

DTS Data Acquisition Background History

• 1998: TDAS PRO – 90 cm³/channel

Sled and Vehicle Crash

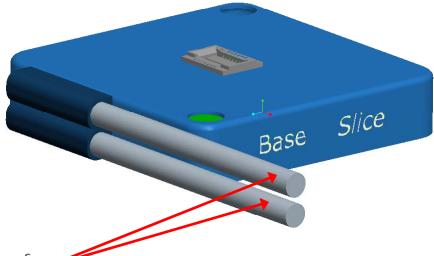
• 2003: TDAS G5 – 3.5 cm³/channel

WorldSID and iDummy

2008: Slice – 1.3 cm³/channel

Head and Leg Form

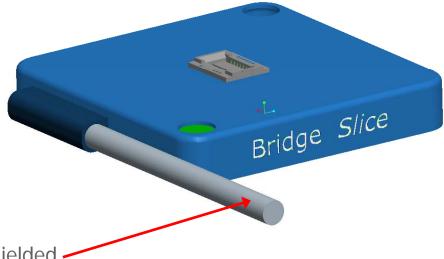
Slice Concepts


- Modular system build from 3 to 30 channels in 3 channel Slices
- Plug multiple Bridge Slices onto Base Slice to make a Stack
- USB daisy-chain between Stacks and to PC
- Up to 100 KHz sampling per channel, 16 bit ADC
- Meets all requirements of SAE J211 and ISO 6487
- Up to 8 GB (soon 16 GB) flash memory (for a 6 channel system you could take data for 37 hours! at 10 KHz sampling)
- Almost 2 times smaller than any other competing data acquisition system

Slice Design

Base Slice

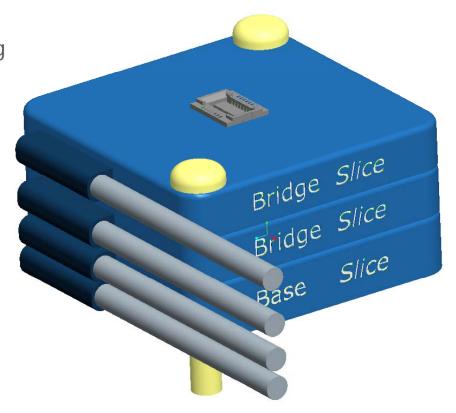
- 25 x 25 x 5 mm
- Contains microprocessor, memory, USB 2.0 port and hub, power, trigger, and control
- Other Slices stack on top of Base Slice


Two redundant connections for daisy-chaining to other *Stacks* and connection to the PC

Slice Design

• Bridge *Slice*

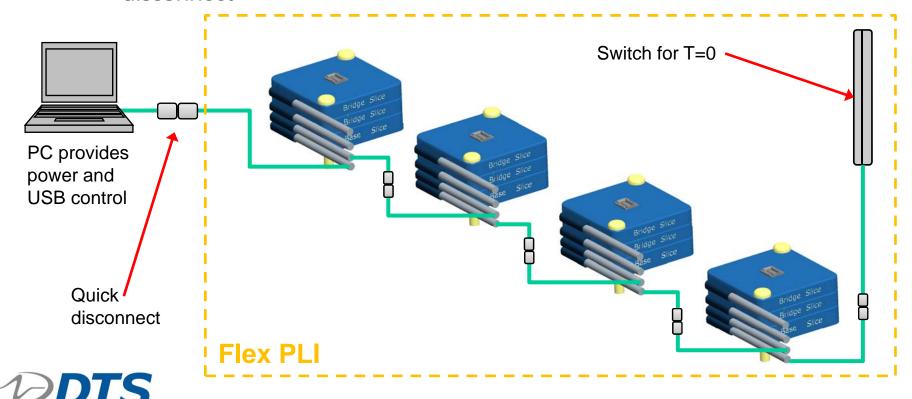
- 25 x 25 x 4 mm
- 3 channels independent 16 bit, 100 KHz ADCs
- Factory settable for 2, 2.5, 3, or 5V sensor excitation
- Designed to stack onto Base Slice or other Bridge Slices
- Accommodates most common dummy sensor types


Connect to sensors via shielded instrumentation cable

Slice Design

Stack

- Up to 10 Slices can be stacked onto Base Slice (30 channels would be 45 mm high)
- Two 2.5 mm or 4-40 bolts for connection and mounting



Example 6 channel system: 25 x 25 x 13 mm high

Slice for Flex PLI

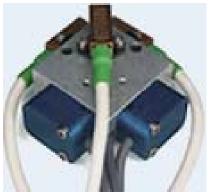
- 1 to 4 *Slice Stacks* are mounted on the Flex and chained together
- The end of the chain is connected to T=0 switch
- The beginning of the chain is connected to the off-board PC via a quick disconnect

Slice for Flex PLI

- It is very important to consider the test sequence to assure reliable data collection
- Proposed Test Sequence
 - Position Flex on launch machine.
 - Connect quick disconnect and USB port of PC.
 - Arm Slice channels with Slice software. Note PC provides power for Slice and sensors until launch.
 - Launch Flex.
 - Slice automatically starts collecting data at 20 KHz when quick disconnect breaks.
 - Each *Slice Stack* has super capacitor for 5⁺ seconds of power. Note: super capacitor is recharged within minutes when reconnected to PC for next test.
 - All data stored to flash memory no power needed to retain memory.
 - T=0 is marked in data when switch on Flex contacts vehicle.
 - After test, reconnect to USB port on PC and download data from Slice.
 - Slice software allows data viewing and export to ASCII or ISO.

Slice Development Schedule

- Originally designed for US Air Force in contract ending April 2008
- Slice design freeze for Flex PLI: March 21
- All drawings provided to FTSS: April 5
- Delivery of two 6 channel Slice units to FTSS: July 30
- Assist FTSS with testing: August-September
- Assist users with testing for duration of program
 - DTS has technical support offices in Japan, Germany and Detroit



DTS ARS

- MEMs Device DC response
- Range Frequency Response
 - 300 deg/sec Class 100
 - 1,500 deg/sec Class 600
 - 12,000 deg/sec Class 1000
 - 50,000 deg/sec 10 Khz -3dB
- Input Voltage: 4.95V to 14V
- Output Voltage: ±2V

31 March 2008

Thank You