without unduly interfering with the vehicle operation and the functioning of other analysers, flow-measuring instruments, sensors and signals. Sensors and auxiliary equipment shall be powered independently of the vehicle. It is permitted to power any safety-related illumination of fixtures and installations of PEMS components outside of the vehicle's cabin by the vehicle's battery. ## 3.5. Emissions sampling Emissions sampling shall be representative and conducted at locations of well-mixed exhaust, where the influence of ambient air downstream of the sampling point is minimal. If applicable, emissions shall be sampled downstream of the exhaust mass flow meter, respecting a distance of at least 150 mm to the flow sensing element. The sampling probes shall be fitted at least 200 mm or three times the inner diameter of the exhaust pipe, whichever is larger, upstream of the point at which the exhaust gas exits the PEMS sampling installation into the environment. If the PEMS feeds part of the sample back to the exhaust flow, this shall occur downstream of the sampling probe in a manner that does not affect the nature of the exhaust gas at the sampling point(s). If the length of the sampling line is changed, the system transport times shall be verified and, if necessary, corrected. If the vehicle is equipped with more than one tailpipe then all functioning tailpipes shall be connected before sampling and measuring exhaust flow. If the engine is equipped with an exhaust after-treatment system, the exhaust sample shall be taken downstream of the exhaust after-treatment system. When testing a vehicle with a branched exhaust manifold, the inlet of the sampling probe shall be located sufficiently far downstream so as to ensure that the sample is representative of the average exhaust emissions of all cylinders. In multi-cylinder engines, having distinct groups of manifolds, such as in a 'V' engine configuration, the sampling probe shall be positioned downstream of where the manifolds combine. If this is technically not feasible, multi-point sampling at locations of well-mixed exhaust may be used. In this case, the number and location of sampling probes shall match as far as possible those of the exhaust mass flow meters. In case of unequal exhaust flows, proportional sampling or sampling with multiple analysers shall be considered. If particles are measured, they shall be sampled from the centre of the exhaust stream. If several probes are used for emissions sampling, the particle sampling probe should be placed upstream of the other sampling probes. The particle sampling probe should not interfere with the sampling of gaseous pollutants. The type and specifications of the probe and its mounting shall be documented in detail. If hydrocarbons are measured, the sampling line shall be heated to $463 \pm 10 \, \text{K} (190 \pm 10 \, ^{\circ}\text{C})$. For the measurement of other gaseous components, with or without cooler, the sampling line shall be kept at a minimum of 333 K (60 $^{\circ}\text{C}$) to avoid condensation and to ensure appropriate penetration efficiencies of the various gases. For low pressure sampling systems, the temperature can be lowered correspondingly to the pressure decrease provided that the sampling system ensures a penetration efficiency of 95 per cent for all regulated gaseous pollutants. If particles are sampled and not diluted at the tailpipe, the sampling line from the raw exhaust sample point to the point of dilution or particle detector shall be heated to a minimum of 373 K (100 $^{\circ}\text{C}$). The residence time of the sample in the particle sampling line shall be less than 3 s until reaching first dilution or the particle detector. All parts of the sampling system from the tailpipe up to the particle detector, which are in contact with raw or diluted exhaust gas, shall be designed to minimize deposition of particles. All parts shall be made from antistatic material to prevent electrostatic effects. ## 4. Pre-test procedures #### 4.1. PEMS leak check After the installation of the PEMS is completed, a leak check shall be performed at least once for each PEMS-vehicle installation as prescribed by the PEMS manufacturer or as follows. The probe shall be disconnected from the exhaust system and the end plugged. The analyser pump shall be switched on. After an initial stabilization period, all flow meters shall read approximately zero in the absence of a leak. If this is not the case the sampling lines shall be checked and the fault shall be corrected. The leakage rate on the vacuum side shall not exceed 0.5 per cent of the inuse flow rate for the portion of the system being checked. The analyser flows and bypass flows may be used to estimate the in-use flow rate. Alternatively, the system may be evacuated to a pressure of at least 20 kPa vacuum (80 kPa absolute). After an initial stabilization period the pressure increase Δp (kPa/min) in the system shall not exceed: $$\Delta p = \frac{p_e}{V_s} \times q_{vs} \times 0.005$$ where: p_e is the evacuated pressure [Pa], V_s is the system volume [1], q_{vs} is is volume flow rate of the system [1/min]. Alternatively, a concentration step change at the beginning of the sampling line shall be introduced by switching from zero to span gas while maintaining the same pressure conditions as under normal system operation. If for a correctly calibrated analyser after an adequate period of time the reading is \leq 99 per cent compared to the introduced concentration, the leakage problem shall be corrected. ## 4.2. Starting and stabilizing the PEMS The PEMS shall be switched on, warmed up and stabilized in accordance with the specifications of the PEMS manufacturer until key functional parameters (e.g., pressures, temperatures and flows) have reached their operating set points before test start. To ensure correct functioning, the PEMS may be kept switched on or can be warmed up and stabilized during vehicle conditioning. The system shall be free of errors and critical warnings. ## 4.3. Preparing the sampling system The sampling system, consisting of the sampling probe and sampling lines shall be prepared for testing by following the instruction of the PEMS manufacturer. It shall be ensured that the sampling system is clean and free of moisture condensation. ## 4.4. Preparing the Exhaust mass Flow Meter (EFM) If used for measuring the exhaust mass flow, the EFM shall be purged and prepared for operation in accordance with the specifications of the EFM manufacturer. This procedure shall, if applicable, remove condensation and deposits from the lines and the associated measurement ports. ## 4.5. Checking and calibrating the analysers for measuring gaseous emissions Zero and span calibration adjustments of the analysers shall be performed using calibration gases that meet the requirements of paragraph 5. of Annex 5. The calibration gases shall be chosen to match the range of pollutant concentrations expected during the RDE test. To minimise analyser drift, it is recommended to conduct the zero and span calibration of analysers at an ambient temperature that resembles, as closely as possible, the temperature experienced by the test equipment during the trip. ## 4.6. Checking the analyser for measuring particle emissions The zero level of the analyser shall be recorded by sampling HEPA filtered ambient air at an appropriate sampling point, ideally at the inlet of the sampling line. The signal shall be recorded at a constant frequency which is a multiple of 1.0 Hz averaged over a period of 2 minutes. The final concentration shall be within the manufacturer's specifications, but shall not exceed 5,000 particles per cubic-centimetre. # 4.7. Determining vehicle speed Vehicle speed shall be determined by at least one of the following methods: - (a) a sensor (e.g., optical or micro-wave sensor); if vehicle speed is determined by a sensor, the speed measurements shall comply with the requirements of paragraph 8. of Annex 5, or alternatively, the total trip distance determined by the sensor shall be compared with a reference distance obtained from a digital road network or topographic map. The total trip distance determined by the sensor shall deviate by no more than 4
per cent from the reference distance. - (b) the ECU; if vehicle speed is determined by the ECU, the total trip distance shall be validated according to paragraph 34. of Annex 6 and the ECU speed signal adjusted, if necessary, to fulfil the requirements of paragraph 34. of Annex 6. Alternatively, the total trip distance as determined by the ECU can be compared with a reference distance obtained from a digital road network or topographic map. The total trip distance determined by the ECU shall deviate by no more than 4 per cent from the reference. - (c) a GNSS; if vehicle speed is determined by a GNSS, the total trip distance shall be checked against the measurements of another method according to paragraph 6.5. of Annex 4. ## 4.8. Check of PEMS set up The correctness of connections with all sensors and, if applicable, the ECU shall be verified. If engine parameters are retrieved, it shall be ensured that the ECU reports values correctly (e.g., zero engine speed [rpm] while the combustion engine is in key-on-engine-off status). The PEMS shall function free of errors and critical warnings. #### 5. Emissions test ## 5.1. Test start Sampling, measurement and recording of parameters shall begin prior to the test start (as defined in paragraph 3.8.5. of this Regulation). Before the test start it shall be confirmed that all necessary parameters are recorded by the data logger. To facilitate time alignment, it is recommended to record the parameters that are subject to time alignment either by a single data recording device or with a synchronised time stamp. #### 5.2. Test Sampling, measurement and recording of parameters shall continue throughout the on-road test of the vehicle. The engine may be stopped and started, but emissions sampling and parameter recording shall continue. Repeated stalling of the engine (i.e. unintentional stopping of the engine) should be avoided during an RDE trip. Any warning signals, suggesting malfunctioning of the PEMS, shall be documented and verified. If any error signal(s) appear during the test, the test shall be invalid. Parameter recording shall reach a data completeness of higher than 99 per cent. Measurement and data recording may be interrupted for less than 1 per cent of the total trip duration but for no more than a consecutive period of 30 s solely in the case of unintended signal loss or for the purpose of PEMS system maintenance. Interruptions may be recorded directly by the PEMS but it is not permissible to introduce interruptions in the recorded parameter via the pre-processing, exchange or post-processing of data. If conducted, auto zeroing shall be performed against a traceable zero standard similar to the one used to zero the analyser. It is strongly recommended to initiate PEMS system maintenance during periods of zero vehicle speed. #### 5.3. Test end Excessive idling of the engine after the completion of the trip shall be avoided. The data recording shall continue after the test end (as defined in paragraph 3.8.6. of this Regulation) and until the response time of the sampling systems has elapsed. For vehicles with a signal detecting regeneration, the OBD-check shall be performed and documented directly after data recording and before any further driven distance is driven. ## 6. Post-test procedure ## 6.1. Checking the analysers for measuring gaseous emissions The zero and span of the analysers of gaseous components shall be checked by using calibration gases identical to the ones applied under paragraph 4.5. to evaluate the analyser's zero and response drift compared to the pre-test calibration. It is permissible to zero the analyser prior to verifying the span drift, if the zero drift was determined to be within the permissible range. The post-test drift check shall be completed as soon as possible after the test and before the PEMS, or individual analysers or sensors, are turned off or have switched into a non-operating mode. The difference between the pre-test and post-test results shall comply with the requirements specified in Table A4/2. Table A4/2 Permissible analyser drift over a PEMS test | Pollutant | Absolute Zero response drift | Absolute Span response drift ¹³ | |-----------------|---|--| | CO ₂ | ≤ 2000 ppm per test | \leq 2 % of reading or \leq 2000 ppm per test, whichever is larger | | CO | ≤ 75 ppm per test | \leq 2 % of reading or \leq 75 ppm per test, whichever is larger | | NO_X | \leq 5 ppm per test | \leq 2 % of reading or \leq 5 ppm per test, whichever is larger | | CH ₄ | $\leq 10 \text{ ppm C}_1 \text{ per test}$ | \leq 2 % of reading or \leq 10 ppm C_1 per test, whichever is larger | | THC | $\leq 10 \text{ ppm } C_1 \text{ per test}$ | \leq 2 % of reading or \leq 10 ppm C_1 per test, whichever is larger | If the difference between the pre-test and post-test results for the zero and span drift is higher than permitted, all test results shall be invalid and the test repeated. 6.2. Checking the analyser for measuring particle emissions The zero level of the analyser shall be recorded in accordance with paragraph 4.6. 6.3. Checking the on-road emission measurements The span gas concentration that was used for the calibration of the analysers in accordance with paragraph 4.5. at the test start shall cover at least 90 per cent of the concentration values obtained from 99 per cent of the measurements of the valid parts of the emissions test. It is permissible that 1 per cent of the total number of measurements used for evaluation exceeds the concentration of the span gas used by up to a factor of two. If these requirements are not met, the test shall be invalid. 6.4. Consistency check of vehicle altitude In case altitude has only been measured with a GNSS, the GNSS altitude data shall be checked for consistency and, if necessary, corrected. The consistency of data shall be checked by comparing the latitude, longitude and altitude data obtained from the GNSS with the altitude indicated by a digital terrain model or a topographic map of suitable scale. Measurements that deviate by more than 40 m from the altitude depicted in the topographic map shall be manually corrected and marked. The original and uncorrected data shall be retained and any corrected data shall be marked. The instantaneous altitude data shall be checked for completeness. Data gaps shall be completed by data interpolation. The correctness of interpolated data shall be verified by a topographic map. It is recommended to correct interpolated data if the following condition applies: $$\left|h_{GPS}(t) - h_{map}(t)\right| > 40 \ m$$ ¹³ If the zero drift is within the permissible range, it is permissible to zero the analyser prior to verifying the span drift. The altitude correction shall be applied so that: $$\left|h(t) - h_{map}(t)\right| < 40 \, m$$ where: | h(t) | _ | vehicle altitude after the screening and principle check of data quality at data point t [m above sea level] | |-----------------------|---|--| | h _{GNSS} (t) | _ | vehicle altitude measured with GNSS at data point t [m above sea level] | | h _{map} (t) | | vehicle altitude based on topographic map at data point t [m above sea level] | #### 6.5. Consistency check of GNSS vehicle speed The vehicle speed as determined by the GNSS shall be checked for consistency by calculating and comparing the total trip distance with reference measurements obtained from either a sensor, the validated ECU or, alternatively, from a digital road network or topographic map. It is mandatory to correct GNSS data for obvious errors, e.g., by applying a dead reckoning sensor, prior to the consistency check. The original and uncorrected data shall be retained and any corrected data shall be marked. The corrected data shall not exceed an uninterrupted time period of 120 s or a total of 300 s. The total trip distance as calculated from the corrected GNSS data shall deviate by no more than 4 per cent from the reference. If the GNSS data do not meet these requirements and no other reliable speed source is available, the test shall be invalid. #### 6.6. Consistency check of the ambient temperature The ambient temperature data shall be checked for consistency and inconsistent values corrected by substituting outliers with the average of the neighbouring values. The original and uncorrected data shall be retained and any corrected data shall be marked. # Annex 5 # Specifications and calibration of PEMS components and signals ## 1. Introduction This annex sets out the specifications and calibration of PEMS components and signals. # 2. Symbols, Parameters and Units | A | — | undiluted CO ₂ concentration [%] | |--------------------------------|---|---| | a_0 | — | y-axis intercept of the linear regression line | | a_1 | — | slope of the linear regression line | | В | — | diluted CO ₂ concentration [%] | | C | — | diluted NO concentration [ppm] | | c | — | analyser response in the oxygen interference test | | C_b | | Measured diluted NO concentration through bubbler | | $c_{\mathrm{FS,b}}$ | _ | full scale HC concentration in step (b) [ppmC ₁] | | $c_{ m FS,d}$ | _ | full scale HC concentration in step (d) [ppmC ₁] | | C _{HC(w/NMC} | _ | HC concentration with CH ₄ or C ₂ H ₆ flowing through the NMC [ppmC ₁] | | CHC(w/o | — | HC concentration with CH ₄ or C ₂ H ₆ bypassing the NMC [ppmC ₁] | | $c_{ m m,b}$ | _ | measured HC concentration in step (b) [ppmC ₁] | | $c_{ m m,d}$ | _ | measured HC concentration in step (d) [ppmC ₁] | | $\mathcal{C}_{\mathrm{ref,b}}$ | _ | reference HC concentration in step (b) [ppmC ₁] | | $\mathcal{C}_{\mathrm{ref,d}}$ | _ | reference HC
concentration in step (d) [ppmC ₁] | | D | _ | undiluted NO concentration [ppm] | | D_{e} | _ | expected diluted NO concentration [ppm] | | E | _ | absolute operating pressure [kPa] | | $E_{\rm CO2}$ | _ | per cent CO ₂ quench | | E(d _p) | _ | PEMS-PN analyser efficiency | | E_{E} | | ethane efficiency | | $E_{ m H2O}$ | _ | per cent water quench | | E_{M} | _ | methane efficiency | | E _{O2} | _ | oxygen interference | | F | _ | water temperature [K] | | G | _ | saturation vapour pressure [kPa] | | Н | _ | water vapour concentration [%] | | H_{m} | _ | maximum water vapour concentration [%] | | $NO_{X,dry}$ | _ | moisture-corrected mean concentration of the stabilized NO _X recordings | | $NO_{X,m}$ | _ | mean concentration of the stabilized NO _X recordings | | $NO_{X,ref}$ | _ | reference mean concentration of the stabilized NO _X recordings | | r^2 | _ | coefficient of determination | | t_0 | _ | time point of gas flow switching [s] | | | | | | t ₁₀ | _ | time point of 10 % response of the final reading | |-----------------|---|--| | t ₅₀ | _ | time point of 50 % response of the final reading | | t ₉₀ | _ | time point of 90 % response of the final reading | | Tbd | _ | to be determined | | X | _ | independent variable or reference value | | x_{\min} | _ | minimum value | | Y | _ | dependent variable or measured value | ## 3. Linearity verification ## 3.1. General The accuracy and linearity of analysers, flow-measuring instruments, sensors and signals shall be traceable to international or national standards. Any sensors or signals that are not directly traceable (e.g., simplified flow-measuring instruments) shall be calibrated alternatively against chassis dynamometer laboratory equipment that has been calibrated against international or national standards. # 3.2. Linearity requirements All analysers, flow-measuring instruments, sensors and signals shall comply with the linearity requirements given in Table 1. If air flow, fuel flow, the air-to-fuel ratio or the exhaust mass flow rate is obtained from the ECU, the calculated exhaust mass flow rate shall meet the linearity requirements specified in Table A5/1. Table A5/1 Linearity requirements of measurement parameters and systems | Measurement parameter/instrument | $ x_{min} \times (a_1 - 1) + a_0 $ | Slope a ₁ | Standard error of the estimate SEE | Coefficient of determination r^2 | |----------------------------------|------------------------------------|-----------------------|------------------------------------|------------------------------------| | Fuel flow rate ¹⁴ | ≤ 1 % x _{max} | 0.98 - 1.02 | \leq 2 % of x_{max} | ≥ 0.990 | | Air flow rate ¹⁵ | ≤ 1 % x _{max} | 0.98 - 1.02 | \leq 2 % of x_{max} | ≥ 0.990 | | Exhaust mass flow rate | ≤ 2 % x _{max} | 0.97 – 1.03 | \leq 3 % of x_{max} | ≥ 0.990 | | Gas analysers | ≤ 0.5 % max | 0.99 – 1.01 | $\leq 1 \% \text{ of } x_{max}$ | ≥ 0.998 | | Torque ¹⁶ | ≤ 1 % x _{max} | 0.98 - 1.02 | \leq 2 % of x_{max} | ≥ 0.990 | | PN analysers ¹⁷ | ≤ 5 % x _{max} | $0.85 - 1.15^{18}$ | $\leq 10 \% \text{ of } x_{max}$ | ≥ 0.950 | ¹⁴ optional to determine exhaust mass flow. ¹⁵ optional to determine exhaust mass flow. ¹⁶ optional parameter. ¹⁷ The linearity check shall be verified with soot-like particles, as these are defined in paragraph 6.2. of this annex. $^{^{18}}$ To be updated based on error propagation and traceability charts. ## 3.3. Frequency of linearity verification The linearity requirements pursuant to paragraph 3.2. shall be verified: - (a) for each gas analyser at least every 12 months or whenever a system repair or component change or modification is made that could influence the calibration; - (b) for other relevant instruments, such as PN analysers, exhaust mass flow meters and traceably calibrated sensors, whenever damage is observed, as required by internal audit procedures or by the instrument manufacturer but no longer than one year before the actual test. The linearity requirements pursuant to paragraph 3.2. for sensors or ECU signals that are not directly traceable shall be performed using a measurement device with a traceable calibration on the chassis dynamometer, once for each PEMS-vehicle setup. #### 3.4. Procedure of linearity verification #### 3.4.1. General requirements The relevant analysers, instruments and sensors shall be brought to their normal operating condition according to the recommendations of their manufacturer. The analysers, instruments and sensors shall be operated at their specified temperatures, pressures and flows. #### 3.4.2. General procedure The linearity shall be verified for each normal operating range by executing the following steps: - (a) The analyser, flow-measuring instrument or sensor shall be set to zero by introducing a zero signal. For gas analysers, purified synthetic air or nitrogen shall be introduced to the analyser port via a gas path that is as direct and short as possible. - (b) The analyser, flow-measuring instrument or sensor shall be spanned by introducing a span signal. For gas analysers, an appropriate span gas shall be introduced to the analyser port via a gas path that is as direct and short as possible. - (c) The zero procedure of (a) shall be repeated. - (d) The linearity shall be verified by introducing at least 10, approximately equally spaced and valid, reference values (including zero). The reference values with respect to the concentration of components, the exhaust mass flow rate or any other relevant parameter shall be chosen to match the range of values expected during the emissions test. For measurements of exhaust mass flow, reference points below 5 per cent of the maximum calibration value can be excluded from the linearity verification. - (e) For gas analysers, known gas concentrations in accordance with paragraph 5. shall be introduced to the analyser port. Sufficient time for signal stabilisation shall be given. - (f) The values under evaluation and, if needed, the reference values shall be recorded at a constant frequency which is a multiple of 1.0 Hz over a period of 30 seconds. - (g) The arithmetic mean values over the 30 seconds period shall be used to calculate the least squares linear regression parameters, with the best-fit equation having the form: $$y = a_1 x + a_0$$ where: y is the actual value of the measurement system a_1 is the slope of the regression line x is the reference value a_0 is the y intercept of the regression line The standard error of estimate (SEE) of y on x and the coefficient of determination (r^2) shall be calculated for each measurement parameter and system. (h) The linear regression parameters shall meet the requirements specified in Table 1. ## 3.4.3. Requirements for linearity verification on a chassis dynamometer Non-traceable flow-measuring instruments, sensors or ECU signals, that cannot directly be calibrated according to traceable standards, shall be calibrated on a chassis dynamometer. The procedure shall follow, as far as applicable, the requirements of the UN Regulation No. [XXX] on WLTP. If necessary, the instrument or sensor to be calibrated shall be installed on the test vehicle and operated according to the requirements of Annex 4. The calibration procedure shall follow whenever possible the requirements of paragraph 3.4.2.. At least 10 appropriate reference values shall be selected as to ensure that at least 90 per cent of the maximum value expected to occur during the RDE test is covered. If a non-traceable flow-measuring instrument, sensor or ECU signal for determining exhaust flow is to be calibrated, a reference exhaust mass flow meter with traceable calibration or the CVS shall be attached to the vehicle's tailpipe. It shall be ensured that the vehicle exhaust is accurately measured by the exhaust mass flow meter according to paragraph 3.4.3. of Annex 4. The vehicle shall be operated by applying constant throttle at a constant gear selection and chassis dynamometer load. - 4. Analysers for measuring gaseous components - 4.1. Permissible types of analysers - 4.1.1. Standard analysers The gaseous components shall be measured with analysers specified in paragraph 4.1.4., Annex B5 to the UN Regulation No. [XXX] on WLTP. If an NDUV analyser measures both NO and NO₂, a NO₂/NO converter is not required. #### 4.1.2. *Alternative analysers* Any analyser not meeting the design specifications of paragraph 4.1.1. is permissible provided that it fulfils the requirements of paragraph 4.2. The manufacturer shall ensure that the alternative analyser achieves an equivalent or higher measurement performance compared to a standard analyser over the range of pollutant concentrations and co-existing gases that can be expected from vehicles operated with permissible fuels under moderate and extended conditions of valid RDE testing as specified in paragraphs 5., 6. and 7. of this annex. Upon request, the manufacturer of the analyser shall submit in writing supplemental information, demonstrating that the measurement performance of the alternative analyser is consistently and reliably in line with the measurement performance of standard analysers. Supplemental information shall contain: (a) a description of the theoretical basis and the technical components of the alternative analyser; - (b) a demonstration of equivalency with the respective standard analyser specified in paragraph 4.1.1. over the expected range of pollutant concentrations and ambient conditions of the type-approval test defined in the UN Regulation No. [XXX] on WLTP as well as a validation test as described in paragraph 3. of Annex 6 for a vehicle equipped with a spark-ignition and compression-ignition engine; the manufacturer of the analyser shall demonstrate the significance of equivalency within the permissible tolerances given in paragraph 3.3. of Annex 6. - (c) a demonstration of equivalency with
the respective standard analyser specified in paragraph 4.1.1. with respect to the influence of atmospheric pressure on the measurement performance of the analyser; the demonstration test shall determine the response to span gas having a concentration within the analyser range to check the influence of atmospheric pressure under moderate and extended altitude conditions defined in paragraph 5.2.. Such a test can be performed in an altitude environmental test chamber. - (d) a demonstration of equivalency with the respective standard analyser specified in paragraph 4.1.1. over at least three on-road tests that fulfil the requirements of this Annex. - (e) a demonstration that the influence of vibrations, accelerations and ambient temperature on the analyser reading does not exceed the noise requirements for analysers set out in paragraph 4.2.4. Approval authorities may request additional information to substantiate equivalency or refuse approval if measurements demonstrate that an alternative analyser is not equivalent to a standard analyser. ## 4.2. Analyser specifications #### 4.2.1. General In addition to the linearity requirements defined for each analyser in paragraph 3., the compliance of analyser types with the specifications laid down in paragraphs 4.2.2. to 4.2.8. shall be demonstrated by the analyser manufacturer. Analysers shall have a measuring range and response time appropriate to measure with adequate accuracy the concentrations of the exhaust gas components at the applicable emissions standard under transient and steady state conditions. The sensitivity of the analysers to shocks, vibration, aging, variability in temperature and air pressure as well as electromagnetic interferences and other impacts related to vehicle and analyser operation shall be limited as far as possible. # 4.2.2. Accuracy The accuracy, defined as the deviation of the analyser reading from the reference value, shall not exceed 2 per cent of reading or 0.3 per cent of full scale, whichever is larger. ## 4.2.3. Precision The precision, defined as 2.5 times the standard deviation of 10 repetitive responses to a given calibration or span gas, shall be no greater than 1 per cent of the full scale concentration for a measurement range equal or above 155 ppm (or ppmC₁) and 2 per cent of the full scale concentration for a measurement range of below 155 ppm (or ppmC₁). ## 4.2.4. Noise The noise shall not exceed 2 per cent of full scale. Each of the 10 measurement periods shall be interspersed with an interval of 30 seconds in which the analyser is exposed to an appropriate span gas. Before each sampling period and before each span period, sufficient time shall be given to purge the analyser and the sampling lines. ## 4.2.5. Zero response drift The drift of the zero response, defined as the mean response to a zero gas during a time interval of at least 30 seconds, shall comply with the specifications given in Table A5/2. #### 4.2.6. Span response drift The drift of the span response, defined as the mean response to a span gas during a time interval of at least 30 seconds, shall comply with the specifications given in Table A5/2. Table A5/2 Permissible zero and span response drift of analysers for measuring gaseous components under laboratory conditions | Pollutant | Absolute Zero response drift | Absolute Span response drift | |-----------------|--|--| | CO ₂ | \leq 1000 ppm over 4 h | ≤ 2 % of reading or ≤ 1000 ppm over 4 h, whichever is larger | | СО | \leq 50 ppm over 4 h | \leq 2 % of reading or \leq 50 ppm over 4 h, whichever is larger | | PN | 5000 particles per cubic centimetre over 4 h | According to manufacturer specifications | | NO_X | \leq 5 ppm over 4 h | \leq 2 % of reading or 5 ppm over 4 h, whichever is larger | | CH ₄ | $\leq 10 \text{ ppm } C_1$ | \leq 2 % of reading or \leq 10 ppm C_1 over 4 h, whichever is larger | | THC | $\leq 10 \text{ ppm } C_1$ | \leq 2 % of reading or \leq 10 ppm C_1 over 4 h, whichever is larger | ## 4.2.7. Rise time The rise time, defined as the time between the 10 per cent and 90 per cent response of the final reading (t_{10} to t_{90} ; see paragraph 4.4.), shall not exceed 3 seconds. ## 4.2.8. Gas drying Exhaust gases may be measured wet or dry. A gas-drying device, if used, shall have a minimal effect on the composition of the measured gases. Chemical dryers are not permitted. # 4.3. Additional requirements ## 4.3.1. General The provisions in paragraphs 4.3.2. to 4.3.5. define additional performance requirements for specific analyser types and apply only to cases in which the analyser under consideration is used for RDE emission measurements. ## 4.3.2. Efficiency test for NOX converters If a NO_X converter is applied, for example to convert NO_2 into NO for analysis with a chemiluminescence analyser, its efficiency shall be tested by following the requirements in paragraph 5.5. of Annex B5 to the UN Regulation No. [XXX] on WLTP. The efficiency of the NO_X converter shall be verified no longer than one month before the emissions test. ## 4.3.3. Adjustment of the Flame Ionisation Detector (FID) (a) Optimization of the detector response If hydrocarbons are measured, the FID shall be adjusted at intervals specified by the analyser manufacturer by following paragraph 5.4.1. of Annex B5 to the UN Regulation No. [XXX] on WLTP. A propane-in-air or propane-in-nitrogen span gas shall be used to optimize the response in the most common operating range. (b) Hydrocarbon response factors If hydrocarbons are measured, the hydrocarbon response factor of the FID shall be verified by following the provisions of paragraph 5.4.3. of Annex B5 to the UN Regulation No. [XXX] on WLTP, using propane-in-air or propane-in-nitrogen as span gases and purified synthetic air or nitrogen as zero gases, respectively. (c) Oxygen interference check The oxygen interference check shall be performed when introducing a FID into service and after major maintenance intervals. A measuring range shall be chosen in which the oxygen interference check gases fall in the upper 50 per cent. The test shall be conducted with the oven temperature set as required. The specifications of the oxygen interference check gases are described in paragraph 5.3.. The following procedure applies: - (i) The analyser shall be set at zero; - (ii) The analyser shall be spanned with a 0 per cent oxygen blend for positive ignition engines and a 21 per cent oxygen blend for compression ignition engines; - (iii) The zero response shall be rechecked. If it has changed by more than 0.5 per cent of full scale, steps (i) and (ii) shall be repeated; - (iv) The 5 per cent and 10 per cent oxygen interference check gases shall be introduced: - (v) The zero response shall be rechecked. If it has changed by more than ± 1 per cent of full scale, the test shall be repeated; - (vi) The oxygen interference E_{O2} [%] shall be calculated for each oxygen interference check gas in step (iv) as follows: $$E_{O2} = \frac{(c_{ref,d} - c)}{c_{ref,d}} \times 100$$ where the analyser response is: $$c = \frac{(c_{ref,d} \times c_{FS,b})}{c_{m,b}} \times \frac{c_{m,d}}{c_{FS,d}}$$ where: | C _{ref,b} | is the reference HC concentration in step (ii) [ppmC ₁] | |--------------------------------|--| | $\mathcal{C}_{\mathrm{ref,d}}$ | is the reference HC concentration in step (iv) [ppmC ₁] | | $c_{\mathrm{FS,b}}$ | is the full scale HC concentration in step (ii) [ppmC ₁] | | $\mathcal{C}_{\mathrm{FS,d}}$ | is the full scale HC concentration in step | | | (iv) [ppmC ₁] | |---------------------------|--| | C _{m,b} | is the measured HC concentration in step (ii) $[ppmC_1]$ | | $\mathcal{C}_{ ext{m,d}}$ | is the measured HC concentration in step (iv) [ppmC ₁] | - (vii) The oxygen interference E_{O2} shall be less than ± 1.5 per cent for all required oxygen interference check gases. - (viii) If the oxygen interference $E_{\rm O2}$ is higher than ± 1.5 per cent, corrective action may be taken by incrementally adjusting the air flow (above and below the manufacturer's specifications), the fuel flow and the sample flow. - (ix) The oxygen interference check shall be repeated for each new setting. ## 4.3.4. Conversion efficiency of the non-methane cutter (NMC) If hydrocarbons are analysed, a NMC can be used to remove non-methane hydrocarbons from the gas sample by oxidizing all hydrocarbons except methane. Ideally, the conversion for methane is 0 per cent and for the other hydrocarbons, represented by ethane, is 100 per cent. For the accurate measurement of NMHC, the two efficiencies shall be determined and used for the calculation of the NMHC emissions (see paragraph 6.2. of Annex 7). It is not necessary to determine the methane conversion efficiency in the case where the NMC-FID is calibrated according to method (b) in paragraph 6.2. of Annex 7 by passing the methane/air calibration gas through the NMC. ## (a) Methane conversion efficiency Methane calibration gas shall be flowed through the FID with and without bypassing the NMC; the two concentrations shall be recorded. The methane efficiency shall be determined as: $$E_M = 1 - \frac{c_{HC(w/NMC)}}{c_{HC(w/o\ NMC)}}$$ where: | C _{HC(w/NMC)} | is the HC concentration with CH ₄ flowing through the NMC [ppmC ₁] | |------------------------|---| | CHC(w/o NMC) | is the HC concentration with CH ₄ bypassing the NMC [ppmC ₁] | ## (b) Ethane conversion efficiency Ethane calibration gas shall be flowed through the FID with and without bypassing the NMC; the two concentrations shall be recorded. The ethane efficiency shall be determined as: $$E_E = 1 -
\frac{c_{HC(w/NMC)}}{c_{HC(w/o\ NMC)}}$$ where: | CHC(w/NMC) | is the HC concentration with C ₂ H ₆ flowing through the NMC [ppmC ₁] | |--------------|---| | CHC(w/o NMC) | is the HC concentration with C ₂ H ₆ bypassing the NMC [ppmC ₁] | ## 4.3.5. Interference effects #### (a) General Other gases than the ones being analysed can affect the analyser reading. A check for interference effects and the correct functionality of analysers shall be performed by the analyser manufacturer prior to market introduction at least once for each type of analyser or device addressed in paragraphs 4.3.5. (b) to (f). #### (b) CO analyser interference check Water and CO₂ can interfere with the measurements of the CO analyser. Therefore, a CO2 span gas, having a concentration of 80 to 100 per cent of the full scale of the maximum operating range of the CO analyser used during the test, shall be bubbled through water at room temperature and the analyser response recorded. The analyser response shall not be more than 2 per cent of the mean CO concentration expected during normal on-road testing or ± 50 ppm, whichever is larger. The interference check for H₂O and CO₂ may be run as separate procedures. If the H₂O and CO₂ levels used for the interference check are higher than the maximum levels expected during the test, each observed interference value shall be scaled down by multiplying the observed interference with the ratio of the maximum expected concentration value during the test and the actual concentration value used during this check. Separate interference checks with concentrations of H2O that are lower than the maximum concentration expected during the test may be run and the observed H₂O interference shall be scaled up by multiplying the observed interference with the ratio of the maximum H2O concentration value expected during the test and the actual concentration value used during this check. The sum of the two scaled interference values shall meet the tolerance specified in this point. ## (c) NO_X analyser quench check The two gases of concern for CLD and HCLD analysers are CO_2 and water vapour. The quench response to these gases is proportional to the gas concentrations. A test shall determine the quench at the highest concentrations expected during the test. If the CLD and HCLD analysers use quench compensation algorithms that utilize H_2O or CO_2 measurement analysers or both, quench shall be evaluated with these analysers active and with the compensation algorithms applied. ## (i) CO₂ quench check A CO₂ span gas having a concentration of 80 to 100 per cent of the maximum operating range shall be passed through the NDIR analyser; the CO₂ value shall be recorded as A. The CO₂ span gas shall then be diluted by approximately 50 per cent with NO span gas and passed through the NDIR and CLD or HCLD; the CO₂ and NO values shall be recorded as B and C, respectively. The CO₂ gas flow shall then be shut off and only the NO span gas shall be passed through the CLD or HCLD; the NO value shall be recorded as D. The per cent quench shall be calculated as: $$E_{CO2} = \left[1 - \left(\frac{C \times A}{(D \times A) - (D \times B)}\right)\right] \times 100$$ where: | A | is the undiluted CO ₂ concentration measured with the NDIR [%] | |---|---| | В | is the diluted CO ₂ concentration measured with the NDIR [%] | | С | is the diluted NO concentration measured with the CLD or HCLD [ppm] | | D | is the undiluted NO concentration measured with the CLD or HCLD [ppm] | Alternative methods of diluting and quantifying of CO₂ and NO span gas values such as dynamic mixing/blending are permitted upon approval of the approval authority. #### (ii) Water quench check This check applies to measurements of wet gas concentrations only. The calculation of water quench shall consider dilution of the NO span gas with water vapour and the scaling of the water vapour concentration in the gas mixture to concentration levels that are expected to occur during an emissions test. A NO span gas having a concentration of 80 per cent to 100 per cent of full scale of the normal operating range shall be passed through the CLD or HCLD; the NO value shall be recorded as D. The NO span gas shall then be bubbled through water at room temperature and passed through the CLD or HCLD; the NO value shall be recorded as C_b . The analyser's absolute operating pressure and the water temperature shall be determined and recorded as E and F, respectively. The mixture's saturation vapour pressure that corresponds to the water temperature of the bubbler F shall be determined and recorded as G. The water vapour concentration H [%] of the gas mixture shall be calculated as: $$H = \frac{G}{E} \times 100$$ The expected concentration of the diluted NO-water vapour span gas shall be recorded as D_e after being calculated as: $$D_e = D \times \left(1 - \frac{H}{100}\right)$$ For diesel exhaust, the maximum concentration of water vapour in the exhaust gas (in per cent) expected during the test shall be recorded as $H_{\rm m}$ after being estimated, under the assumption of a fuel H/C ratio of 1.8/1, from the maximum CO₂ concentration in the exhaust gas A as follows: $$H_m = 0.9 \times A$$ The per cent water quench shall be calculated as: $$E_{H2O} = \left(\frac{D_e - C_b}{D_e}\right) \times \left(\frac{H_m}{H}\right) \times 100$$ where: | D_{e} | is the expected diluted NO concentration [ppm] | |------------------|--| | C_b | is the measured diluted NO concentration [ppm] | | H_{m} | is the maximum water vapour concentration [%] | | Н | is the actual water vapour concentration [%] | #### (iii) Maximum allowable quench The combined CO₂ and water quench shall not exceed 2 per cent of full scale. ## (d) Quench check for NDUV analysers Hydrocarbons and water can positively interfere with NDUV analysers by causing a response similar to that of NO_X. The manufacturer of the NDUV analyser shall use the following procedure to verify that quench effects are limited: - (i) The analyser and chiller shall be set up by following the operating instructions of the manufacturer; adjustments should be made as to optimise the analyser and chiller performance. - (ii) A zero calibration and span calibration at concentration values expected during emissions testing shall be performed for the analyser. - (iii) A NO₂ calibration gas shall be selected that matches as far as possible the maximum NO₂ concentration expected during emissions testing. - (iv) The NO₂ calibration gas shall overflow at the gas sampling system's probe until the NO_X response of the analyser has stabilised. - (v) The mean concentration of the stabilized NO_X recordings over a period of 30 s shall be calculated and recorded as $NO_{X,ref}$. - (vi) The flow of the NO₂ calibration gas shall be stopped and the sampling system saturated by overflowing with a dew point generator's output, set at a dew point of 50 °C. The dew point generator's output shall be sampled through the sampling system and chiller for at least 10 minutes until the chiller is expected to be removing a constant rate of water. - (vii) Upon completion of (iv), the sampling system shall again be overflown by the NO₂ calibration gas used to establish NO_{X,ref} until the total NO_X response has stabilized. - (viii) The mean concentration of the stabilized NO_X recordings over a period of 30 s shall be calculated and recorded as $NO_{X,m}$. - (ix) NO_{X,m} shall be corrected to NO_{X,dry} based upon the residual water vapour that passed through the chiller at the chiller's outlet temperature and pressure. The calculated $NO_{X,dry}$ shall at least amount to 95 % of $NO_{X,ref}$. ## (e) Sample dryer A sample dryer removes water, which can otherwise interfere with the NO_X measurement. For dry CLD analysers, it shall be demonstrated that at the highest expected water vapour concentration H_m the sample dryer maintains the CLD humidity at ≤ 5 g water/kg dry air (or about 0.8 per cent H₂O), which is 100 per cent relative humidity at 3.9 °C and 101.3 kPa or about 25 per cent relative humidity at 25 °C and 101.3 kPa. Compliance may be demonstrated by measuring the temperature at the outlet of a thermal sample dryer or by measuring the humidity at a point just upstream of the CLD. The humidity of the CLD exhaust might also be measured as long as the only flow into the CLD is the flow from the sample dryer. ## (f) Sample dryer NO₂ penetration Liquid water remaining in an improperly designed sample dryer can remove NO₂ from the sample. If a sample dryer is used in combination with a NDUV analyser without an NO₂/NO converter upstream, water could therefore remove NO₂ from the sample prior to the NO_x measurement. The sample dryer shall allow for measuring at least 95 per cent of the NO₂ contained in a gas that is saturated with water vapour and consists of the maximum NO₂ concentration expected to occur during emission testing. #### 4.4. Response time check of the analytical system For the response time check, the settings of the analytical system shall be exactly the same as during the emissions test (i.e. pressure, flow rates, filter settings in the analysers and all other parameters influencing the response time). The response time shall be determined with gas switching directly at the inlet of the sample probe. The gas switching shall be done in less than 0.1 second. The gases used for the test shall cause a concentration change of at least 60 per cent full scale of the analyser. The concentration trace of each single gas component shall be recorded. For time alignment of the analyser and exhaust flow signals, the transformation time is defined as the time from the change (t_0) until the response is 50 per
cent of the final reading (t_{50}) . The system response time shall be ≤ 12 s with a rise time of ≤ 3 seconds for all components and all ranges used. When using a NMC for the measurement of NMHC, the system response time may exceed 12 seconds. # 5. Gases #### 5.1. Calibration and span gases for RDE tests ## 5.1.1. General The shelf life of calibration and span gases shall be respected. Pure as well as mixed calibration and span gases shall fulfil the specifications of Sub-Annex 5 of the UN Regulation No. [XXX] on WLTP. #### 5.1.2. NO₂ calibration gas In addition, NO₂ calibration gas is permissible. The concentration of the NO₂ calibration gas shall be within two per cent of the declared concentration value. The amount of NO contained in the NO₂ calibration gas shall not exceed 5 per cent of the NO₂ content. ## 5.1.3. Multicomponent mixtures Only multicomponent mixtures which fulfil the requirements of paragraph 5.1.1. shall be used. These mixtures may contain two or more of the components. Multicomponent mixtures containing both NO and NO₂ are exempted of the NO₂ impurity requirement set out in paragraphs 5.1.1. and 5.1.2. #### 5.2. Gas dividers Gas dividers (i.e., precision blending devices that dilute with purified N_2 or synthetic air) can be used to obtain calibration and span gases. The accuracy of the gas divider shall be such that the concentration of the blended calibration gases is accurate to within \pm 2 per cent. The verification shall be performed at between 15 and 50 per cent of full scale for each calibration incorporating a gas divider. An additional verification may be performed using another calibration gas, if the first verification has failed. Optionally, the gas divider may be checked with an instrument which by nature is linear, e.g. using NO gas in combination with a CLD. The span value of the instrument shall be adjusted with the span gas directly connected to the instrument. The gas divider shall be checked at the settings typically used and the nominal value shall be compared with the concentration measured by the instrument. The difference shall in each point be within ± 1 per cent of the nominal concentration value. ## 5.3. Oxygen interference check gases Oxygen interference check gases consist of a blend of propane, oxygen and nitrogen and shall contain propane at a concentration of 350 ± 75 ppmC₁. The concentration shall be determined by gravimetric methods, dynamic blending or the chromatographic analysis of total hydrocarbons plus impurities. The oxygen concentrations of the oxygen interference check gases shall meet the requirements listed in Table A5/3; the remainder of the oxygen interference check gas shall consist of purified nitrogen. Table A5/3 Oxygen interference check gases | | Engine type | Engine type | | | | | |------------------------------|----------------------|-------------------|--|--|--|--| | | Compression ignition | Positive ignition | | | | | | O ₂ concentration | 21 ± 1 % | 10 ± 1 % | | | | | | | $10\pm1~\%$ | 5 ± 1 % | | | | | | | 5 ± 1 % | $0.5\pm0.5~\%$ | | | | | # 6. Analysers for measuring (solid) particle emissions This sections will define future requirement for analysers for measuring particle number emissions, once their measurement becomes mandatory. ## 6.1. General The PN analyser shall consist of a pre-conditioning unit and a particle detector that counts with 50 per cent efficiency from approximately 23 nm. It is permissible that the particle detector also pre-conditions the aerosol. The sensitivity of the analysers to shocks, vibration, aging, variability in temperature and air pressure as well as electromagnetic interferences and other impacts related to vehicle and analyser operation shall be limited as far as possible and shall be clearly stated by the equipment manufacturer in its support material. The PN analyser shall only be used within its manufacturer's declared parameters of operation. Figure A5/1 Example of a PN analyser setup: Dotted lines depict optional parts. EFM = Exhaust mass Flow Meter, d = inner diameter, PND = Particle Number Diluter. The PN analyser shall be connected to the sampling point via a sampling probe which extracts a sample from the centreline of the tailpipe tube. As specified in paragraph 3.5. of Annex 4, if particles are not diluted at the tailpipe, the sampling line shall be heated to a minimum temperature of 373 K ($100~^{\circ}$ C) until the point of first dilution of the PN analyser or the particle detector of the analyser. The residence time in the sampling line shall be less than 3 s. All parts in contact with the sampled exhaust gas shall be always kept at a temperature that avoids condensation of any compound in the device. This can be achieved for example by heating at a higher temperature and diluting the sample or oxidizing the (semi)volatile species. The PN analyser shall include a heated section at wall temperature ≥ 573 K. The unit shall control the heated stages to constant nominal operating temperatures, within a tolerance of \pm 10 K, and provide an indication of whether or not heated stages are at their correct operating temperatures. Lower temperatures are acceptable as long as the volatile particle removal efficiency fulfils the specifications of paragraph 6.4. Pressure, temperature and other sensors shall monitor the proper operation of the instrument during operation and trigger a warning or message in case of malfunction. The delay time of the PN analyser shall be ≤ 5 s. The PN analyser (and/or particle detector) shall have a rise time of ≤ 3.5 s. Particle concentration measurements shall be reported normalised to 273 K and 101.3 kPa. If necessary, the pressure and/or temperature at the inlet of the detector shall be measured and reported for the purposes of normalizing the particle concentration. PN systems that comply with the calibration requirements of UN Regulations Nos 83 or 49 or the UN Regulation No. [XXX] on WLTP automatically comply with the calibration requirements of this annex. ## 6.2. Efficiency requirements The complete PN analyser system including the sampling line shall fulfil the efficiency requirements of Table A5/3a. Table A5/3a PN analyser (including the sampling line) system efficiency requirements | d_p [nm] | Sub-23 | 23 | 30 | 50 | 70 | 100 | 200 | |--------------------------------|------------------|-----------|--------------|--------------|--------------|--------------|-----------| | E(d _p) PN analyser | To be determined | 0.2 - 0.6 | 0.3 –
1.2 | 0.6 –
1.3 | 0.7 –
1.3 | 0.7 –
1.3 | 0.5 - 2.0 | Efficiency $E(d_p)$ is defined as the ratio in the readings of the PN analyser system to a reference Condensation Particle Counter (CPC)'s $(d_{50\,\%}=10~\text{nm}$ or lower, checked for linearity and calibrated with an electrometer) or an Electrometer's number concentration measuring in parallel monodisperse aerosol of mobility diameter d_p and normalized at the same temperature and pressure conditions. The material should be thermally stable soot-like (e.g. spark discharged graphite or diffusion flame soot with thermal pre-treatment). If the efficiency curve is measured with a different aerosol (e.g. NaCl), the correlation to the soot-like curve must be provided as a chart which compares the efficiencies obtained using both test aerosols. The differences in the counting efficiencies shall be taken into account by adjusting the measured efficiencies based on the provided chart to give soot-like aerosol efficiencies. The correction for multiply charged particles shall be applied and documented but shall not exceed 10 %. These efficiencies refer to the PN analysers with the sampling line. The PN analyser can also be calibrated in parts (i.e. the pre-conditioning unit separately from the particle detector) as long as it is proven that PN analyser and the sampling line together fulfil the requirements of Table A5/3a. The measured signal from the detector shall be > 2 times the limit of detection (here defined as the zero level plus 3 standard deviations). #### 6.3. Linearity requirements The PN analyser including the sampling line shall fulfil the linearity requirements of paragraph 3.2. of Annex 5 using monodisperse or polydisperse soot-like particles. The particle size (mobility diameter or count median diameter) shall be larger than 45 nm. The reference instrument shall be an Electrometer or a Condensation Particle Counter (CPC) with $d_{50}=10$ nm or lower, verified for linearity. Alternatively, a particle number system compliant with the UN Regulation No. [XXX] on WLTP. In addition, the differences of the PN analyser from the reference instrument at all points checked (except the zero point) shall be within 15 % of their mean value. At least 5 points equally distributed (plus the zero) shall be checked. The maximum checked concentration shall be the maximum allowed concentration of the PN analyser. If the PN analyser is calibrated in parts, then the linearity can be checked only for the PN detector, but the efficiencies of the rest parts and the sampling line shall be considered in the slope calculation. ## 6.4. Volatile removal efficiency The system shall achieve > 99 % removal of ≥ 30 nm tetracontane (CH₃(CH₂)₃₈CH₃) particles with an inlet concentration of ≥ 10000 particles per cubic-centimetre at the minimum dilution. The system shall also achieve a > 99 % removal efficiency of polydisperse alcane (decane or higher) or emery oil with count median diameter > 50 nm and mass > 1 mg/m³. The volatile removal efficiency with tetracontane and/or polydisperse alcane or oil shall be proven only once for the instrument family. The instrument manufacturer though shall provide the maintenance or replacement interval that ensures that the removal efficiency does not drop below the technical requirements. If such information is not provided, the volatile removal efficiency shall be checked yearly for each
instrument. ## 7. Instruments for measuring exhaust mass flow # 7.1. General Instruments or signals for measuring the exhaust mass flow rate shall have a measuring range and response time appropriate for the accuracy required to measure the exhaust mass flow rate under transient and steady state conditions. The sensitivity of instruments and signals to shocks, vibration, aging, variability in temperature, ambient air pressure, electromagnetic interferences and other impacts related to vehicle and instrument operation shall be on a level as to eliminate additional errors. #### 7.2. Instrument specifications The exhaust mass flow rate shall be determined by a direct measurement method applied in either of the following instruments: - (a) Pitot-based flow devices; - (b) Pressure differential devices like flow nozzle (details see ISO 5167); - (c) Ultrasonic flow meter; - (d) Vortex flow meter. Each individual exhaust mass flow meter shall fulfil the linearity requirements set out in paragraph 3. Furthermore, the instrument manufacturer shall demonstrate the compliance of each type of exhaust mass flow meter with the specifications in paragraphs 7.2.3. to 7.2.9. It is permissible to calculate the exhaust mass flow rate based on air flow and fuel flow measurements obtained from sensors with traceable calibration if these fulfil the linearity requirements of paragraph 3., the accuracy requirements of paragraph 8. and if the resulting exhaust mass flow rate is validated according to paragraph 4. of Annex 6. In addition, other methods that determine the exhaust mass flow rate based on non-traceable instruments and signals, such as simplified exhaust mass flow meters or ECU signals, are permissible if the resulting exhaust mass flow rate fulfils the linearity requirements of paragraph 3. and is validated according to paragraph 4. of Annex 6. #### 7.2.1. Calibration and verification standards The measurement performance of exhaust mass flow meters shall be verified with air or exhaust gas against a traceable standard such as a calibrated exhaust mass flow meter or a full flow dilution tunnel. #### 7.2.2. Frequency of verification The compliance of exhaust mass flow meters with paragraphs 7.2.3. to 7.2.9. shall be verified no longer than one year before the actual test. ## 7.2.3. Accuracy The accuracy of the EFM, defined as the deviation of the EFM reading from the reference flow value, shall not exceed \pm 3 percent of the reading, 0.5 % of full scale or \pm 1.0 per cent of the maximum flow at which the EFM has been calibrated, whichever is larger. #### 7.2.4. Precision The precision, defined as 2.5 times the standard deviation of 10 repetitive responses to a given nominal flow, approximately in the middle of the calibration range, shall not exceed 1 per cent of the maximum flow at which the EFM has been calibrated. #### 7.2.5. Noise The noise shall not exceed 2 per cent of the maximum calibrated flow value. Each of the 10 measurement periods shall be interspersed with an interval of 30 seconds in which the EFM is exposed to the maximum calibrated flow. #### 7.2.6. Zero response drift The zero response drift is defined as the mean response to zero flow during a time interval of at least 30 seconds. The zero response drift can be verified based on the reported primary signals, e.g., pressure. The drift of the primary signals over a period of 4 hours shall be less than ± 2 per cent of the maximum value of the primary signal recorded at the flow at which the EFM was calibrated. #### 7.2.7. Span response drift The span response drift is defined as the mean response to a span flow during a time interval of at least 30 seconds. The span response drift can be verified based on the reported primary signals, e.g., pressure. The drift of the primary signals over a period of 4 hours shall be less than \pm 2 per cent of the maximum value of the primary signal recorded at the flow at which the EFM was calibrated. #### 7.2.8. Rise time The rise time of the exhaust flow instruments and methods should match as far as possible the rise time of the gas analysers as specified in paragraph 4.2.7. but shall not exceed 1 second. ## 7.2.9. Response time check The response time of exhaust mass flow meters shall be determined by applying similar parameters as those applied for the emissions test (i.e., pressure, flow rates, filter settings and all other response time influences). The response time determination shall be done with gas switching directly at the inlet of the exhaust mass flow meter. The gas flow switching shall be done as fast as possible, but in less than 0.1 second is highly recommended. The gas flow rate used for the test shall cause a flow rate change of at least 60 per cent full scale of the exhaust mass flow meter. The gas flow shall be recorded. The delay time is defined as the time from the gas flow switching (t_0) until the response is 10 per cent (t_{10}) of the final reading. The rise time is defined as the time between 10 per cent and 90 per cent response $(t_{10}$ to $t_{90})$ of the final reading. The response time (t_{90}) is defined as the sum of the delay time and the rise time. The exhaust mass flow meter response time (t_{90}) shall be ≤ 3 seconds with a rise time (t_{10}) to t_{90} of ≤ 1 second in accordance with paragraph 7.2.8. #### 8. Sensors and auxiliary equipment Any sensor or auxiliary equipment used to determine temperature, atmospheric pressure, ambient humidity, vehicle speed, fuel flow or intake air flow, for example, shall not alter or unduly affect the performance of the vehicle's engine and exhaust after-treatment system. The accuracy of sensors and auxiliary equipment shall fulfil the requirements of Table A5/4. Compliance with the requirements of Table A5/4 shall be demonstrated at intervals specified by the instrument manufacturer, as required by internal audit procedures or in accordance with ISO 9000. Table A5/4 **Accuracy requirements for measurement parameters** | Measurement parameter | Accuracy | |-----------------------------|---| | Fuel flow ¹⁹ | \pm 1 % of reading ²⁰ | | Air flow ²¹ | ± 2 % of reading | | Vehicle speed ²² | \pm 1.0 km/h absolute | | Temperatures ≤600 K | ± 2 K absolute | | Temperatures >600 K | \pm 0.4 % of reading in Kelvin | | Ambient pressure | ± 0.2 kPa absolute | | Relative humidity | ± 5 % absolute | | Absolute humidity | ± 10 % of reading or, 1 gH ₂ O/kg dry air, whichever is larger | ¹⁹ optional to determine exhaust mass flow. The accuracy shall be 0.02 per cent of reading if used to calculate the air and exhaust mass flow rate from the fuel flow according to paragraph 7 of Annex 7. ²¹ optional to determine exhaust mass flow. This requirement applies to the speed sensor only; if vehicle speed is used to determine parameters like acceleration, the product of speed and positive acceleration, or RPA, the speed signal shall have an accuracy of 0.1 % above 3 km/h and a sampling frequency of 1 Hz. This accuracy requirement can be met by using a wheel rotational speed signal. # Annex 6 # Validation of PEMS and non-traceable exhaust mass flow rate #### 1. Introduction This annex describes the requirements to validate under transient conditions the functionality of the installed PEMS as well as the correctness of the exhaust mass flow rate obtained from non-traceable exhaust mass flow meters or calculated from ECU signals. # 2. Symbols, Parameters and Units | <i>a</i> ₀ | | y intercept of the regression line | |-----------------------|---|---| | a_1 | _ | slope of the regression line | | r^2 | _ | coefficient of determination | | x | _ | actual value of the reference signal | | у | _ | actual value of the signal under validation | # 3. Validation procedure for PEMS # 3.1. Frequency of PEMS validation It is recommended to validate the correct installation of a PEMS on a vehicle via comparison with laboratory installed equipment on a test performed on a chassis dynamometer either before the RDE test or, alternatively, after the completion of the test. # 3.2. PEMS validation procedure ## 3.2.1. PEMS installation The PEMS shall be installed and prepared according to the requirements of Annex 4. The PEMS installation shall be kept unchanged in the time period between the validation and the RDE test. ### 3.2.2. Test conditions The validation test shall be conducted on a chassis dynamometer, as far as possible, under type approval conditions by following the requirements of the UN Regulation No. [XXX] on WLTP for a 4-phase cycle. It is recommended to feed the exhaust flow extracted by the PEMS during the validation test back to the CVS. If this is not feasible, the CVS results shall be corrected for the extracted exhaust mass. If the exhaust mass flow rate is validated with an exhaust mass flow meter, it is recommended to cross-check the mass flow rate measurements with data obtained from a sensor or the ECU. # 3.2.3. Data analysis The total distance-specific emissions [g/km] measured with laboratory equipment shall be calculated in accordance to the UN Regulation No. [XXX] on WLTP. The emissions as measured with the PEMS shall be calculated according to Annex 7, summed to give the total mass of pollutants [g] and then divided by the test distance [km] as obtained from the chassis dynamometer. The total distance-specific mass of pollutants [g/km], as determined by the PEMS and the reference laboratory system, shall be evaluated against the requirements specified in paragraph 3.3. For the validation of NO_X emission measurements, humidity correction shall be applied in accordance with the UN Regulation No. [XXX] on WLTP. ### 3.3. Permissible tolerances for PEMS validation The PEMS validation results shall fulfil the requirements given in Table A6/1. If any permissible tolerance is not met, corrective action shall be
taken and the PEMS validation shall be repeated. Table A6/1 **Permissible tolerances** | Parameter [Unit] | Permissible absolute tolerance | |---------------------------------------|---| | Distance [km] ²³ | 250 m of the laboratory reference | | THC ²⁴ [mg/km] | 15 mg/km or 15 % of the laboratory reference, whichever is larger | | CH ₄ ²⁴ [mg/km] | 15 mg/km or 15 % of the laboratory reference, whichever is larger | | NMHC ²⁴ [mg/km] | 20 mg/km or 20 % of the laboratory reference, whichever is larger | | PN ²⁴ [#/km] | 1•10 ¹¹ p/km or 50 % of the laboratory reference ²⁵ whichever is larger | | CO ²⁴ [mg/km] | 150 mg/km or 15 % of the laboratory reference, whichever is larger | | CO ₂ [g/km] | 10 g/km or 10 % of the laboratory reference, whichever is larger | | NO _x ²⁴ [mg/km] | 15 mg/km or 15 % of the laboratory reference, whichever is larger | 4. Validation procedure for the exhaust mass flow rate determined by non-traceable instruments and sensors # 4.1. Frequency of validation In addition to fulfilling the linearity requirements of paragraph 3. of Annex 5 under steady-state conditions, the linearity of non-traceable exhaust mass flow meters or the exhaust mass flow rate calculated from non-traceable sensors or ECU signals shall be validated under transient conditions for each test vehicle against a calibrated exhaust mass flow meter or the CVS. # 4.2. Validation procedure The validation shall be conducted on a chassis dynamometer under type approval conditions, as far as applicable on the same vehicle used for the RDE test. As reference, a flow meter with traceable calibration shall be used. The ambient temperature can be any within the range specified in paragraph 8.1. of this Regulation. The installation of the exhaust mass flow ²³ only applicable if vehicle speed is determined by the ECU; to meet the permissible tolerance it is permitted to adjust the ECU vehicle speed measurements based on the outcome of the validation test. ²⁴ parameter only mandatory if measurement required for compliance with the limits. ²⁵ PMP system. meter and the execution of the test shall fulfil the requirement of paragraph 3.4.3. of Annex 4. The following calculation steps shall be taken to validate the linearity: - (a) The signal under validation and the reference signal shall be time corrected by following, as far as applicable, the requirements of paragraph 3. of Annex 7. - (b) Points below 10 % of the maximum flow value shall be excluded from the further analysis. - (c) At a constant frequency of at least 1.0 Hz, the signal under validation and the reference signal shall be correlated using the best-fit equation having the form: $$y = a_1 x + a_0$$ #### where: | y | is the actual value of the signal under validation | |-------|--| | a_1 | is the slope of the regression line | | x | is the actual value of the reference signal | | a_0 | is the y intercept of the regression line | The standard error of estimate (SEE) of y on x and the coefficient of determination (r^2) shall be calculated for each measurement parameter and system. (d) The linear regression parameters shall meet the requirements specified in Table 2. # 4.3. Requirements The linearity requirements given in Table A6/2 shall be fulfilled. If any permissible tolerance is not met, corrective action shall be taken and the validation shall be repeated. Table A6/2 Linearity requirements of calculated and measured exhaust mass flow | Measurement parameter/system | a_0 | Slope a ₁ | Standard
error of the
estimate
SEE | Coefficient of determination r^2 | |------------------------------|----------------------|----------------------|---|------------------------------------| | Exhaust mass flow | 0.0 ±
3.0
kg/h | 1.00 ± 0.075 | ≤10 % max | ≥ 0.90 | # Annex 7 # **Determination of instantaneous emissions** # 1. Introduction This annex describes the procedure to determine the instantaneous mass and particle number emissions [g/s; #/s], following application of the data consistency rules of Annex 4. The instantaneous mass and particle number emissions shall then be used for the subsequent evaluation of a RDE trip and the calculation of the intermediate and final emission result as described in Annex 11. # 2. Symbols, Parameters and Units | | ı | | |---------------------------|---|---| | α | _ | molar hydrogen ratio (H/C) | | β | _ | molar carbon ratio (C/C) | | γ | _ | molar sulphur ratio (S/C) | | δ | _ | molar nitrogen ratio (N/C) | | $\Delta t_{t,i}$ | _ | transformation time t of the analyser [s] | | $\Delta t_{t,m}$ | _ | transformation time t of the exhaust mass flow meter [s] | | ε | _ | molar oxygen ratio (O/C) | | $ ho_{ m e}$ | _ | density of the exhaust | | $ ho_{ m gas}$ | _ | density of the exhaust component 'gas' | | λ | _ | excess air ratio | | $\lambda_{\rm i}$ | _ | instantaneous excess air ratio | | $A/F_{\rm st}$ | _ | stoichiometric air-to-fuel ratio [kg/kg] | | $c_{ m CH4}$ | _ | concentration of methane | | c_{CO} | _ | dry CO concentration [%] | | $c_{\rm CO2}$ | _ | dry CO ₂ concentration [%] | | $c_{ m dry}$ | _ | dry concentration of a pollutant in ppm or per cent volume | | $c_{ m gas,i}$ | _ | instantaneous concentration of the exhaust component 'gas' [ppm] | | $\mathcal{C}_{ ext{HCw}}$ | | wet HC concentration [ppm] | | C _{HC(w/N} MC) | _ | HC concentration with CH ₄ or C ₂ H ₆ flowing through the NMC [ppmC ₁] | | C _{HC(w/oN} MC) | _ | HC concentration with CH ₄ or C ₂ H ₆ bypassing the NMC [ppmC ₁] | | $c_{\mathrm{i,c}}$ | _ | time-corrected concentration of component i [ppm] | | $c_{i,r}$ | _ | concentration of component i [ppm] in the exhaust | | | | | | $\mathcal{C}_{ ext{NMHC}}$ | _ | concentration of non-methane hydrocarbons | |----------------------------|---|--| | $c_{ m wet}$ | _ | wet concentration of a pollutant in ppm or per cent volume | | $E_{ m E}$ | _ | ethane efficiency | | E_{M} | _ | methane efficiency | | $H_{\rm a}$ | _ | intake air humidity [g water per kg dry air] | | i | _ | number of the measurement | | $m_{ m gas,i}$ | _ | mass of the exhaust component 'gas' [g/s] | | $q_{maw,i}$ | _ | instantaneous intake air mass flow rate [kg/s] | | $q_{ m m,c}$ | _ | time-corrected exhaust mass flow rate [kg/s] | | $q_{m ext{ew,i}}$ | _ | instantaneous exhaust mass flow rate [kg/s] | | $q_{m\mathrm{f,i}}$ | _ | instantaneous fuel mass flow rate [kg/s] | | $q_{ m m,r}$ | _ | raw exhaust mass flow rate [kg/s] | | r | _ | cross-correlation coefficient | | r^2 | _ | coefficient of determination | | $r_{ m h}$ | _ | hydrocarbon response factor | | u_{gas} | _ | u value of the exhaust component 'gas' | # 3. Time correction of parameters For the correct calculation of distance-specific emissions, the recorded traces of component concentrations, exhaust mass flow rate, vehicle speed, and other vehicle data shall be time corrected. To facilitate the time correction, data which are subject to time alignment shall be recorded either in a single data recording device or with a synchronised timestamp following paragraph 5.1. of Annex 4. The time correction and alignment of parameters shall be carried out by following the sequence described in paragraphs 3.1. to 3.3.. # 3.1. Time correction of component concentrations The recorded traces of all component concentrations shall be time corrected by reverse shifting according to the transformation times of the respective analysers. The transformation time of analysers shall be determined according to paragraph 4.4. of Annex 5.: $$c_{i,c}(t - \Delta t_{t,i}) = c_{i,r}(t)$$ where: | C _{i,c} | is the time-corrected concentration of component i as function of time t | |------------------|--| | $c_{i,r}$ | is the raw concentration of component i as function of time t | | $\Delta t_{t,i}$ | is the transformation time t of the analyser measuring component i | ### 3.2. Time correction of exhaust mass flow rate The exhaust mass flow rate measured with an exhaust flow meter shall be time corrected by reverse shifting according to the transformation time of the exhaust mass flow meter. The transformation time of the mass flow meter shall be determined according to paragraph 4.4. of Annex 5.: $$q_{m,c}(t - \Delta t_{t,m}) = q_{m,r}(t)$$ where: | $q_{ m m,c}$ | is the time-corrected exhaust mass flow time <i>t</i> | v rate as function of | |------------------|---|-----------------------| | $q_{ m m,r}$ | is the raw exhaust mass flow rate as fu | nction of time t | | $\Delta t_{t,m}$ | is the transformation time t of the exha | ust mass flow meter | In case the exhaust mass flow rate is determined by ECU data or a sensor, an additional transformation time shall be considered and obtained by cross-correlation between the calculated exhaust mass flow rate and the exhaust mass flow rate measured following paragraph 4. of Annex 6. # 3.3. Time alignment of vehicle data Other data obtained from a sensor or the ECU shall be time-aligned by cross-correlation with suitable emission data (e.g., component concentrations). ### 3.3.1. Vehicle speed from different sources To time align vehicle speed with the exhaust mass flow rate, it is first necessary to establish one valid speed trace. In case vehicle speed is obtained from multiple sources (e.g., the GNSS, a sensor or the ECU), the speed values shall be time aligned by cross-correlation. # 3.3.2. Vehicle speed with exhaust mass flow rate Vehicle speed shall be time aligned with the exhaust mass flow rate by cross-correlation between
the exhaust mass flow rate and the product of vehicle speed and positive acceleration. # 3.3.3. Further signals The time alignment of signals whose values change slowly and within a small value range, e.g. ambient temperature, can be omitted. # 4. Emission measurements during stop of the combustion engine Any instantaneous emissions or exhaust flow measurements obtained while the combustion engine is deactivated shall be recorded in the data exchange file. In a separate step, the recorded values shall afterward be set to zero by the data post processing. # 5. Correction of measured values # 5.1. Dry-wet correction If the emissions are measured on a dry basis, the measured concentrations shall be converted to a wet basis as: where: $$c_{\text{wet}} = k_{\text{w}} \times c_{\text{drv}}$$ | $\mathcal{C}_{ ext{wet}}$ | is the wet concentration of a pollutant in ppm or per cent volume | |---------------------------|---| | $\mathcal{C}_{ ext{dry}}$ | is the dry concentration of a pollutant in ppm or per cent volume | | $k_{ m w}$ | is the dry-wet correction factor | The following equation shall be used to calculate k_w : $$k_{\rm w} = \left(\frac{1}{1 + \alpha \times 0.005 \times (c_{\rm CO_2} + c_{\rm CO})} - k_{\rm w1}\right) \times 1.008$$ where: $$k_{\rm w1} = \frac{1.608 \times H_{\rm a}}{1.000 + (1.608 \times H_{\rm a})}$$ where: | $H_{\rm a}$ | is the intake air humidity [g water per kg dry air] | |-------------------|---| | $c_{\rm CO2}$ | is the dry CO ₂ concentration [%] | | c_{CO} | is the dry CO concentration [%] | | α | is the molar hydrogen ratio of the fuel (H/C) | 5.2. Correction of NO_x for ambient humidity and temperature NO_x emissions shall not be corrected for ambient temperature and humidity. 5.3. Correction of negative emission results Negative <u>intermediate instantaneous</u> results shall not be corrected. Negative <u>final results shall be set to zero.</u> 5.4. Correction for extended conditions The second by second emissions calculated in accordance with this Annex shall be divided by the extended factor solely for the cases laid down in paragraphs 8.1. and 10.5. of this Regulation. - 6. Determination of the instantaneous gaseous exhaust components - 6.1. Introduction The components in the raw exhaust shall be measured with the measurement and sampling analysers described in Annex 5. The raw concentrations of relevant components shall be measured in accordance with Annex 4. The data shall be time corrected and aligned in accordance with paragraph 4. 6.2. Calculating NMHC and CH₄ concentrations For methane measurement using a NMC-FID, the calculation of NMHC depends on the calibration gas/method used for the zero/span calibration adjustment. When a FID is used for THC measurement without a NMC, it shall be calibrated with propane/air or propane/ N_2 in the normal manner. For the calibration of the FID in series with a NMC, the following methods are permitted: - (a) the calibration gas consisting of propane/air bypasses the NMC; - (b) the calibration gas consisting of methane/air passes through the NMC. It is strongly recommended to calibrate the methane FID with methane/air through the NMC. In method (a), the concentrations of CH₄ and NMHC shall be calculated as follows: $$c_{CH4} = \frac{c_{HC(w/o NMC)} \times (1 - E_M) - c_{HC(w/NMC)}}{E_E - E_M}$$ $$c_{NMHC} = \frac{c_{HC(w/NMC)} - c_{HC(w/o NMC)} \times (1 - E_E)}{r_h \times (E_E - E_M)}$$ In method (b), the concentration of CH₄ and NMHC shall be calculated as follows: $$c_{CH_4} = \frac{c_{HC(w/NMC)} \times r_h \times (1 - E_M) - c_{HC(w/o NMC)} \times (1 - E_E)}{r_h \times (E_E - E_M)}$$ $$c_{NMHC} = \frac{c_{HC(w/o NMC)} \times (1 - E_M) - c_{HC(w/NMC)} \times r_h \times (1 - E_M)}{(E_E - E_M)}$$ ### where: | CHC(w/oNMC) | is the HC concentration with CH ₄ or C ₂ H ₆ bypassing the NMC [ppmC ₁] | |------------------------|--| | C _{HC(w/NMC)} | is the HC concentration with CH ₄ or C ₂ H ₆ flowing through the NMC [ppmC ₁] | | $r_{ m h}$ | is the hydrocarbon response factor as determined in paragraph 4.3.3.(b) of Annex 5 | | $E_{ m M}$ | is the methane efficiency as determined in paragraph 4.3.4.(a) of Annex 5 | | E _E | is the ethane efficiency as determined in paragraph 4.3.4.(b) of Annex 5 | If the methane FID is calibrated through the cutter (method b), then the methane conversion efficiency as determined in paragraph 4.3.4.(a) of Annex 5 is zero. The density used for calculating the NMHC mass shall be equal to that of total hydrocarbons at 273.15 K and 101.325 kPa and is fuel-dependent. # 7. Determination of exhaust mass flow rate ### 7.1. Introduction The calculation of instantaneous mass emissions according to paragraphs 8. and 9. requires determining the exhaust mass flow rate. The exhaust mass flow rate shall be determined by one of the direct measurement methods specified in paragraph 7.2. of Annex 5. Alternatively, it is permissible to calculate the exhaust mass flow rate as described in paragraphs 7.2. to 7.4.. 7.2. Calculation method using air mass flow rate and fuel mass flow rate The instantaneous exhaust mass flow rate can be calculated from the air mass flow rate and the fuel mass flow rate as follows: $$q_{\text{mew,i}} = q_{\text{maw,i}} + q_{\text{mf,i}}$$ where: | $q_{m ext{ew,i}}$ | is the instantaneous exhaust mass flow rate [kg/s] | |---------------------|---| | $q_{m ext{aw,i}}$ | is the instantaneous intake air mass flow rate [kg/s] | | $q_{m\mathrm{f,i}}$ | is the instantaneous fuel mass flow rate [kg/s] | If the air mass flow rate and the fuel mass flow rate or the exhaust mass flow rate are determined from ECU recording, the calculated instantaneous exhaust mass flow rate shall meet the linearity requirements specified for the exhaust mass flow rate in paragraph 3. of Annex 5 and the validation requirements specified in paragraph 4.3. of Annex 6. 7.3. Calculation method using air mass flow and air-to-fuel ratio The instantaneous exhaust mass flow rate can be calculated from the air mass flow rate and the air-to-fuel ratio as follows: $$q_{mew,i} = q_{maw,i} \times \left(1 + \frac{1}{A/F_{st} \times l_i}\right)$$ where: $$A/F_{st} = \frac{138.0 \times \left(1 + \frac{\alpha}{4} - \frac{\varepsilon}{2} + \gamma\right)}{12.011 + 1.008 \times \alpha + 15.9994 \times \varepsilon + 14.0067 \times \delta + 32.0675 \times \gamma}$$ $$l_i = \frac{\left(100 - \frac{c_{CO} \times 10^{-4}}{2} - c_{HCw} \times 10^{-4}\right) + \left(\frac{\alpha}{4} \times \frac{1 - \frac{2 \times c_{CO} \times 10^{-4}}{3.5 \times c_{CO2}}}{1 + \frac{c_{CO} \times 10^{-4}}{3.5 \times c_{CO2}}} - \frac{\varepsilon}{2} - \frac{\delta}{2}\right) \times (c_{CO2} + c_{CO} \times 10^{-4})}{4.764 \times \left(1 + \frac{\alpha}{4} - \frac{\varepsilon}{2} + \gamma\right) \times (c_{CO2} + c_{CO} \times 10^{-4} + c_{HCw} \times 10^{-4})}$$ where: | q _{maw,i} | is the instantaneous intake air mass flow rate [kg/s] | |------------------------|---| | A/F _{st} | is the stoichiometric air-to-fuel ratio [kg/kg] | | λ_{i} | is the instantaneous excess air ratio | | CCO2 | is the dry CO ₂ concentration [%] | | c_{CO} | is the dry CO concentration [ppm] | | $c_{ m HCw}$ | is the wet HC concentration [ppm] | | α | is the molar hydrogen ratio (H/C) | | β | is the molar carbon ratio (C/C) | | γ | is the molar sulphur ratio (S/C) | | |---|-----------------------------------|--| | δ | is the molar nitrogen ratio (N/C) | | | 3 | is the molar oxygen ratio (O/C) | | Coefficients refer to a fuel C_{β} H_{α} O_{ϵ} N_{δ} S_{γ} with $\beta=1$ for carbon based fuels. The concentration of HC emissions is typically low and may be omitted when calculating λ_i . If the air mass flow rate and air-to-fuel ratio are determined from ECU recording, the calculated instantaneous exhaust mass flow rate shall meet the linearity requirements specified for the exhaust mass flow rate in paragraph 3. of Annex 5 and the validation requirements specified in paragraph 4.3. of Annex 6. 7.4. Calculation method using fuel mass flow and air-to-fuel ratio The instantaneous exhaust mass flow rate can be calculated from the fuel flow and the air-to-fuel ratio (calculated with A/F_{st} and λ_i according to paragraph 7.3.) as follows: $$q_{mew,i} = q_{maw,i} \times \left(1 + \frac{1}{A/F_{st} \times l_i}\right)$$ $$q_{mew,i} = q_{mf,i} \times (1 + A/F_{st} \times l_i)$$ The calculated instantaneous exhaust mass flow rate shall meet the linearity requirements specified for the exhaust gas mass flow rate in paragraph 3. of Annex 5 and the validation requirements specified in paragraph 4.3. of Annex 6. 8. Calculating the instantaneous mass emissions of gaseous components The instantaneous mass emissions [g/s] shall be determined by multiplying the instantaneous concentration of the pollutant under consideration [ppm] with the instantaneous exhaust mass flow rate [kg/s], both corrected and aligned for the transformation time, and the respective u value in Table A7/1. If measured on a dry basis, the dry-wet correction according to paragraph 5.1. shall be applied to the instantaneous component concentrations before executing any further calculations. If occurring, negative instantaneous emission values shall enter all subsequent data evaluations. Parameter values shall enter the calculation of instantaneous emissions [g/s] as reported by the analyser, flow-measuring instrument, sensor or the ECU. The following equation shall be applied: $$m_{\mathrm{gas,i}} = u_{\mathrm{gas}} \cdot c_{gas,i} \cdot q_{\mathrm{mew,i}}$$ where: | $m_{ m gas,i}$ | is the mass of the exhaust
component 'gas' [g/s] | |--------------------------------|--| | $u_{ m gas}$ | is the ratio of the density of the exhaust component 'gas' and the overall density of the exhaust as listed in Table 1 | | $\mathcal{C}_{\mathrm{gas,i}}$ | is the measured concentration of the exhaust component 'gas' in the exhaust [ppm] | | $q_{m ext{ew,i}}$ | is the measured exhaust mass flow rate [kg/s] | | gas | is the respective component | | i | number of the measurement | $\label{eq:table A7/1} \textbf{Raw exhaust gas u values depicting the ratio between the densities of exhaust component or pollutant i [kg/m³] and the density of the exhaust gas [kg/m³]}$ | | | Component or pollutant i | | | | | | | |--------------------|----------------------|-----------------------------|----------|-----------------------|-----------------|----------------|-----------------|--| | | | NO _x | СО | НС | CO ₂ | O ₂ | CH ₄ | | | Fuel | $ ho_{ m e}$ | $ ho_{ m gas}[{ m kg/m^3}]$ | | | | | | | | 1 401 | [kg/m ³] | 2.053 | 1.250 | (1) | 1.9636 | 1.4277 | 0.716 | | | | | 2.052 | 1.249 | | 1.9630 | 1.4276 | <u>0.715</u> | | | | | | | $u_{\rm gas}^{(2,6)}$ | | | | | | Diesel (B0) | 1.3183 | 0.001587 | 0.000966 | 0.000479 | 0.001518 | 0.001104 | 0.000553 | | | | 1.2893 | 0.001593 | 0.000969 | 0.000480 | 0.001523 | 0.001108 | 0.000555 | | | Diesel (B5) | 1.3186 | 0.001557 | 0.000948 | 0.000470 | 0.001489 | 0.001083 | 0.000543 | | | | 1.2893 | 0.001593 | 0.000969 | 0.000480 | 0.001523 | 0.001108 | 0.000555 | | | Diesel (B7) | 1.3187 | 0.001557 | 0.000947 | 0.000470 | 0.001489 | 0.001083 | 0.000542 | | | | 1.2894 | 0.001593 | 0.000969 | 0.000480 | 0.001523 | 0.001108 | 0.000555 | | | Ethanol (ED95) | 1.2768 | 0.001609 | 0.000980 | 0.000780 | 0.001539 | 0.001119 | 0.000561 | | | CNG ⁽³⁾ | 1.2661 | 0.001621 | 0.000987 | 0.000528(4) | 0.001551 | 0.001128 | 0.000565 | | | Propane | 1.2805 | 0.001603 | 0.000976 | 0.000512 | 0.001533 | 0.001115 | 0.000559 | | | Butane | 1.2832 | 0.001600 | 0.000974 | 0.000505 | 0.001530 | 0.001113 | 0.000558 | | | LPG ⁽⁵⁾ | 1.2811 | 0.001602 | 0.000976 | 0.000510 | 0.001533 | 0.001115 | 0.000559 | | | Petrol (E0) | 1.3224 | 0.001552 | 0.000945 | 0.000468 | 0.001485 | 0.001080 | 0.000541 | | | | 1.2910 | 0.001591 | 0.000968 | 0.000480 | 0.001521 | 0.001106 | 0.000554 | | | Petrol (E5) | 1.3075 | 0.001570 | 0.000956 | 0.000474 | 0.001502 | 0.001092 | 0.000547 | | | | 1.2897 | 0.001592 | 0.000969 | 0.000480 | 0.001523 | 0.001108 | 0.000555 | | | Petrol (E10) | 1.2937 | 0.001587 | 0.000966 | 0.000479 | 0.001518 | 0.001104 | 0.000553 | | | | 1.2883 | 0.001594 | 0.000970 | 0.000481 | 0.001524 | 0.001109 | 0.000555 | |---------------|--------|----------|----------|----------|----------|----------|----------| | Ethanol (E85) | 1.2797 | 0.001604 | 0.000977 | 0.000730 | 0.001534 | 0.001116 | 0.000559 | - (1) depending on fuel - (2) at $\lambda = 2$, dry air, 273 K, 101.3 kPa - 3) u values accurate within 0.2% for mass composition of: C=66-76%; H=22-25%; N=0-12% - NMHC on the basis of CH_{2.93} (for THC the u_{gas} coefficient of CH₄ shall be used) - ⁽⁵⁾ u accurate within 0.2% for mass composition of: C₃=70-90%; C₄=10-30% - (6) u_{gas} is a unitless parameter; the u_{gas} values include unit conversions to ensure that the instantaneous emissions are obtained in the specified physical unit, i.e., g/s As an alternative to the above method, emission rates might also be calculated with the method described in Annex A.7 of GTR 11. # 9. Calculating the instantaneous particle number emissions The instantaneous particle number emissions [particles/s] shall be determined by multiplying the instantaneous concentration of the pollutant under consideration [particles/cm³] with the instantaneous exhaust mass flow rate [kg/s], both corrected and aligned for the transformation time. If applicable, negative instantaneous emission values shall enter all subsequent data evaluations. All significant digits of intermediate preceding results shall enter the calculation of the instantaneous emissions. The following equation shall apply: $$PN_i = c_{PN,i} q_{mew,i} / \rho_e$$ #### where: | PNi | is the particle number flux [particles/s] | |--------------------|---| | C _{PN,i} | is the measured particle number concentration [#/m³] normalized at 0 $^{\circ}\mathrm{C}$ | | q _{mew,i} | is the measured exhaust mass flow rate [kg/s] | | ρ _e | is the density of the exhaust gas [kg/m³] at 0 °C (Table $\underline{A7/1}$ 4) | # 10. Data exchange and test report Data Exchange—File: The data shall be exchanged between the measurement systems and the data evaluation software by a standardised data exchange file found at the following UNECE weblinksame weblink as the UN Regulation. ÷ # [xxx] Any pre-processing of data (e.g. time correction according to paragraph 3, vehicle speed correction according to paragraph 4.7 of Annex 4.—or the correction of the GNSS vehicle speed signal according to paragraph 6.5. of Annex 4, or correction for Extended conditions according to paragraph 8.1. and 10.5.) shall be done with the control software of the measurement systems and shall be completed before the data exchange file is generated. ²⁶ Weblink Accessed on # Annex 8 # Assessment of overall trip dynamics validity using the moving averaging window method #### 1. Introduction The Moving Averaging Window method shall be used to assess the overall trip dynamics. The test is divided in sub-sections (windows) and the subsequent analysis aims at determining whether the trip is valid for RDE purposes. The 'normality' of the windows shall be assessed by comparing their CO₂ distance-specific emissions with a reference curve obtained from the vehicle CO₂ emissions measured in accordance with the WLTP validation test For compliance with this Regulation, the method shall be applied using the 4-phase and the 3-phase WLTC requirements. 2. Symbols, Parameters and Units Index (i) refers to the time step Index (j) refers to the window Index (k) refers to the category (t=total, ls=low speed, ms=medium speed, hs=high speed) or to the CO₂ characteristic curve (cc) a_1, b_1 - coefficients of the CO₂ characteristic curve a_2, b_2 - coefficients of the CO₂ characteristic curve M_{CO_2} - CO_2 mass, [g] $M_{CO_2,i}$ - CO₂ mass in window j, [g] t_i - total time in step i, [s] t_t - duration of a test, [s] v_i - actual vehicle speed in time step i, [km/h] \bar{v}_j - average vehicle speed in window j, [km/h] tol_{1H} - upper tolerance for the vehicle CO₂ characteristic curve, [%] tol_{1L} - lower tolerance for the vehicle CO₂ characteristic curve, [%] ### Moving averaging windows # 3.1. Definition of averaging windows The instantaneous CO_2 emissions calculated according to Annex 7 shall be integrated using a moving averaging window method, based on a reference CO_2 mass. The usage of the reference CO_2 mass is illustrated in Figure A8/2. The principle of the calculation is as follows: The RDE distance-specific CO_2 mass emissions are not calculated for the complete data set, but for sub-sets of the complete data set, the length of these sub-sets being determined so as to match always the same fraction of the CO_2 mass emitted by the vehicle over the applicable WLTP test (after all appropriate ATCT corrections e.g. ATCT are applied, where relevant). The moving window calculations are conducted with a time increment Δt corresponding to the data sampling frequency. These sub-sets used to calculate the vehicle on-road CO_2 emissions and its average speed are referred to as 'averaging windows' in the following sections. The calculation described in this point shall be run from the first data point (forward), as shown in Figure A8/1. The following data shall not be considered for the calculation of the CO₂ mass, the distance and the vehicle average speed in each averaging window: The periodic verification of the instruments and/or after the zero drift verifications; Vehicle ground speed < 1 km/h; The calculation shall start from when vehicle ground speed is higher than or equal to 1 km/h and include driving events during which no CO_2 is emitted and where the vehicle ground speed is higher than or equal to 1 km/h. The mass emissions $M_{CO_2,j}$ shall be determined by integrating the instantaneous emissions in g/s as specified in Annex 7. $Figure \ A8/1 \\ \textbf{Vehicle speed versus time - Vehicle averaged emissions versus time, starting from the first averaging window}$ Figure A8/2 # Definition of CO₂ mass based on averaging windows The duration $(t_{2,j}-t_{1,j})$ of the j^{th} averaging window is determined by: $$M_{CO_2}(t_{2,j}) - M_{CO_2}(t_{1,j}) \ge M_{CO_2,ref}$$ Where: $M_{CO_2}(t_{i,j})$ is the CO₂ mass measured between the test start and time $t_{i,j}$, [g]; $M_{CO_2,ref}$ is the reference CO₂ mass (half of the CO₂ mass emitted by the vehicle over the applicable WLTP test). During type approval the CO_2 reference value shall be taken from the WLTP performed during validation testing of the individual vehicle, performed in accordance with Annex 6, including all appropriate corrections. $t_{2,i}$ shall be selected such as: $$M_{CO_2}(t_{2,j} - \Delta t) - M_{CO_2}(t_{1,j}) < M_{CO_2,ref} \le M_{CO_2}(t_{2,j}) - M_{CO_2}(t_{1,j})$$ Where Δt is the data sampling period. The CO₂ masses $M_{CO_2,j}$ in the windows are calculated by integrating the instantaneous emissions calculated as specified in Annex 7. - 3.2. Calculation of window parameters - The following shall be calculated for each window determined in accordance with paragraph 3.1. The distance-specific CO₂ emissions $M_{CO2,d,j}$; - The average vehicle speed \bar{v}_i - 4. Evaluation of windows - 4.1. Introduction The reference dynamic conditions of the test vehicle
are defined from the vehicle CO₂ emissions versus average speed measured at type approval on the WLTP test and referred to as 'vehicle CO₂ characteristic curve'. 4.2. CO₂ characteristic curve reference points The distance specific CO₂ emissions of the tested vehicle shall be taken from the applicable phases of the validation WLTP 4-phase test run in accordance with the UN Regulation No. [XXX] on WLTP on that particular vehicle. The value for OVC-HEV vehicles is to be that obtained from the applicable WLTP test conducted using the Charge Sustaining modevehicle operation. During type approval <u>according to this Regulation</u>, the values shall be taken from the WLTP test performed during type approval validation testing of the individual vehicle <u>after all appropriate corrections e.g. ATCT are applied</u>, where relevant. The reference points P_1 , P_2 and P_3 required to define the vehicle CO_2 characteristic curve shall be established as follows: # 4.2.1. Point P₁ $\overline{v_{P1}} = 18.882 \, km/h$ (Average Speed of the Low Speed phase of the WLTP cycle) M_{CO_2,d,P_1} = Vehicle CO₂ emissions over the Low Speed phase of the WLTP test [g/km] ### 4.2.2. $Point P_2$ $\overline{v_{P2}} = 56.664 \text{ km/h}$ (Average Speed of the High Speed phase of the WLTP cycle) M_{CO_2,d,P_2} = Vehicle CO₂ emissions over the High Speed phase of the WLTP test [g/km] # 4.2.3. *Point* P_3 $\overline{v_{P3}} = 91.997 \text{ km/h}$ (Average Speed of the Extra High Speed phase of the WLTP cycle) M_{CO_2,d,P_3} = Vehicle CO₂ emissions over the Extra High Speed phase of the WLTP test [g/km] (for analysis with 4-phase WLTP) and $M_{CO_2,d,P_3} = M_{CO_2,d,P_2}$ (for analysis with 3-phase-WLTP) ## 4.3. CO₂ characteristic curve definition Using the reference points defined in paragraph 4.2., the characteristic curve CO_2 emissions are calculated as a function of the average speed using two linear sections (P_1, P_2) and (P_2, P_3) . The section (P_2, P_3) is limited to 145 km/h on the vehicle speed axis. The characteristic curve is defined by equations as follows: For the section (P_1, P_2) : $$M_{CO_2,d,CC}(\bar{v}) = a_1\bar{v} + b_1$$ with: $$a_1 = (M_{CO_2,d,P_2} - M_{CO_2,d,P_1})/(\overline{v_{P2}} - \overline{v_{P1}})$$ and: $$b_1 = M_{CO_2,d,P_1} - a_1 \overline{v_{P1}}$$ For the section (P_2, P_3) : $$M_{CO_2,d,CC}(\bar{v}) = a_2\bar{v} + b_2$$ with: $$a_2 = (M_{CO_2,d,P_3} - M_{CO_2,d,P_2})/(\overline{v_{P3}} - \overline{v_{P2}})$$ and: $$b_2 = M_{CO_2,d,P_2} - a_2 \overline{v_{P2}}$$ Figure A8/3 Vehicle CO₂ characteristic curve and tolerances for ICE and NOVC-HEV vehicles Figure A8/4: Vehicle CO₂ characteristic curve and tolerances for OVC-HEV vehicles Figure A8/3-2 Vehicle CO_2 characteristic curve and tolerances for ICE and NOVC-HEV vehicles for 3-phase WLTP $Figure~A8/4-2\\ \textbf{Vehicle~CO}_2~\textbf{characteristic~curve~and~tolerances~for~OVC-HEV~vehicles~for~3-phase~WLTP}$ 4.4.1. Low, medium and high speed windows (for analysis with 4-phase WLTP) The windows shall be categorised into low, medium and high speed bins according to their average speed. # 4.4.1.1. Low speed windows Low speed windows are characterized by average vehicle ground speeds \bar{v}_i lower than 45 km/h. # 4.4.1.2. Medium speed windows Medium speed windows are characterized by average vehicle ground speeds \bar{v}_i greater than or equal to 45 km/h and lower than 80 km/h. For N2 category vehicles that are equipped with a device limiting vehicle speed to 90 km/h, rural windows are characterized by average vehicle speeds \bar{v}_i lower than 70 km/h. # 4.4.1.3. High speed windows High speed windows are characterized by average vehicle ground speeds \bar{v}_j greater than or equal to 80 km/h and lower than 145 km/h For N2 category vehicles that are equipped with a device limiting vehicle speed to 90 km/h, high speed windows are characterized by average vehicle speeds \bar{v}_i greater than or equal to 70 km/h and lower than 90 km/h. Figure A8/5 Vehicle CO₂ characteristic curve: low, medium and high speed driving definitions (Illustrated for ICE and NOVC-HEV vehicles) except N2 category vehicles that are equipped with a device limiting vehicle speed to 90 km/h) Figure A8/6. Vehicle CO₂ characteristic curve: low, medium and high speed driving definitions (Illustrated for OVC-HEV vehicles) except N2 category vehicles that are equipped with a device limiting vehicle speed to 90 km/h) 4.4.2. Low/and high speed windows (for analysis with 3-phase WLTP) The windows shall be categorised into low and high speed bins according to their average speed. 4.4.2.1. Low speed windows Low speed windows are characterized by average vehicle ground speeds \bar{v}_i lower than 50 km/h. 4.4.2.2. High speed windows High speed windows are characterized by average vehicle ground speeds \bar{v}_j greater than or equal to 50 km/h. Figure A8/5-2 Vehicle CO₂ characteristic curve: low and high speed driving definitions (Illustrated for ICE and NOVC-HEV vehicles) Figure A8/6-2. Vehicle CO₂ characteristic curve: low and high speed driving definitions (Illustrated for OVC-HEV vehicles) # 4.5.1. Assessment of trip validity (for analysis with 4-phase WLTP) # 4.5.1.1. Tolerances around the vehicle CO₂ characteristic curve The upper tolerance of the vehicle CO_2 characteristic curve is $tol_{1H} = 45\%$ for low speed driving and $tol_{1H} = 40\%$ for medium and high speed driving. The lower tolerance of the vehicle $\rm CO_2$ characteristic curve is $tol_{\rm 1L}=25\%$ for ICE and NOVC-HEV vehicles and $tol_{\rm 1L}=100\%$ for OVC-HEV vehicles. ## 4.5.1.2. Assessment of test validity The test is valid when it comprises at least 50 per cent of the low, medium and high speed windows that are within the tolerances defined for the CO₂ characteristic curve. For NOVC-HEVs and OVC-HEVs, if the minimum requirement of 50% between tol_{1H} and tol_{1L} is not met, the upper positive tolerance tol_{1H} may be increased by steps of 1 % until the 50% target is reached. When using this mechanism, the value of tol_{1H} shall never exceed 50 per cent. 4.5.2. Assessment of trip validity (for analysis with 3-phase WLTP) #### 4.5.2.1. Tolerances around the vehicle CO₂ characteristic curve The upper tolerance of the vehicle CO_2 characteristic curve is $tol_{1H} = 45\%$ for low speed driving and $tol_{1H} = 40\%$ for high speed driving. The lower tolerance of the vehicle CO_2 characteristic curve is $tol_{1L} = 25\%$ for ICE and NOVC-HEV vehicles and $tol_{1L} = 100\%$ for OVC-HEV vehicles. # 4.5.2.2. Assessment of test validity The test is valid when it comprises at least 50% of the low, and high speed windows that are within the tolerances defined for the CO₂ characteristic curve. For NOVC-HEVs and OVC-HEVs, if the minimum requirement of 50% between tol_{1H} and tol_{1L} is not met, the upper positive tolerance tol_{1H} may be increased by steps of 1% until the 50% target is reached. When using this mechanism, the value of tol_{1H} shall never exceed 50%. # Annex 9 # Assessment of excess or absence of trip dynamics # 1. Introduction This annex describes the calculation procedures to verify the trip dynamics by determining the excess or absence of dynamics during an RDE trip. # 2. Symbols, Parameters and Units | a | — | acceleration [m/s ²] | | | | |--|---|--|--|--|--| | a_i | _ | acceleration in time step i [m/s ²] | | | | | a_{pos} | _ | positive acceleration greater than 0.1 m/s ² [m/s ²] | | | | | $a_{pos,i,k}$ | | positive acceleration greater than 0.1 m/s² in time step i considering the urban, rural and motorway/expressway shares [m/s²] | | | | | a_{res} | _ | acceleration resolution [m/s ²] | | | | | d_i | — | distance covered in time step i [m] | | | | | $d_{i,k}$ | | distance covered in time step i considering the urban, rural and motorway/expressway shares [m] | | | | | Index (i) | _ | discrete time step | | | | | Index (j) | _ | discrete time step of positive acceleration datasets | | | | | Index (k) | | refers to the respective category (t=total, u=urban, r=rural, m=motorway, e=expressway) | | | | | M_k | | number of samples for urban, rural and motorway/expressway shares with positive acceleration greater than 0.1 m/s ² | | | | | N_{k} | | total number of samples for the urban, rural and motorway/expressway shares and the complete trip | | | | | RPA_k | | relative positive acceleration for urban, rural and motorway/expressway shares [m/s² or kWs/(kg*km)] | | | | | t_k | | duration of the urban, rural and motorway/expressway shares and the complete trip [s] | | | | | v | _ | vehicle speed [km/h] | | | | | v_i | _ | actual vehicle speed in time step i [km/h] | | | | | $v_{i,k}$ | | actual vehicle speed in time step i considering the urban, rural and motorway/expressway shares [km/h] | | | | | $(v \times a)_i$ | | actual vehicle speed per acceleration in time step i $[m^2/s^3$ or $W/kg]$ | | | | | $(v \times a)_{j,k}$ | | actual vehicle speed per positive acceleration greater than 0.1 m/s² in time step j considering the urban, rural and motorway/expressway shares [m²/s³ or W/kg]. | | | | | $\left(v \times a_{pos}\right)_{k-}[95]$ | | 95 th percentile of the product of vehicle speed per positive acceleration greater than 0.1 m/s ² for urban, rural and motorway/expressway shares [m ² /s ³ or W/kg] | | | | | \overline{v}_k | | average vehicle speed for urban, rural and motorway/expressway shares [km/h] | | | | - 3. Trip indicators - 3.1. Calculations # 3.1.1. Data pre-processing Dynamic parameters, such as acceleration, $(v \times a_{pos})$ or RPA, shall be determined with a speed signal of an accuracy of 0.1 % for all speed values above 3 km/h and a
sampling frequency of 1 Hz. Otherwise, acceleration shall be determined with an accuracy of 0.01 m/s² and a sampling frequency of 1 Hz. In this case, a separate speed signal is required for $(v \times a_{pos})$ and shall have an accuracy of at least 0.1 km/h. The speed trace shall form the basis for further calculations and binning as described in paragraphs 3.1.2. and 3.1.3. # 3.1.2. Calculation of distance, acceleration and $(v \times a)$ The following calculations shall be performed over the whole time based speed trace from the beginning to the end of the test data. The distance increment per data sample shall be calculated as follows: $$d_i = \frac{v_i}{3.6} \ i = 1 \ to \ N_t$$ where: | d_i | is the distance covered in time step i [m] | |-------------|---| | $v_{\rm i}$ | is the actual vehicle speed in time step i [km/h] | | $N_{\rm t}$ | is the total number of samples | The acceleration shall be calculated as follows: $$a_i = \frac{v_{i+1} - v_{i-1}}{2 \times 3.6}$$ $i = 1 \text{ to } N_t$ where: | a_i | is the acceleration in time step i [m/s²]. | |-------|--| | | For $i = 1$: $v_{i-1} = 0$, | | | for $i = N_t$: $v_{i+1} = 0$. | The product of vehicle speed per acceleration shall be calculated as follows: $$(v \times a)_i = v_i \times a_i/3.6$$ where: | $(v \times a)_i$ | is the product of the actual vehicle speed per acceleration in time step i $[m^2/s^3 \text{ or } W/kg]$. | |------------------|---| |------------------|---| # 3.1.3. Binning of the results # 3.1.3.1. Binning of the results (for analysis with 4- phase WLTP) After the calculation of a_i and $(v \times a)_i$, the values v_i , d_i , a_i and $(v \times a)_i$ shall be ranked in ascending order of the vehicle speed. All datasets with $(v_i \le 60 \text{ km/h})$ belong to the 'urban' speed bin, all datasets with $(60 \text{ km/h} < v_i \le 90 \text{ km/h})$ belong to the 'rural' speed bin and all datasets with $(v_i > 90 \text{ km/h})$ belong to the 'motorway' speed bin. For N2 category vehicles that are equipped with a device limiting vehicle speed to 90 km/h, all datasets with $v_i \le 60$ km/h belong to the "urban" speed bin, all datasets with 60 km/h $< v_i \le 80$ km/h belong to the "rural" speed bin and all datasets with $v_i > 80$ km/h belong to the "motorway" speed bin. The number of datasets with acceleration values $a_i > 0.1$ m/s² shall be greater than or equal to 100 in each speed bin. For each speed bin the average vehicle speed (\overline{v}_k) shall be calculated as follows: $$\overline{v}_k = \frac{1}{N_k} \sum_{i} v_{i,k} \quad i = 1 \text{ to } N_k, k = u, r, m$$ where: | N _k | is the total number of samples of the urban, rural, and motorway shares. | |----------------|--| | | ine term by entaries. | #### 3.1.3.2. Binning of the results (for the analysis with 3-phase WLTP) After the calculation of a_i , v_i , d_i , the values v_i , d_i , a_i and and $(v \times a)_i$ shall be ranked in ascending order of the vehicle speed. All datasets with $(v_i \le 60 \text{ km/h})$ belong to the 'urban' speed bin and all datasets with $(v_i > 60 \text{ km/h})$ belong to the 'expressway' speed bin. The number of datasets with acceleration values $a_i > 0.1 \text{ m/s}^2$ shall be greater than or equal to 100 in each speed bin. For each speed bin the average vehicle speed (\overline{v}_k) shall be calculated as follows: $$\overline{v}_k = \frac{1}{N_k} \sum_i v_{i,k}$$ $i = 1 \text{ to } N_k, k = u, e$ where: | N_k is the total number of samples of the urban and express shares. | |---| |---| # 3.1.4. Calculation of $(v \times a_{pos})_{k-}$ [95] per speed bin ## 3.1.4.1. Calculation of $(v \times a_{pos})_{k-}$ [95] per speed bin (for analysis with 4-phase WLTP) The 95th percentile of the $(v \times a_{pos})$ values shall be calculated as follows: The $(v \times a_{pos})_{i,k}$ values in each speed bin shall be ranked in ascending order for all datasets with $a_{i,k} > 0.1 \text{m/s}^2$ and the total number of these samples M_k shall be determined. Percentile values are then assigned to the $(v \times a_{pos})_{i,k}$ values with $a_{i,k} > 0.1$ m/s² as follows: The lowest $(v \times a_{pos})$ value gets the percentile $1/M_k$, the second lowest $2/M_k$, the third lowest $3/M_k$ and the highest value $(M_k/M_k = 100 \%.)$ $(v \times a_{pos})_{k-}$ [95] is the $(v \times a_{pos})_{j,k}$ value, with $j/M_k = 95$ %. If $j/M_k = 95$ % cannot be met, $(v \times a_{pos})_{k-}$ [95]shall be calculated by linear interpolation between consecutive samples j and j+1 with $j/M_k < 95$ % and $(j+1)/M_k > 95$ %. The relative positive acceleration per speed bin shall be calculated as follows: $$RPA_k = \frac{\sum_j (v \times a_{pos})_{j,k}}{\sum_i d_{i,k}}, \quad j = 1 \ to \ M_k, i = 1 \ to \ N_k, k = u, r, m$$ where: | RPA _k | is the relative positive acceleration for urban, rural and motorway shares in [m/s² or kWs/(kg*km)] | |------------------|---| | M_k | is the sample number for urban, rural and motorway shares with positive acceleration | | N _k | is the total sample number for urban, rural and motorway shares | 3.1.4.2. Calculation of $(v \times a_{pos})_{k-}[95]$ per speed bin (for analysis with 3-phase WLTP) The 95th percentile of the $(v \times a_{pos})$ values shall be calculated as follows: The $(v \times a_{pos})_{i,k}$ values in each speed bin shall be ranked in ascending order for all datasets with $a_{i,k} > 0.1 \text{m/s}^2$ and the total number of these samples M_k shall be determined. Percentile values are then assigned to $(v \times a_{pos})_{i,k}$ values with $a_{i,k} > 0.1$ m/s² as follows: The lowest $(v \times a_{pos})$ value gets the percentile $1/M_k$, the second lowest $2/M_k$, the third lowest $3/M_k$ and the highest value $(M_k/M_k = 100 \%.)$ $(v \times a_{pos})_{k-}$ [95] is the $(v \times a_{pos})_{j,k}$ value, with $(j/M_k = 95\%)$. If $(j/M_k = 95\%)$ cannot be met, $(v \times a_{pos})_{k-}$ [95] shall be calculated by linear interpolation between consecutive samples j and j+1 with $j/M_k < 95\%$ and $(j+1)/M_k > 95\%$. The relative positive acceleration per speed bin shall be calculated as follows: $$RPA_k = \frac{\sum_j (v \times a_{pos})_{j,k}}{\sum_i d_{i,k}}, \quad j = 1 \text{ to } M_k, i = 1 \text{ to } N_k, k = u, e$$ where: | RPA _k | is the relative positive acceleration for urban and expressway shares in [m/s² or kWs/(kg*km)] | | |------------------|--|--| | M _k | is the sample number for urban and expressway shares with positive acceleration | | | N _k | is the total sample number for urban and expressway shares | | - 4. Assessment of trip validity - 4.1.1. Assessment of $(v \times a_{pos})_{k-}[95]$ per speed bin (with v in [km/h]) If $\overline{v}_k \leq 74.6 \ km/h$ and $$(v \times a_{pos})_{k-}[95] > (0.136 \times \overline{v}_k + 14.44)$$ is fulfilled, the trip is invalid. If $\overline{v}_k > 74.6 \ km/h$ and $$(v \times a_{pos})_{k-}[95] > (0.0742 \times \overline{v}_k + 18.966)$$ is fulfilled, the trip is invalid. Upon the request of the manufacturer, and only for those N1 or N2 vehicles where the vehicle power-to-test mass ratio is less than or equal to 44 W/kg then: If $\overline{v}_k \leq 74.6km/h$ and $$(v \times a_{pos})_{k}$$. [95] > $(0.136 \times \overline{v}_k + 14,44)$ is fulfilled, the trip is invalid. If $\overline{v}_k > 74.6 \ km/h$ and $$(v \times a_{pos})_{k-}[95] > (-0.097 \times \overline{v}_k + 31.635)$$ is fulfilled, the trip is invalid. 4.1.2. Assessment of RPA per speed bin If $\overline{v}_k \leq 94.05 \ km/h$ and $$RPA_k < (-0.0016 \cdot \overline{v}_k + 0.1755)$$ is fulfilled, the trip is invalid. If $\overline{v}_k >$ 94.05km/h and RPA_k < 0.025 is fulfilled, the trip is invalid. # Annex 10 # Procedure to determine the cumulative positive elevation gain of a PEMS trip # 1. Introduction This annex describes the procedure to determine the cumulative elevation gain of a PEMS trip. # 2. Symbols, Parameters and Units | d(0) | _ | distance at the start of a trip [m] | | | | | | |-------------------------|---|--|--|--|--|--|--| | d | _ | cumulative distance travelled at the discrete way point under consideration [m] | | | | | | | d_0 | _ | cumulative distance travelled until the measurement directly before the respective way point d [m] | | | | | | | d_1 | | cumulative distance travelled until the measurement directly after the respective way point d [m] | | | | | | | $d_{ m a}$ | | reference way point at $d(0)$ [m] | | | | | | | d_{e} | | cumulative distance travelled until the last discrete way point [m] | | | | | | | d_{i} | _ | instantaneous distance [m] | | | | | | | $d_{ m tot}$ | | total test distance [m] | | | | | | | h(0) | _ | vehicle altitude after the screening and principle verification of data quality at the start of a trip [m above sea level] | | | | | | | h(t) | _ | vehicle altitude after the screening and principle verification of data quality at point t [m above sea level] | | | | | | | h(d) | _ | vehicle altitude at the way point d [m above sea level] | | | | | | | h(t-1) | _ | vehicle altitude after the screening and principle verification of data quality at point t-1 [m above
sea level] | | | | | | | $h_{corr}(0)$ | | corrected altitude directly before the respective way point d [m above sea level] | | | | | | | h _{corr} (1) | _ | corrected altitude directly after the respective way point d [m above sea level] | | | | | | | $h_{corr}(t)$ | _ | corrected instantaneous vehicle altitude at data point t [m above sea level] | | | | | | | h _{corr} (t-1) | _ | corrected instantaneous vehicle altitude at data point t-1 [m above sea level] | | | | | | | $h_{GNSS,i}$ | _ | instantaneous vehicle altitude measured with GNSS [m above sea level] | | | | | | | $h_{GNSS}(t)$ | _ | vehicle altitude measured with GNSS at data point t [m above sea level] | | | | | | | $h_{\mathrm{int}}(d)$ | _ | interpolated altitude at the discrete way point under consideration d [m above sea level] | | | | |-----------------------------|---|---|--|--|--| | $h_{\rm int,sm,1}(d)$ | _ | smoothed and interpolated altitude, after the first smoothing run at the discrete way point under consideration d [m above sea level] | | | | | $h_{\rm map}(t)$ | _ | vehicle altitude based on topographic map at data point t [m above sea level] | | | | | road _{grade,1} (d) | _ | smoothed road grade at the discrete way point under consideration d after the first smoothing run [m/m] | | | | | road _{grade,2} (d) | _ | smoothed road grade at the discrete way point under consideration d after the second smoothing run [m/m] | | | | | sin | | trigonometric sine function | | | | | t | _ | time passed since test start [s] | | | | | t_0 | _ | time passed at the measurement directly located before the respective way point d [s] | | | | | v_i | _ | instantaneous vehicle speed [km/h] | | | | | v(t) | _ | vehicle speed at a data point t [km/h] | | | | # 3. General requirements The cumulative positive elevation gain of a RDE trip shall be determined based on three parameters: the instantaneous vehicle altitude $h_{GNSS,i}$ [m above sea level] as measured with the GNSS, the instantaneous vehicle speed v_i [km/h] recorded at a frequency of 1 Hz and the corresponding time t [s] that has passed since test start. 4. Calculation of cumulative positive elevation gain # 4.1. General The cumulative positive elevation gain of a RDE trip shall be calculated as a two-step procedure, consisting of (i) the correction of instantaneous vehicle altitude data, and (ii) the calculation of the cumulative positive elevation gain. ## 4.2. Correction of instantaneous vehicle altitude data The deviation shall not be larger than 40 m. Any instantaneous altitude data h(t) shall be corrected if the following condition applies: $$|h(t) - h(t-1)| > v(t)/3.6 \times \sin 45^{\circ}$$ The altitude correction shall be applied so that: $$h_{corr}(t) = h_{corr}(t-1)$$ where: | h(t) |
vehicle altitude after the screening and principle check of data quality at data point t [m above sea level] | |--------|--| | h(t-1) |
vehicle altitude after the screening and principle check of data quality at data point t-1 [m above sea level] | | v(t) | _ | vehicle speed of data point t [km/h] | | | | |-------------------------|---|--|--|--|--| | h _{corr} (t) | _ | corrected instantaneous vehicle altitude at data point t [m above sea level] | | | | | h _{corr} (t-1) | _ | corrected instantaneous vehicle altitude at data point t-1 [m above sea level] | | | | Upon the completion of the correction procedure, a valid set of altitude data is established. This data set shall be used for the calculation of the cumulative positive elevation gain as described in the following. # 4.3. Final calculation of the cumulative positive elevation gain # 4.3.1. Establishment of a uniform spatial resolution The cumulative elevation gain shall be calculated from data of a constant spatial resolution of 1 m starting with the first measurement at the start of a trip d(0). The discrete data points at a resolution of 1 m are referred to as way points, characterized by a specific distance value d (e.g., 0, 1, 2, 3 m...) and their corresponding altitude h(d) [m above sea level]. The altitude of each discrete way point d shall be calculated through interpolation of the instantaneous altitude $h_{corr}(t)$ as: $$h_{int}(d) = h_{corr}(0) + \frac{h_{corr}(1) - h_{corr}(0)}{d_1 - d_0} \times (d - d_0)$$ Where: | h _{int} (d) | _ | interpolated altitude at the discrete way point under consideration <i>d</i> [m above sea level] | |-----------------------|---|--| | h _{corr} (0) | _ | corrected altitude directly before the respective way point d [m above sea level] | | h _{corr} (1) | _ | corrected altitude directly after the respective way point <i>d</i> [m above sea level] | | d | _ | cumulative distance travelled at the discrete way point under consideration d [m] | | d_0 | _ | cumulative distance travelled until the measurement located directly before the respective way point d [m] | | d_1 | _ | cumulative distance travelled until the measurement located directly after the respective way point <i>d</i> [m] | # 4.3.2. Additional data smoothing The altitude data obtained for each discrete way point shall be smoothed by applying a two-step procedure; d_a and d_e denote the first and last data point respectively (Figure 1). The first smoothing run shall be applied as follows: $$\begin{split} road_{grade,1}(d) &= \frac{h_{int}(d+200m) - h_{int}(d_a)}{(d+200\,m)} \quad for \ d \leq 200\,m \\ \\ road_{grade,1}(d) &= \frac{h_{int}(d+200\,m) - h_{int}(d-200\,m)}{(d+200\,m) - (d-200\,m)} \quad for \ 200\,m < d \\ &< (d_e - 200\,m) \\ \\ road_{grade,1}(d) &= \frac{h_{int}(d_e) - h_{int}(d-200\,m)}{d_e - (d-200\,m)} \quad for \ d \geq (d_e - 200\,m) \end{split}$$ $$\begin{aligned} h_{int,sm,1}(d) &= h_{int,sm,1}(d-1\,m) + road_{grade,1}(d) \quad for \ d \\ &= (d_a+1) \ to \ d_e \\ \\ h_{int,sm,1}(d_a) &= h_{int}(d_a) + road_{grade,1}(d_a) \end{aligned}$$ Where: | road _{grade,1} (d) | _ | smoothed road grade at the discrete way point under consideration after the first smoothing run [m/m] | | | |-----------------------------|---|---|--|--| | h _{int} (d) | _ | interpolated altitude at the discrete way point under consideration d [m above sea level] | | | | h _{int,sm,1} (d) | | smoothed interpolated altitude, after the first smoothing run at the discrete way point under consideration d [m above sea level] | | | | d | _ | cumulative distance travelled at the discrete way point under consideration [m] | | | | da | _ | reference way point at $d(0)$ [m] | | | | de | _ | cumulative distance travelled until the last discrete way point [m] | | | The second smoothing run shall be applied as follows: $$\begin{aligned} road_{grade,2}(d) &= \frac{h_{int,sm,1}(d+200\,m) - h_{int,sm,1}(d_a)}{(d+200\,m)} \quad for \ d \leq 200\,m \\ road_{grade,2}(d) &= \frac{h_{int,sm,1}(d+200\,m) - h_{int,sm,1}(d-200\,m)}{(d+200\,m) - (d-200\,m)} \quad for \ 200\,m < d < (d_e-200\,m) \\ road_{grade,2}(d) &= \frac{h_{int,sm,1}(d_e) - h_{int,sm,1}(d-200\,m)}{d_e - (d-200\,m)} \quad for \ d \\ &\geq (d_e-200\,m) \end{aligned}$$ Where: | road _{grade,2} (d) | _ | smoothed road grade at the discrete way point under consideration after the second smoothing run [m/m] | |-----------------------------|---|---| | h _{int,sm,1} (d) | | smoothed interpolated altitude, after the first smoothing run at the discrete way point under consideration d [m above sea level] | | d | _ | cumulative distance travelled at the discrete way point under consideration [m] | | da | _ | reference way point at $d(0)$ [m] | | d _e | _ | cumulative distance travelled until the last discrete way point [m] | Figure A10/1 Illustration of the procedure to smooth the interpolated altitude signals ### 4.3.3. Calculation of the final result The positive cumulative elevation gain of a total trip shall be calculated by integrating all positive interpolated and smoothed road grades, i.e., $road_{grade,2}(d)$. The result should be normalized by the total test distance d_{tot} and expressed in meters of cumulative elevation gain per one hundred kilometres of distance. The positive cumulative elevation gain of the urban part of a trip waypoint vehicle speed vw [km/h] shall then be calculated based on the vehicle speed over each discrete way point of 1m: $$v_w = \frac{1}{(t_{w,i} - t_{w,i-1})} \times 60^2 / 1000$$ #### where: vw-waypoint vehicle speed [km/h] For 3-phase WLTP evaluation all datasets with $v_w \le 100$ km/h are used for the calculation of the cumulative positive altitude gain of the complete trip. All of the positive interpolated and smoothed road gradients that correspond to ≤ 100 km/h datasets shall be integrated. The number of 1m waypoints which correspond to ≤ 100 km/h datasets shall be integrated and converted to km to define the ≤ 100 km/h test distance d100 km]. The positive cumulative elevation gain of the ≤ 100 km/h part of trip shall then be calculated by dividing the ≤ 100 km/h elevation gain by the ≤ 100 km/h test distance, and expressed in metres of cumulative elevation gain per one hundred kilometres of distance. All datasets with $v_w \le 60$ km/h belong to the urban part of the trip. For 3 phase WLTP evaluation all datasets with $v_{w} = <100$ km/h are used for the calculation of the cumulative positive altitude gain of the
complete trip. All of the positive interpolated and smoothed road grades that correspond to urban datasets shall be integrated. The number of 1m waypoints which correspond to urban datasets shall be integrated and converted to km to define the urban test distance d urban [km]. The positive cumulative elevation gain of the urban part of trip shall then be calculated by dividing the urban elevation gain by the urban test distance, and expressed in metres of cumulative elevation gain per one hundred kilometres of distance. # Annex 11 # Calculation of the final RDE emissions results ### 1. Introduction This annex describes the procedure to calculate the final criteria emissions for the complete and urban part of an RDE trip for the 3-phase and 4-phase WLTP, provided that the RDE trip is valid according to paragraph 10.2. of this Regulation. ### 2. Symbols, Parameters and Units Index (k) refers to the category (t=total, u=urban, 1-2=first two phases of the WLTP test) IC_k is the distance share of usage of the internal combustion engine for an OVC-HEV over the RDE trip $d_{ICE,k}$ is the distance driven [km], with the internal combustion engine on for an OVC-HEV over the RDE trip $d_{EV,k}$ is the distance driven [km], with the internal combustion engine off for an OVC-HEV over the RDE trip $M_{RDE,k}$ is the final RDE distance-specific mass of gaseous pollutants [mg/km] or particle number [#/km] $m_{RDE,k}$ is the distance-specific mass of gaseous pollutant [mg/km] or particle number [#/km] emissions, emitted over the complete RDE trip and prior to any correction in accordance with this annex $M_{CO_2,RDE,k}$ is the distance-specific mass of CO₂ [g/km], emitted over the RDE trip $M_{CO_2,WLTC,k}$ is the distance-specific mass of CO₂ [g/km], emitted over the WLTC cycle $M_{CO_2,WLTC_CS,k}$ is the distance-specific mass of CO₂ [g/km], emitted over the WLTC cycle for an OVC-HEV vehicle tested on itsin charge sustaining modevehicle operation r_k is the ratio between the CO_2 emissions measured during the RDE test and the WLTP test RF_k is the result evaluation factor calculated for the RDE trip RF_{L1} is the first parameter of the function used to calculate the result evaluation factor RF_{L2} is the second parameter of the function used to calculate the result evaluation factor ### 3. Calculation of the Intermediate RDE emissions results The trip validity shall be verified in accordance with paragraph 10.2. of this Regulation. For the valid trips, the intermediate RDE results are calculated as follows for vehicles with ICE, NOVC-HEV and OVC-HEV. Any instantaneous emissions or exhaust flow measurements obtained while the combustion engine is deactivated, as defined in paragraph 3.6.3. of this Regulation, shall be set to zero. Any correction of the instantaneous criteria emissions for Extended conditions according to paragraph 8.1, and 10.5, and 10.6, of this Regulation shall be applied. For the complete RDE trip and for the urban part of the RDE trip (k=t=total, k=u=urban): $$M_{RDE,k} = m_{RDE,k} \times RF_k$$ The values of the parameter RF_{L1} and RF_{L2} of the function used to calculate the result evaluation factor are as follows: $$RF_{L1} = 1.30$$ and $RF_{L2} = 1.50$; The RDE result evaluation factors RF_k (k=t=total, k=u=urban) shall be obtained using the functions laid down in paragraph 2.2. for vehicles with ICE and NOVC-HEV, and in paragraph 2.3. for OVC-HEV. A graphical illustration of the method is provided in Figure A11/1 below, while the mathematical formulas are found in Table A11/1: Figure A11/1 Function to calculate the result evaluation factor Table A11/1 **Result evaluation factors calculation** | When: | Then the Result evaluation factor RF_k is: | Where: | |-----------------------------|--|--| | $r_k \leq RF_{L1}$ | $RF_k = 1$ | | | $RF_{L1} < r_k \le RF_{L2}$ | $RF_k = a_1 r_k + b_1$ | $a_1 = \frac{RF_{L2} - 1}{[RF_{L2} \times (RF_{L1} - RF_{L2})]}$ $b_1 = 1 - a_1 RF_{L1}$ | | $r_k > RF_{L2}$ | $RF_k = \frac{1}{r_k}$ | | 3.1. RDE result evaluation factor for vehicles with ICE and NOVC-HEV The value of the RDE result evaluation factor depends on the ratio r_k between the distance specific CO_2 emissions measured during the RDE test and the distance-specific CO_2 emitted by the vehicle over the validation WLTP test conducted on this vehicle including all appropriate corrections. For the urban emissions, the relevant phases of the WLTP test shall be: (a) for ICE vehicles, the first two WLTC phases, i.e. the Low and the Medium speed phases, $$r_k = \frac{M_{CO_2,RDE,k}}{M_{CO_2,WLTP,k}}$$ (b) for NOVC-HEVs, all the phases of the WLTC driving cycle. $$r_k = \frac{M_{CO_2,RDE,k}}{M_{CO_2,WLTP,t}}$$ 3.2. RDE result evaluation factor for OVC-HEV The value of the RDE result evaluation factor depends on the ratio r_k between the distance-specific CO₂ emissions measured during the RDE test and the distance-specific CO₂ emitted by the vehicle over the applicable WLTP test conducted using thein Charge Sustaining mode-vehicle operation including all appropriate corrections. The ratio r_k is corrected by a ratio reflecting the respective usage of the internal combustion engine during the RDE trip and on the WLTP test, to be conducted using thein charge sustaining mode-vehicle operation. For either the urban or the total driving: $$r_k = \frac{M_{CO_2,RDE,k}}{M_{CO_2,WLTP_CS,t}} \times \frac{0.85}{IC_k}$$ where IC_k is the ratio of the distance driven either in urban or total trip with the combustion engine activated, divided by the total urban or total trip distance: $$IC_k = \frac{d_{ICE,k}}{d_{ICE,k} + d_{EV,k}}$$ With determination of combustion engine operation in accordance with paragraph 3.6.3. of this Regulation 4. Final RDE emission results taking into account the PEMS margin In order to take into account the uncertainty of the PEMS measurements compared to the ones performed in the laboratory with the applicable WLTP test, the intermediate calculated emission values $M_{RDE,k}$ shall be divided by $1+\text{margin}_{\text{pollutant}}$, where $\text{margin}_{\text{pollutant}}$ defined in the table below: The PEMS *margin* for each pollutant is specified as follows: | Pollutant | Mass of oxides of nitrogen (NO _x) | Number of
particles
(PN) | Mass of
carbon
monoxide
(CO) | Mass of total
hydrocarbons
(THC) | Combined mass of total hydrocarbons and oxides of nitrogen (THC + NO _x) | |-----------------------------|---|--------------------------------|---------------------------------------|--|---| | Margin _{pollutant} | [0.43] | 0.5 | Not yet
specified | Not yet
specified | Not yet specified | Any negative final results shall be set to zero. Any Ki factors which are applicable, according to Section 8.3.4., shall be applied. These values shall be considered the Final RDE emission results for NOx and PN # Annex 12 # Manufacturer's RDE certificate of compliance | Regulation No. [xxx] on RDE | |---| | (Manufacturer): | | (Address of the Manufacturer): | | Certifies that: | | The vehicle types listed in the attachment to this Certificate comply with the requirements laid down in this UN Regulation No. [xxx] for all valid RDE tests performed with new-vehicles which have been runin according to the requirements in paragraph 8.3.1. of that Regulation. | | Done at [(Place)] | | On [(Date)] | | | | (Stamp and signature of the manufacturer's representative | | Annex: — List of vehicle types to which this certificate applies | Manufacturer's certificate of compliance with the Real Driving Emissions requirements in UN