

EEVC Rear Impact Activities

Meeting of Experts on Rear and Side Impact Dummy Harmonization

U.S. Department of Transportation, Washington, D.C.

5-6 November, 2009

Contents

- Overview of Terms of Reference
 - EEVC WG20 (Rear Impact Test Procedures)
 - EEVC WG12 (Biomechanics)
- Overview of progress on static test procedures
- Overview of progress on dynamic geometric test procedures
- Dummy biofidelity evaluation
 - Selection of biofidelity requirements
 - Evaluation of BioRID, RID^{3D} and Hybrid III
 - Conclusions

EEVC Rear Impact Activities

EEVC WG20 Terms of Reference

- Develop a static test of head restraint geometry
 - First stage in the mitigation of injuries in low-speed rear impacts
- Consider the development of a dynamic test of head restraint geometry as an optional alternative to the static test
 - Advise SC whether option should be pursued further
 - If so, develop a validated test procedure and cost-benefit
- Develop a dynamic injury risk assessment test procedure for rear impacts
 - Prime focus on neck injury reduction
- Provide EEVC contribution to the GRSP Global Technical Regulation informal WG on head restraints

EEVC Rear Impact Activities

EEVC WG12 Terms of Reverence

- Recommend a specific dummy design
 - For the sled based whiplash injury assessment procedure developed by WG20
 - Based on a set of clearly defined biomechanical response requirements
- Evaluate the repeatability and reproducibility of the selected dummy for whiplash assessment
 - Taking account of test conditions specified by WG20 and the latest certification requirements for the dummy
- Validate criteria for injury assessment / seat performance assessment
 - Focus on long-term injuries

EEVC Rear Impact Activities

Static Test Procedures

- Evaluation of HRMD-based procedure
- Evaluation of CMM-based procedure
 - Recommended just as effective and easier to implement as a standalone procedure
- Cost-benefit
 - Basis for selecting height and backset requirements
- Identification of problems with UNECE Reg17 height measurement method
 - Overestimates level of protection offered

EEVC Rear Impact Activities

Dynamic Geometric Test Procedures

- Evaluation of several options
 - Hybrid III head angle
 - BioRID measurements (e.g. forces, moments, accelerations)
 - BioRID head dynamic backset
 - Recommended option
- Preliminary validation from existing data
 - Good reproducibility (5 labs; 5 BioRIDs; accel and decel sleds)
 - Validated against Kleinberger et al. (ESV 2007) data
 - Correlates with IIWPG rating for 4 seats

Dynamic Test of HR Geometry

Dynamic Test of HR Geometry

Dynamic Test of HR Geometry

Dynamic Test of HR Geometry

Dynamic Test of HR Geometry

BioRID Retraction - Voo et al. [2007] Seats

Biofidelity Evaluation - Test Conditions

- Rear impact biofidelity requirements chosen, based on
 - The availability of the full data set
 - Quality of the test set-up and instrumentation
 - Reproducibility
 - Relevance of the test conditions, loading condition and velocity change
 - Distribution of subject anthropometry, gender and age
 - The number of tests and test subjects
- Biofidelity requirements
 - 4 based on volunteer data
 - 1 based on PMHS data

Biofidelity Evaluation - Test Conditions

Biofidelity Evaluation - Test Conditions

GDV/Allianz volunteer tests

LAB PMHS tests

Biofidelity Requirements

- Most relevant criteria prioritised
 - E.g. head angle, T1 angle, head CoG displacement...

New target corridors developed using a standardised

method

- EEVC WG9 method
- Mean ± 1 std dev
- Straight line approximation for tabulation

LAB - head angle wrt T1 co-ordinate system

Biofidelity Analysis

Subjective analysis

- Performance with respect to target corridors
- Influence of seat type and relevance to real-world seat testing

Objective analysis

- CORA analysis goodness of fit of each dummy response to each mean PMHS or volunteer response
 - Algorithm developed by PDB
 - Score 1 if entirely within inner corridor (mean human ±1 std dev)
 - Score 0 if entirely outside outer corridor (mean ±2 std dev)
 - Linear aggregation between these limits

Biofidelity Results

Some typical results...

LAB test results - head CoG x-axis displacement w.r.t. the sled - PMHS, no head restraint

Biofidelity Results

Some typical results...

JARI test results - head rotation w.r.t. T1 - volunteer, no head restraint

Biofidelity Results

Some typical results...

Chalmers/AZT test - T1 angle w.r.t. the sled

Biofidelity Results

Some typical results...

Chalmers/AZT test - Head rotation w.r.t. the sled

Biofidelity Results

- Biofidelity Hybrid III
 - Head motion w.r.t. T1 not biofidelic
 - Head rotation good in some seats, poor in others biofidelity seat dependent
 - T1 rotation generally not biofidelic
 - Head acceleration poor
 - Seat back interaction least humanlike
 - Head restraint interaction least humanlike contact force too low

Biofidelity Results

- Biofidelity RID^{3D}
 - Biofidelity better at higher test severity
 - Not as able to accommodate different seat structures as BioRID and seat back interaction not as good as BioRID
 - Head restraint interaction comparable to BioRID II
- Biofidelity BioRID II
 - Best overall biofidelity, although z displacements not good (nor for Hybrid III nor RID^{3D})
 - Head restraint interaction comparable to RID^{3D}
 - Seat back interaction most humanlike

Biofidelity Results

Objective CORA analysis

Parameter	RID ^{3D}	Hybrid III	BioRID II
T1 angle w.r.t. the sled	0.55	0.38	0.77
T1 x-axis displacement	0.53	0.50	0.47
T1 x-axis acceleration	0.56	0.48	0.60
Head rotation w.r.t. T1	0.45	0.28	0.59
Head C of G x-axis displacement w.r.t. T1	0.49	0.50	0.60
Head rotation w.r.t. the sled	0.49	0.29	0.62
Head C of G x-axis displacement w.r.t. the sled	0.62	0.43	0.46
Overall	0.53	0.41	0.59

Biofidelity Results

Objective CORA analysis

Parameter	RID ^{3D}	Hybrid III	BioRID II
T1 angle w.r.t. the sled	0.55	0.38	0.77
T1 x-axis displacement	0.53	0.50	0.47
T1 x-axis acceleration	0.56	0.48	0.60
Head rotation w.r.t. T1	0.45	0.28	0.59
Head C of G x-axis displacement w.r.t. T1	0.49	0.50	0.60
Head rotation w.r.t. the sled	0.49	0.29	0.62
Head C of G x-axis displacement w.r.t. the sled	0.62	0.43	0.46
Overall	0.53	0.41	0.59

Biofidelity Results

Objective CORA analysis

Parameter	RID ^{3D}	Hybrid III	BioRID II
T1 angle w.r.t. the sled	0.55	0.38	0.77
T1 x-axis displacement	0.53	0.50	0.47
T1 x-axis acceleration	0.56	0.48	0.60
Head rotation w.r.t. T1	0.45	0.28	0.59
Head C of G x-axis displacement w.r.t. T1	0.49	0.50	0.60
Head rotation w.r.t. the sled	0.49	0.29	0.62
Head C of G x-axis displacement w.r.t. the sled	0.62	0.43	0.46
Overall	0.53	0.41	0.59

Conclusions

- Hybrid III, RID^{3D} and BioRID II successfully evaluated in five biofidelity test conditions
- Hybrid III had insufficient biofidelity to be considered further as a test tool for low-speed rear impact
- For many parameters, RID^{3D} and BioRID II were similarly biofidelic wrt target corridors
 - Subjectively, BioRID slightly better
 - Objectively (CORA analysis) BioRID scored higher (0.59) than RID^{3D} (0.53) - average of seven parameters from five test conditions
- BioRID showed better seat back and head restraint interaction

Conclusions

- Overall, recommend that based on the currently available biofidelity data, BioRID II is the most suitable dummy for use in a low-speed rear impact test procedure
 - Scope for improvement of T1 vertical motion

End of Presentation

Presented by David Hynd, TRL Limited Chairman, EEVC WG20

Tel: +44 1344 770310 Email: wg20chair@eevc.org