

Impact Parameter Tolerances for Inverse Certification Test and Vehicle Testing

 10^{th} Meeting of the GRSP Flex PLI Technical Evaluation Group Bergisch Gladbach, December $1^{st}-2^{nd},\,2009$

Oliver Zander

Bundesanstalt für Straßenwesen

Dirk-Uwe Gehring

BGS Böhme & Gehring GmbH

Bundesanstalt für Straßenwesen

(Federal Highway Research Institute)

Content

Test setup

Temperature corridor

Impact velocity corridor

Impact height tolerance

Pitch angle tolerance

Roll angle tolerance

Yaw angle tolerance

Oliver Zander

December 1st-2nd, 2009

Content

Test setup

Temperature corridor
Impact velocity corridor
Impact height tolerance
Pitch angle tolerance
Roll angle tolerance
Yaw angle tolerance

Oliver Zander

December 1st-2nd, 2009

Slide No. 3

Test setup (1)

- · Inverse certification setup with Flex-GT
- · Variation of impact parameters
- Three baseline tests:
 T= 20 °C
 Impact velocity = 11,1 m/s
 Impact height = 0 mm
 Pitch, roll and yaw angle = 0°
- Six tests w/ variation of temperature (3*16 °C, 3*24 °C)
- Six tests w/ variation of impact velocity (3*10,6 m/s, 3*11,6 m/s)
- Six tests w/ variation of impact height (3*-10 mm, 3*10 mm)
- Six tests w/ variation of pitch angle (3*-5°, 3*5°)
- Six tests w/ variation of roll angle (3*-5°, 3*5°)
- Six tests w/ variation of yaw angle (3*-5°, 3*5°)
- Total number of 39 tests

Oliver Zander

December 1st-2nd, 2009

Test setup (2)

- · Inverse certification setup with Flex-GTR
- · Variation of impact parameters
- Three baseline tests:
 T= 20 °C
 Impact velocity = 11,1 m/s
 Impact height = 0 mm
 Pitch, roll and yaw angle = 0°
- Twelve tests w/ variation of impact velocity (3*10,1 m/s, 3*10,6 m/s, 3*11,1 m/s, 3*11,6 m/s)
- Six tests w/ variation of impact height (3*-10 mm, 3*+10 mm)
- Six tests w/ variation of yaw angle (3*-10°, 3*+10°)
- · Total number of 27 tests

Oliver Zander

December 1st-2nd, 2009

Slide No. 5

Content

Test setup

Temperature corridor

Impact velocity corridor

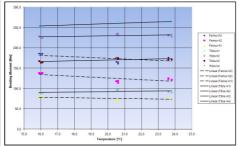
Impact height tolerance

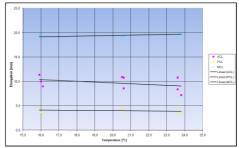
Pitch angle tolerance

Roll angle tolerance

Yaw angle tolerance

Oliver Zander


December 1st-2nd, 2009


Variation of temperature

- Current proposal: T=20±4 °C (Inverse certification and vehicle tests)
- Six Flex GT tests w/ variation of temperature (3*16 °C, 3*24 °C)
- Comparison with baseline tests

- Clear correlation between ambient and impactor temperature and femur / tibia output
- Corridor is proposed to be held as tight as possible for both certification and vehicle tests:

Inverse certification test: T=20±2 °C

Vehicle test: T=20±4 ℃

Oliver Zander

December 1st-2nd, 2009

Slide No. 7

Content

Test setup

Temperature corridor

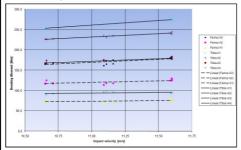
Impact velocity corridor

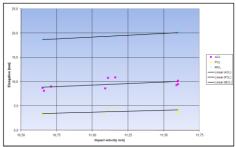
Impact height tolerance

Pitch angle tolerance

Roll angle tolerance

Yaw angle tolerance


Oliver Zander

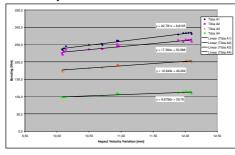

December 1st-2nd, 2009

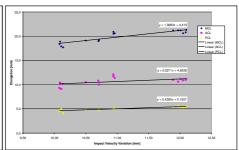
Variation of impact velocity (1)

- Current proposal: v=11,1±0,2 m/s (Inverse certification and vehicle tests)
- Six Flex GT tests w/ variation of impact velocity (3*10,6 m/s, 3*11,6 m/s)
- · Comparison with baseline tests

· Clear correlation between impact velocity and impactor output

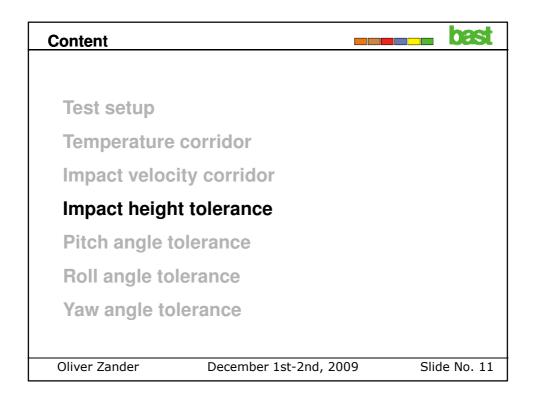
Oliver Zander

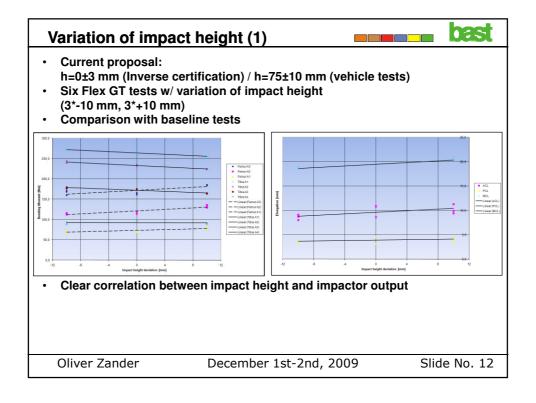

December 1st-2nd, 2009


Slide No. 9

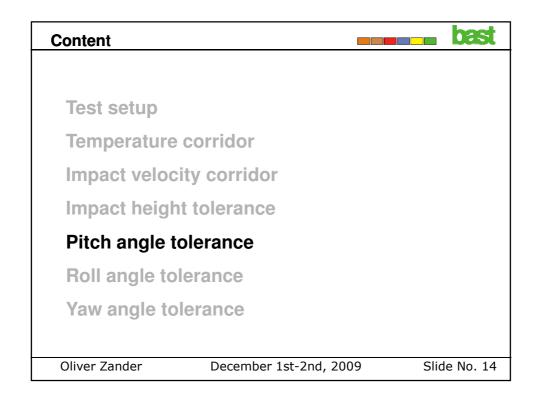
Variation of impact velocity (2)

- Twelve Flex GTR tests w/ variation of impact velocity (3*10,1 m/s, 3*10,6 m/s, 3*11,1 m/s, 3*11,6 m/s)
- Comparison with baseline tests

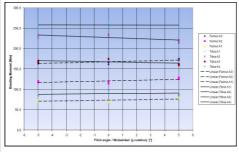


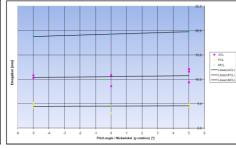

- · Clear correlation between impact velocity and impactor output
- Corridor is proposed to be held as tight as possible for both certification and vehicle tests:

v=11,1±0,2 m/s


Oliver Zander

December 1st-2nd, 2009


Six Flex GTR tests w/ variation of impact height (3*-10 mm, 3*+10 mm) Comparison with baseline tests Clear correlation between impact height and impactor output Corridor is proposed to be held as tight as possible: Inverse certification test: h=0±2 mm Vehicle test: h=75±8 mm Oliver Zander Page 4 and 1 and



Pitch angle tolerance

- Current proposal: 0±2°(Inverse certification and vehicle tests)
- Six Flex GT tests w/ variation of pitch angle (3*-5°, 3*+5°)
- · Comparison with baseline tests

- · Influence of impactor pitch angle on especially femur and MCL results
- Corridor is proposed to be held as tight as possible for both certification and vehicle tests:

Impactor pitch angle at the point of first contact = 0±2°

Oliver Zander

December 1st-2nd, 2009

Slide No. 15

Content

Test setup

Temperature corridor

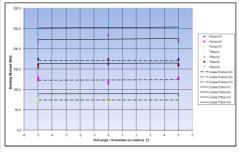
Impact velocity corridor

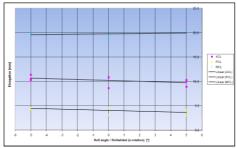
Impact height tolerance

Pitch angle tolerance

Roll angle tolerance

Yaw angle tolerance


Oliver Zander


December 1st-2nd, 2009

Roll angle tolerance

- Current proposal: 0±2°(Inverse certification and vehicle tests)
- Six Flex GT tests w/ variation of roll angle (3*-5°, 3*+5°)
- · Comparison with baseline tests

- · Obvious influence of impactor roll angle on cruciate ligament results only
- Anyway, in case ACL/PCL are foreseen as GTR injury criteria, corridor is proposed to be held as tight as possible for both certification and vehicle tests:

Impactor roll angle at the point of first contact = 0±2°

Oliver Zander

December 1st-2nd, 2009

Slide No. 17

Content

Test setup

Temperature corridor

Impact velocity corridor

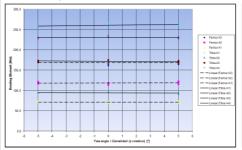
Impact height tolerance

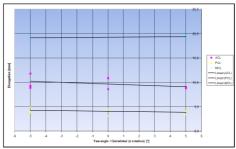
Pitch angle tolerance

Roll angle tolerance

Yaw angle tolerance

Oliver Zander


December 1st-2nd, 2009

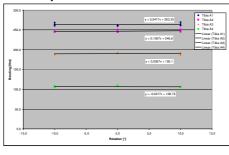

Yaw angle tolerance (1)

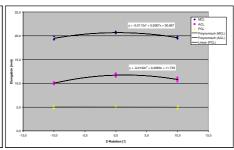
- Current proposal: 0±5 °(vehicle tests / no requirement for inv. certification)
- Six Flex GT tests w/ variation of yaw angle (3*-5°, 3*+5°)
- · Comparison with baseline tests

- · Obvious influence of impactor yaw angle on ACL results only
- Anyway, in case ACL is foreseen as GTR injury criteria, corridor is proposed to be held as tight as possible for both certification and vehicle tests.

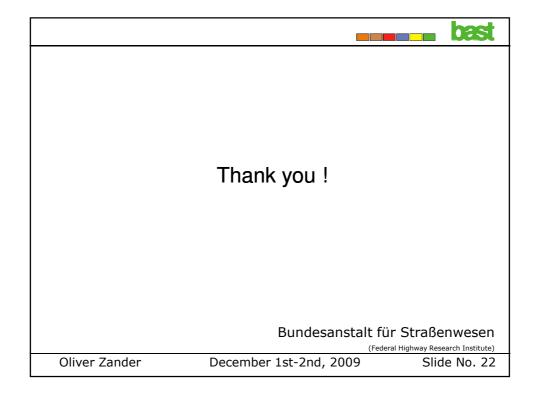
Oliver Zander

December 1st-2nd, 2009


Slide No. 19


Yaw angle tolerance (2)

- Six Flex GTR tests w/ variation of yaw angle (3*-5°, 3*+5°)
- Comparison with baseline tests


- · Obvious influence of impactor yaw angle on ACL and MCL results
- Corridor is proposed to be held as tight as possible for both certification and vehicle tests:

Impactor yaw angle at the point of first contact = 0±2°

Oliver Zander

December 1st-2nd, 2009

Parameter	Proposed Tolerance for Inverse Certification Test	Proposed Tolerance for Vehicle Testing
Temperature	20± 2 °	20± 4 °
Impact Velocity	11,1± 0,2 m/s	11,1± 0,2 m/s
Impact Height	0± 2 mm	75± 8 mm
Pitch Angle	0± 2 °	0± 2 °
Roll Angle	0± 2 °	0± 2 °
Yaw Angle	0±2°	0± 2 °

