First Technology Safety Systems

Design Freeze Status

FLEX-PLI-GTR Development Optional Instrumentation

Bernard Been FTSS Europe Comments addressed from Design Freeze meeting February 20th 2008, JARI, Tsukuba, Japan Update March 4th, 2008

Content

- Scope of the project
- Potential options and priorities for optional instrumentation
- On Board Data Acquisition packaging
- Computer Aided Engineering model

Project Scope

- Options should not make the standard version more expensive/complicated
- Standard instrumentation will meet all specifications
 - Purpose Regulatory Testing
- Versions with options may not meet all specifications
 - Purpose Research & Development Testing
- It may not be feasible to achieve all options simultaneously
- In the next phase we will concentrate on the standard design
 - Complete options design is outside the scope of this project
 - Optional Instrumentation design will be executed based on customer requests

Channel	Purpose	Standard	Option	DAS	Priority
Femur moment 1, 2 and 3	Calibration	3	0		
Tibia moment 1, 2, 3 and 4	Injury	4	0	Standard option On board DAS	
Tibia top acceln ax	Calibration	1	-1		
MCL elongation	Injury	1	0		
ACL elongation	Calibration	1	0		
PCL elongation	Calibration	1	0		
LCL elongation	Calibration	1	0		
Tibia top acceln ax, ay, az	Motion	0	3	optional	1
Femur bottm acceln ax, ay, az	Motion	0	3	on	1
Tibia angular rate ωx, ωy, ωz	Motion	0	3	board if	2
Femur angular rate ωx, ωy, ωz	Motion	0	3	feasibl	2
Femur top acceln ax, ay, az	Motion	0	3	Lab	3
Tibia bottom acceln ax, ay, az	Motion	0	3	Lab	3
Segment acceln ax	Research	0	15	Lab	4
Total		12	32		

Summary

On board pending feasibility

3 axis damped accelerometer

3 axis angular velocity sensor

Off board

Attachment place for 3 axis damped accelerometer

Attachment place for 1 axis damped accelerometer

On Board Data Acquisition Systems

- High priority
- 'Standard' option
- Improve free flight motion control
- Packaging space is optimized, though still limited
 - Potential solutions meet packaging space

http://www.messring.de/

Options Packaging Space

Packaging DAS, battery, wiring, connectors, auxiliaries, etc.

Wiring Diagram Tibia Concept

Form: 07-163 Revision: A 16 - May 07

Wiring Diagram Femur

Connectors and wiring may need to be tailored DAS specific

Wiring Diagram Options

Connectors and wiring for options may need to be tailored DAS and customer specific

Tibia and Femur Knee Part

Measurement Specialties M68C Endevco 7268C DTS Angular Rate Sensors

Form: 07-163
Revision: A
16 - May 07

Alternative Sensors in Knee Triax and Angular rate sensors

- •This idea is limited to the femur
- Calculate tibia motion from MCL, ACL PCL

Triax accelerometer Distal Tibia (shown) and Proximal Femur

Measurement Specialties M68C or Endevco 7268

Single axis accelerometer x-direction each segment

- Dedicated nylon segment for optional accelerometer
- Threaded metal insert

Option CAE model development

- FTSS proposes to develop a Flex-PLI-GTR CAE model through a consortium project parallel to the hardware development
- FTSS offers to take the responsibility to develop the models and co-ordinate the project
- The model(s) will become part of the FTSS model database and will be maintained and further enhanced accordingly
- The consortium members will fund the consortium project and will receive a free license allowing to use the model in the next 3 years

DTS-ARS http://www.dtsweb.com

DTS-ARS - The Next Generation in Angular Rate Sensors

The DTS-ARS is the latest in intelligent design from DTS. With ranges as high as 12,000 deg/sec, these incredibly small and lightweight sensors have a remarkable DC to 2,000 Hz bandwidth. Suitable for many automotive, aerospace and industrial testing applications, the DTS-ARS can also be used inside crash test dummies for precise measurements of head rotation, thorax rotation and other biodynamic measurements. Re-calibration services are available.

Applications

- FMVSS 202a and rollover crash testing
- Side curtain deployment development
- Component testing
- Biodynamic research testing

Part Number	Specifications	Additional Information	
ARS-300	±300 deg/sec range SAE Class 60 response	Ships standard with pigtail termination. Options*:	
ARS-1500	#1500 deg/sec range SAE Class 600 response	-C: add connector -CID: add connector and Dallas ID	
ARS-12K	±12000 deg/sec range SAE Class 1000 response	Optional ranges*: 300 to 50,000 deg/sec Optional bandwidth*: 40 to 10,000 Hz * additional lead time required	

DTS, Inc.

909 Electric Avenue, Suite 206 Seal Beach, CA 90740 USA Phone: +1 562 493 0158 Fax: +1 562 493 3158 Email: sales@dtaweb.com www.dtsweb.com

A six-axis package is easily obtained by taking the DTS-ARS brais package shown above and mounting three standard Enderco 7264 or MSI 64 accelerometers.

DTS-ARS SPECIFICATIONS

Range deg/sec (rad/sec)	Bandwidth* (Hz)	Noise (rms full scale)	
300 (5.2)	DC to 100	<0.15%	
1500 (26.2)	DC to 1000	<0.15%	
12000 (209.4)	DC to 1650 < 0.25%		
ELECTRICAL			
Excitation	4.95 to 14.00 VDC; output not proportional to excitation		
Current	6 mA nominal		
Zero Output	±200 mV		
Full Scale Output	±2 V nominal		
PERFORMANC	E		
Cross axis sensitivity	<1.0%		
Linearity	<0.5% full scale		
Influence of linear acceleration	0.2 deg/sec/g		
Drift	0.1 deg/sec/sec		

PHYSICAL		
Enclosure	Anodized aluminum	
Size	0.3 x 0.4 x 0.58 inches 7.6 x 10.2 x 14.7 mm	
Mass	<3 grams	
Shock	2000 G, any direction	
Cable	four conductor, 28 AWG Overall shield isolated from enclosure Standard 25 ft (8.3 m) Color code Black: -Excitation Red: +Excitation Green: +Signal White: -Signal	
Temperature Range	-40 to +85°C	
Humidity	99%, non-condensing	
Connector	LEMO or other installed per request	
Dallas ID	Installed in connector	

Specifications may be revised without notice.

 Indicates flat response in this frequency range. The 1500 deg/sec ARS meets SAE Class 600 performance requirements. The 12000 deg/sec ARS meets SAE Class 1000. All DTS-ARS sensors have DC response. Nominal frequency response for 1500 and 12000 deg/sec units are show below.

Revised Nov 2006

DTS

Corporate Headquarters 909 Electric Ave., Suite 206 Seal Beach, CA 90740, USA Phone: +1 562 493 0158

Fax: +1 562 493 3158 Email: sales@dtsweb.com

For a complete list of regional sales and support contacts, please visit www.dtsweb.com

16

Design frozen!

Form: 07-163

Revision: A 16 - May 07