

Distr. GENERAL

ECE/TRANS/WP.29/2008/112 24 July 2008

RUSSIAN

Original: ENGLISH

ЕВРОПЕЙСКАЯ ЭКОНОМИЧЕСКАЯ КОМИССИЯ

КОМИТЕТ ПО ВНУТРЕННЕМУ ТРАНСПОРТУ

Всемирный форум для согласования правил в области транспортных средств

Сто сорок шестая сессия Женева, 11–14 ноября 2008 года Пункт 4.2.22 предварительной повестки дня

СОГЛАШЕНИЕ 1958 ГОДА

Рассмотрение проектов поправок к действующим правилам

<u>Предложение по дополнению 8 к поправкам серии 05 к Правилам № 83</u> (Выбросы загрязняющих веществ транспортными средствами категорий M_1 и N_1)

<u>Представлено Рабочей группой по проблемам энергии</u> и загрязнения окружающей среды (GRPE) */

Воспроизведенный ниже текст был принят GRPE на ее пятьдесят шестой сессии. В его основу положены документы ECE/TRANS/WP.29/GRPE/2008/5, с поправками, указанными в пункте 24 доклада, и ECE/TRANS/WP.29/GRPE/2008/6, с поправками, указанными приложении IV к докладу. Он передается Всемирному форуму для согласования правил в области транспортных средств (WP.29) и Административному комитету (AC.1) для рассмотрения (ECE/TRANS/WP.29/GRPE/56, пункты 24 и 26).

^{*/} В соответствии с программой работы Комитета по внутреннему транспорту на 2006-2010 годы (ECE/TRANS/166/Add.1, подпрограмма 02.4) Всемирный форум будет разрабатывать, согласовывать и обновлять правила в целях улучшения характеристик транспортных средств. Настоящий документ представлен в соответствии с этим мандатом.

Содержание, приложения, приложение 10, изменить следующим образом:

"Приложение 10: ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ЭТАЛОННОМУ ТОПЛИВУ

- 1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ЭТАЛОННОМУ ТОПЛИВУ ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ С УЧЕТОМ ПРЕДЕЛЬНЫХ ЗНАЧЕНИЙ ВЫБРОСОВ, УКАЗАННЫХ В СТРОКЕ А ТАБЛИЦЫ, ПРИВЕДЕННОЙ В ПУНКТЕ 5.3.1.4 ИСПЫТАНИЕ ТИПА I
- 1.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭТАЛОННОГО ТОПЛИВА, ПРИМЕНЯЕМОГО ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДВИГАТЕЛЕМ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ
- 1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭТАЛОННОГО ТОПЛИВА, ПРИМЕНЯЕМОГО ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДИЗЕЛЬНЫМ ДВИГАТЕЛЕМ
- 2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ЭТАЛОННОМУ ТОПЛИВУ ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ С УЧЕТОМ ПРЕДЕЛЬНЫХ ЗНАЧЕНИЙ ВЫБРОСОВ, УКАЗАННЫХ В СТРОКЕ В ТАБЛИЦЫ, ПРИВЕДЕННОЙ В ПУНКТЕ 5.3.1.4 ИСПЫТАНИЕ ТИПА I
- 2.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭТАЛОННОГО ТОПЛИВА, ПРИМЕНЯЕМОГО ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДВИГАТЕЛЕМ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ
- 2.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭТАЛОННОГО ТОПЛИВА, ПРИМЕНЯЕМОГО ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДИЗЕЛЬНЫМ ДВИГАТЕЛЕМ
- 3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ЭТАЛОННОМУ ТОПЛИВУ, ПРИМЕНЯЕМОМУ ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДВИГАТЕЛЕМ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ, ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕЙ СРЕДЫ ИСПЫТАНИЕ ТИПА VI".

Текст Правил

Пункт 2.4 изменить следующим образом:

«2.4 под "загрязняющими газами" подразумеваются выбросы выхлопных газов в виде моноксида углерода, окислов азота, выраженных в эквиваленте NO_2 , и углеводородов, выраженных в виде:

- а) $C_1H_{1.85}$ для бензина (E0),
- b) $C_1H_{1,86}$ для дизельного топлива (B0),
- с) $C_1H_{2.525}$ для СНГ,
- d) C_1H_4 для $\Pi\Gamma$,
- e) $C_1H_{1,89}O_{0,016}$ для бензина (E5),
- f) $C_1H_{1,86}O_{0,005}$ для дизельного топлива (B5)».

Пункт 2.18 изменить следующим образом:

- «2.18 под "необходимым для двигателя топливом" подразумевается тип обычно используемого для питания двигателя топлива:
 - а) бензин (Е0 или Е5),
 - b) СНГ (сжиженный нефтяной газ),
 - с) ПГ (природный газ),
 - d) либо бензин, либо СНГ,
 - е) либо бензин, либо ПГ,
 - f) дизельное топливо (B0 или B5)».

Приложение 2, пункт 16.1, изменить следующим образом:

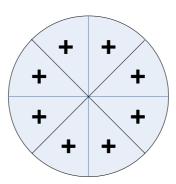
'16.1	. J	1 спытание типа	l:	
-------	-----	------------------------	----	--

Загрязняющее вещество	СО (г/км)	HC (г/км)	NOx (г/км)	HC + NOx (1) (г/км)	Частицы (1) (г/км)
измеренное					
рассчитанное с показателем ухудшения (ПУ)					

ECE/TRANS/WP.29/2008/112 page 4

(1)	Только для транспортных средств, оснащенных двигателями с воспламенением
	от сжатия.
	Положение вентилятора охлаждения двигателя в ходе испытания:
	Высота нижнего края над поверхностью пола:
	Поперечное положение центра вентилятора:см
	Справа/слева от центральной линии транспортного средства 2/
16.1.1	В случае транспортных средств, работающих на

Приложение 4


<u>Пункт 6.1.3</u> изменить следующим образом:

"6.1.3 На транспортное средство направляется с переменной скоростью поток воздуха. Скорость подачи воздуха должна находиться в рабочих пределах от 10 км/ч до не менее 50 км/ч или в качестве альтернативного варианта, по просьбе завода-изготовителя, — в рабочих пределах от 10 км/ч до не менее максимальной скорости используемого цикла испытания. Линейная скорость воздушного потока на выходе воздуходувки должна быть в пределах ± 5 км/ч по отношению к скорости движения соответствующего бегового барабана в диапазоне от 10 км/ч до 50 км/ч. В диапазоне свыше 50 км/ч линейная скорость воздушного потока должна оставаться в пределах ± 10 км/ч по отношению к скорости движения соответствующего бегового барабана. При скорости движения бегового барабана менее 10 км/ч скорость воздушного потока может быть равна нулю.

Вышеуказанная скорость воздушного потока определяется как среднее значение ряда измерительных точек:

а) для воздуходувок с прямоугольными выпускными отверстиями — точки расположены в центре каждого прямоугольника, разделяющего все выпускное отверстие воздуходувки на девять секторов (причем как горизонтально, так и вертикально это выпускное отверстие делится на три равные части);

для воздуходувок с круглыми выпускными отверстиями — выпускное отверстие делится на восемь равных секторов вертикальными, горизонтальными и наклоненными под углом 45° линиями.
 Измерительные точки располагаются на пересечениях биссектрис каждого из секторов (22,5°) с окружностью радиусом в две трети радиуса выпускного отверстия (как показано на схеме ниже).

Каждое значение, полученное в этих точках, должно находиться в пределах 10% от общего среднего показателя.

Устройство, используемое для измерения линейной скорости воздушного потока, должно располагаться на расстоянии 0–20 см от воздуховыпускного отверстия.

Окончательно выбранная воздуходувка должна иметь следующие характеристики:

- i) площадь: не менее 0.2 м^2 ;
- іі) высота нижнего края над поверхностью пола: приблизительно 20 см;
- iii) расстояние от передней части транспортного средства: приблизительно 30 см.

В качестве альтернативного варианта, по просьбе завода-изготовителя, скорость подачи воздуха воздуходувкой устанавливается на уровне скорости воздушного потока, составляющей не менее 6 м/с (21,6 км/ч).

Высота и поперечное положение вентилятора охлаждения также могут изменяться по просьбе завода-изготовителя".

Пункт 8.2 изменить следующим образом:

"8.2 Общая масса выделенных загрязняющих газов и загрязняющих частиц

Масса М каждого загрязняющего вещества, выделенного транспортным средством во время испытания, определяется путем умножения объемной концентрации на объем данного газа с учетом следующих величин плотности при вышеуказанных исходных условиях:

для моноксида углерода (CO): d = 1,25 г/л;

для углеводородов:

a)	бензин E0 (СН _{1,85})	$d = 0,619 \ \Gamma/\pi$
b)	дизельное топливо $B0$ ($CH_{1,86}$)	d = 0.619 г/л
c)	CHΓ (CH _{2,525})	d = 0,649 г/л
d)	$\Pi\Gamma$ (CH ₄)	d = 0.714 г/л
e)	бензин E5 ($C_1H_{1,89}O_{0,,16}$)	d = 0,631 г/л
f)	дизельное топливо В5 ($C_1H_{1,86}O_{0,005}$)	d = 0.622 г/л''.

Приложение 4, добавление 8

Пункт 1.3 изменить следующим образом:

"1.3 РАСЧЕТ СКОРРЕКТИРОВАННОЙ...

.....

Коэффициент разрежения рассчитывается следующим образом.

Для каждого эталонного топлива:

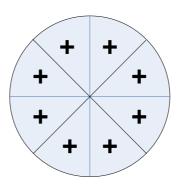
$$DF = \frac{X}{C_{CO2} + (C_{HC} + C_{CO}) \cdot 10^{-4}} .$$

Для топлива составом $C_x H_v O_z$ общей формулой является следующая:

$$X = 100 \frac{x}{x + \frac{y}{2} + 3.76 \left(x + \frac{y}{4} - \frac{z}{2}\right)}$$

Для видов эталонного топлива, указанных в приложении IX, "X" имеет следующие значения:

Топливо	X
Бензин (Е0)	13,4
Дизельное топливо (В0)	13,4
СНГ	11,9
ПГ	9,5
Бензин (Е5)	13,4
Дизельное топливо (В5)	13,5


Приложение 4а

Пункт 3.4.2 изменить следующим образом:

"3.4.2 На транспортное средство направляется с переменной скоростью поток воздуха. Скорость подачи воздуха должна находиться в рабочих пределах от 10 км/ч до не менее 50 км/ч или в качестве альтернативного варианта, по просьбе завода-изготовителя, — в рабочих пределах от 10 км/ч до не менее максимальной скорости используемого цикла испытания. Линейная скорость воздушного потока на выходе воздуходувки должна быть в пределах ± 5 км/ч по отношению к скорости движения соответствующего бегового барабана в диапазоне от 10 км/ч до 50 км/ч. В диапазоне свыше 50 км/ч линейная скорость воздушного потока должна оставаться в пределах ± 10 км/ч по отношению к скорости движения соответствующего бегового барабана. При скорости движения бегового барабана менее 10 км/ч скорость воздушного потока может быть равна нулю.

Вышеуказанная скорость воздушного потока определяется как среднее значение ряда измерительных точек:

 а) для воздуходувок с прямоугольными выпускными отверстиями — точки расположены в центре каждого прямоугольника, разделяющего все выпускное отверстие воздуходувки на девять секторов (причем как горизонтально, так и вертикально это выпускное отверстие делится на три равные части); для воздуходувок с круглыми выпускными отверстиями — выпускное отверстие делится на восемь равных секторов вертикальными, горизонтальными и наклоненными под углом 45° линиями.
 Измерительные точки располагаются на пересечениях биссектрис каждого из секторов (22,5°) с окружностью радиусом в две трети радиуса выпускного отверстия (как показано на схеме ниже).

Каждое значение, полученное в этих точках, должно находиться в пределах 10% от общего среднего показателя.

Устройство, используемое для измерения линейной скорости воздуха, должно располагаться на расстоянии 0–20 см от воздуховыпускного отверстия.

Окончательно выбранная воздуходувка должна иметь следующие характеристики:

- i) площадь: не менее 0.2 m^2 ;
- іі) высота нижнего края над поверхностью пола: приблизительно 0,2 м;
- iii) расстояние от передней части транспортного средства: приблизительно 0,3 м.

В качестве альтернативного варианта, по просьбе завода-изготовителя, скорость подачи воздуха воздуходувкой устанавливается на уровне скорости воздушного потока, составляющей не менее 6 м/с (21,6 км/ч).

Высота и поперечное положение вентилятора охлаждения также могут изменяться по просьбе завода-изготовителя".

Приложение 10, пункты 2 и 3, изменить следующим образом:

- "2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ЭТАЛОННОМУ ТОПЛИВУ ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ С УЧЕТОМ ПРЕДЕЛЬНЫХ ЗНАЧЕНИЙ ВЫБРОСОВ, УКАЗАННЫХ В СТРОКЕ В ТАБЛИЦЫ, ПРИВЕДЕННОЙ В ПУНКТЕ 5.3.1.4 ИСПЫТАНИЕ ТИПА I
- 2.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭТАЛОННОГО ТОПЛИВА, ПРИМЕНЯЕМОГО ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДВИГАТЕЛЕМ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ

Тип: Неэтилированный бензин (Е0)

Попоможе	E	Преде	елы <u>1</u> /	Мото и моги томия
Параметр	Единица	Мин.	Макс.	 Метод испытания
Теоретическое октановое число (TOЧ)		95,0	-	EN 25164
Моторное октановое число (МОЧ)		85,0	-	EN 25163
Плотность при 15°C	к Γ/ M ³	740	754	ISO 3675
Давление пара по Рейду	кПа	56,0	60,0	PrEN ISO 13016-1 (DVPE)
Перегонка:				
- испарение при 70 °C	% объема	24,0	40,0	EN-ISO 3405
- испарение при 100 °C	% объема	50,0	58,0	EN-ISO 3405
- испарение при 150 °C	% объема	83,0	89,0	EN-ISO 3405
- конечная точка кипения	°C	190	210	EN-ISO 3405
Осадок	% объема	-	2,0	EN-ISO 3405
Анализ углеводородов:				
Олефины	% объема	-	10,0	ASTM D 1319
Ароматические масла	% объема	29,0	35,0	ASTM D 1319
Предельные углеводороды	% объема	Coo	бщ.	ASTM D 1319
Бензол	% объема	-	1,0	pr. EN 12177
Соотношение углерода и водорода		Coo	общ.	
Период всасывания <u>2</u> /	мин.	480	-	EN-ISO 7536
Содержание кислорода	% массы	-	1,0	EN 1601
Растворенные смолы	мг/мл	-	0,04	EN-ISO 6246
Содержание серы	мг/кг	-	10	ASTM D 5453
Окисление меди		-	Класс 1	EN-ISO 2160
Содержание свинца	мг/л	-	5	EN 237
Содержание фосфора	мг/л	-	1,3	ASTM D 3231

²/ Топливо может содержать противоокислительные ингибиторы и деактиваторы металлов, обычно используемые для стабилизации циркулирующих потоков бензина на нефтеперерабатывающих заводах, но не должно содержать никаких детергентов/диспергаторов и масел селективной очистки.

^{3/} Должно быть указано фактическое содержание серы в топливе, используемом для проведения испытаний типа I.

В КАЧЕСТВЕ АЛЬТЕРНАТИВНОГО ВАРИАНТА

Тип: Бензин (Е5)

Параметр	Единица	Пределы <u>1</u> /		Метод испытания
		Мин.	Макс.	7
Теоретическое октановое число (ТОЧ)		95,0	_	EN 25164
				prEN ISO 5164
Моторное октановое число (МОЧ)		85,0	_	EN 25163
				prEN ISO 5163
Плотность при 15°C	кг/м ³	743	756	EN ISO 3675
				EN ISO 12185
Давление пара	кПа	56,0	60,0	EN ISO 13016-1 (DVPE)
Содержание воды	% объема		0,015	ASTM E 1064
Перегонка:				
– испарение при 70 °C	% объема	24,0	44,0	EN-ISO 3405
– испарение при 100 °C	% объема	48,0	60,0	EN-ISO 3405
– испарение при 150 °C	% объема	82,0	90,0	EN-ISO 3405
конечная точка кипения	°C	190	210	EN-ISO 3405
Осадок	% объема	_	2,0	EN-ISO 3405
Анализ углеводородов:				
– олефины	% объема	3,0	13,0	ASTM D 1319
 ароматические масла 	% объема	29,0	35,0	ASTM D 1319
– бензол	% объема	_	1,0	EN 12177
– предельные углеводороды	% объема	Co	общ.	ASTM 1319
Соотношение углерода и водорода		Co	общ.	
Соотношение углерода и кислорода		Co	общ.	
Период всасывания <u>2</u> /	мин.	480	_	EN-ISO 7536
Содержание кислорода 4/	% массы	Co	общ.	EN 1601
Растворенные смолы	мг/мл	_	0,04	EN-ISO 6246
Содержание серы 3/	мг/кг	_	10	EN ISO 20846
1 =				EN ISO 20884
Окисление меди		_	Класс 1	EN-ISO 2160
Содержание свинца	мг/л	_	5	EN 237
Содержание фосфора	мг/л	_	1,3	ASTM D 3231
Этанол 5/	% объема	4,7	5,3	EN 1601
_				EN 13132

Значения, указанные в технических требованиях, являются "истинными значениями". При определении предельных значений были использованы условия стандарта ISO 4259 "Нефтепродукты: определение и применение точных данных о методах испытания", а при установлении минимальной величины принималась во внимание минимальная разница в 2R выше нулевого значения; при установлении максимального и минимального значений минимальная разница между этими величинами составляет 4R (R = воспроизводимость).

- Топливо может содержать противоокислительные ингибиторы и деактиваторы металлов, обычно используемые для стабилизации циркулирующих потоков бензина на нефтеперерабатывающих заводах, но не должно содержать никаких детергентов/ диспергаторов и масел селективной очистки.
- <u>3/</u> Должно быть указано фактическое содержание серы в топливе, используемом для проведения испытаний типа I.
- Этанол, соответствующий техническим требованиям стандарта prEN 15376, единственный оксигенат, специально добавляемый к эталонному топливу.
- К этому эталонному топливу не должно специально добавляться соединений, содержащих фосфор, железо, марганец или свинец.

2.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭТАЛОННОГО ТОПЛИВА, ПРИМЕНЯЕМОГО ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДИЗЕЛЬНЫМ ДВИГАТЕЛЕМ

Тип: Дизельное топливо (ВО)

Поромотр	Единица	Пред	елы <u>1</u> /	Метод испытания
Параметр	Единица	Мин.	Макс.	— Метод испытания
Цетановое число <u>2</u> /		52,0	54,0	EN-ISO 5165
Плотность при 15°C	кг/м ³	833	837	EN-ISO 3675
Перегонка:				
- 50%	°C	245	_	EN-ISO 3405
- 95%	°C	345	350	EN-ISO 3405
 конечная точка кипения 	°C	_	370	EN-ISO 3405
Точка воспламенения	°C	55	_	EN 22719
Точка закупорки холодного фильтра (ТЗХФ)	°C	_	-5	EN 116
Вязкость при 40°C	mm ² /c	2,3	3,3	EN-ISO 3104
Полициклические ароматические углеводороды	% массы	3	6,0	IP 391
Содержание серы <u>3</u> /	мг/кг	-	10	ASTM D 5453
Окисление меди		-	Класс 1	EN-ISO 2160
Углеродистый остаток по Конрадсону (10%)	% массы	-	0,2	EN-ISO 10370
Содержание золы	% массы	_	0,01	EN-ISO 6245
Содержание воды	% массы	_	0,02	EN-ISO 12937
Число нейтрализации (сильная кислота)	мг КОН/г	_	0,02	ASTM D 974
Стойкость к окислению <u>4</u> /	мг/мл	-	0,025	EN-ISO 12205
Смазывающая способность (износ КШМ	МКМ	-	400	CEC F-06-A-96
высокооборотного поршневого двигателя при				
60°C)				
ПРИСАДКИ	Запрещены	•	•	•

- 2/ Интервал, указанный для цетанового числа, не согласуется с требованием о минимальном интервале 4R. Однако при возникновении спора между поставщиком топлива и потребителем топлива могут применяться условия стандарта ISO 4259 для урегулирования таких споров при условии проведения достаточного числа измерений с целью получения результата необходимой точности, так как подобная процедура является более надежной, чем однократное измерение.
- 3/ Должно указываться фактическое содержание серы в топливе, используемом для проведения испытаний типа I.
- 4/ Хотя стойкость к окислению контролируется, вполне вероятно, что срок годности продукта будет ограничен. По вопросам, касающимся условий хранения и срока годности, следует консультироваться с поставщиком.

В КАЧЕСТВЕ АЛЬТЕРНАТИВНОГО ВАРИАНТА

Тип: Дизельное топливо (В5)

Параметр	Единица	Пред	целы <u>1</u> /	Метод испытания
		Мин.	Макс.	
Цетановое число <u>2</u> /		52,0	54,0	EN-ISO 5165
Плотность при 15°C	кг/м ³	833	837	EN-ISO 3675
Перегонка:				
- 50 %	°C	245	_	EN-ISO 3405
- 95 %	°C	345	350	EN-ISO 3405
- конечная точка кипения	°C	_	370	EN-ISO 3405
Точка воспламенения	°C	55	_	EN 22719
Точка закупорки холодного фильтра (ТЗХФ)	°C	_	- 5	EN 116
Вязкость при 40°C	mm^2/c	2,3	3,3	EN-ISO 3104
Полициклические ароматические углеводороды	% массы	2,0	6,0	EN 12916
Содержание	мг/кг		10	EN ISO 20846
серы <u>3</u> /				/ EN ISO 20884
Окисление меди		_	класс 1	EN-ISO 2160
Углеродистый остаток по Конрадсону (10%)	% массы	_	0,2	EN-ISO 10370
Содержание золы	% массы	_	0,01	EN-ISO 6245
Содержание воды	% массы	_	0,02	EN-ISO 12937
Число нейтрализации (сильная кислота)	мг КОН/г	_	0,02	ASTM D 974
Стойкость к окислению $4/$	мг/мл	_	0,025	EN-ISO 12205
Смазывающая способность (износ КШМ	MKM	_	400	EN ISO 12156
высокооборотного поршневого двигателя при 60°С)				
Стойкость к окислению при 110°C <u>4</u> / <u>6</u> /	Ч	20,0		EN 14112
ПРИСАДКИ <u>5</u> /	% объема	4,5	5,5	EN 14078

1/ Значения, указанные в технических требованиях, являются "истинными значениями". При определении предельных значений были использованы условия стандарта ISO 4259 "Нефтепродукты: определение и применение точных данных о методах испытания", а при установлении минимальной величины принималась во внимание минимальная разница в 2R выше нуля; при установлении максимального и минимального значений минимальная разница между этими величинами составляет 4R (R = воспроизводимость).

- 2/ Интервал, указанный для цетанового числа, не согласуется с требованием о минимальном интервале 4R. Однако при возникновении спора между поставщиком и потребителем топлива могут применяться условия стандарта ISO 4259 для урегулирования таких споров при условии проведения достаточного числа измерений с целью получения результата необходимой точности, так как подобная процедура является более надежной, чем однократное измерение.
- 3/ Должно указываться фактическое содержание серы в топливе, используемом для проведения испытаний типа I.
- 4/ Хотя стойкость к окислению контролируется, вполне вероятно, что срок годности продукта будет ограничен. По вопросам, касающимся условий хранения и срока годности, следует консультироваться с поставщиком.
- 5/ Содержание присадок должно отвечать техническим требованиям стандарта EN 14214.
- 6/ Стойкость к окислению может быть доказана с помощью стандартов EN-ISO 12205 или EN 14112. Это требование пересматривается на основе оценок стойкости к окислению и условий испытания ТК-19 EKC (CEN/TC19).

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ЭТАЛОННОМУ ТОПЛИВУ, ПРИМЕНЯЕМОМУ ДЛЯ ИСПЫТАНИЯ ТРАНСПОРТНЫХ СРЕДСТВ, ОСНАЩЕННЫХ ДВИГАТЕЛЕМ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ, ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕЙ СРЕДЫ — ИСПЫТАНИЕ ТИПА VI

Тип:	Неэтили	рованный	бензин ((E0)
------	---------	----------	----------	------

Паналагия	Е	Пред	елы <u>1</u> /	Метод испытания	
Параметр	Единица	Мин.	Макс.		
Теоретическое октановое число (ТОЧ)		95,0	_	EN 25164	
Моторное октановое число (МОЧ)		85,0	_	EN 25163	
Плотность при 15°C	к г/м ³	740	754	ISO 3675	
Давление пара по Рейду	кПа	56,0	95,0	EN ISO 13016-1 (DVPE)	
Перегонка:					
испарение при 70°C	% объема	24,0	40,0	EN-ISO 3405	
испарение при 100°C	% объема	50,0	58,0	EN-ISO 3405	
 испарение при 150°C 	% объема	83,0	89,0	EN-ISO 3405	
 конечная точка кипения 	°C	190	210	EN-ISO 3405	
Осадок	% объема	-	2,0	EN-ISO 3405	
Анализ углеводородов:					
– олефины	% объема	ı	10,0	ASTM D 1319	
ароматические масла	% объема	29,0	35,0	ASTM D 1319	
 предельные углеводороды 	% объема	Сообщ.		ASTM D 1319	
– бензол	% объема	_	1,0	EN 12177	
Соотношение углеводорода и водорода		Coc	общ.		
Период всасывания <u>2</u> /	мин.	480	_	EN-ISO 7536	
Содержание кислорода	% массы	_	1,0	EN 1601	
Растворенные смолы	мг/мл	_	0,04	EN-ISO 6246	
Содержание серы <u>3</u> /	мг/кг	_	10	ASTM D 5453	
Окисление меди		_	Класс 1	EN-ISO 2160	
Содержание свинца	мг/л	_	5	EN 237	
Содержание фосфора	мг/л	_	1,3	ASTM D 3231	

1/ Значения, указанные в технических требованиях, являются "истинными значениями". При определении предельных значений были использованы условия стандарта ISO 4259 "Нефтепродукты: определение и применение точных данных о методах испытания", а при установлении минимальной величины принималась во внимание минимальная разница в 2R выше нулевого значения; при установлении максимального и минимального значений минимальная разница между этими величинами составляет 4R (R = воспроизводимость).

- $\underline{2}$ / Топливо может содержать противоокислительные ингибиторы и деактиваторы металлов, обычно используемые для стабилизации циркулирующих потоков бензина на нефтеперерабатывающих заводах, но не должно содержать добавок детергентов/диспергаторов и масел селективной очистки.
- 3/ Должно указываться фактическое содержание серы в топливе, используемом для проведения испытания типа VI.

В КАЧЕСТВЕ АЛЬТЕРНАТИВНОГО ВАРИАНТА

Тип: Бензин (Е5)

Параметр	Единица	Пред	целы <u>1</u> /	Метод испытания
		Мин.	Макс.	
Теоретическое октановое число (ТОЧ)		95,0		EN 25164
				prEN ISO 5164
Моторное октановое число (МОЧ)		85,0		EN 25163
				prEN ISO 5163
Плотность при 15°C	Κ Γ/ M ³	743	756	EN ISO 3675
_				EN ISO 12185
Давление пара	кПа	56,0	95,0	EN ISO 13016-1 (DVPE)
Содержание воды	% объема		0,015	ASTM E 1064
Перегонка:				
– испарение при 70 °C	% объема	24,0	44,0	EN-ISO 3405
испарение при 100 °C	% объема	50,0	60,0	EN-ISO 3405
– испарение при 150 °C	% объема	82,0	90,0	EN-ISO 3405
 конечная точка кипения 	°C	190	210	EN-ISO 3405
Осадок	% объема	_	2,0	EN-ISO 3405
Анализ углеводородов:				
– олефины	% объема	3,0	13,0	ASTM D 1319
– ароматические масла	% объема	29,0	35,0	ASTM D 1319
– бензол	% объема	_	1,0	EN 12177
предельные углеводороды	% объема	Сообщ.		ASTM 1319
Соотношение углеводорода и водорода		Сообщ.		
Соотношение углеводорода и		Co	общ.	
кислорода				
Период всасывания <u>2</u> /	мин.	480		EN-ISO 7536
Содержание кислорода 4/	% массы	Co	общ.	EN 1601
Растворенные смолы	мг/мл	_	0,04	EN-ISO 6246
Содержание серы 3/	мг/кг		10	EN ISO 20846
				EN ISO 20884
Окисление меди		_	Класс 1	EN-ISO 2160
Содержание свинца	мг/л	_	5	EN 237
Содержание фосфора	мг/л	_	1,3	ASTM D 3231
Этанол <u>5</u> /	% объема	4,7	5,3	EN 1601
				EN 13132

1/ Значения, указанные в технических требованиях, являются "истинными значениями". При определении предельных значений были использованы условия стандарта ISO 4259 "Нефтепродукты: определение и применение точных данных о методах испытания", а при установлении минимальной величины принималась во внимание минимальная разница в 2R выше нулевого значения; при установлении максимального и минимального значений минимальная разница между этими величинами составляет 4R (R = воспроизводимость). Независимо от этой системы измерения, которая необходима по техническим причинам, производителю топлива следует, тем не менее, стремиться к нулевому значению в том случае, если предусмотренное максимальное значение равняется 2R, и к среднему значению в том случае, если существуют максимальный и минимальный пределы. Если необходимо выяснить вопрос о том, соответствует ли топливо техническим требованиям, следует применять условия стандарта ISO 4259.2/

Топливо может содержать противоокислительные ингибиторы и деактиваторы металлов, обычно используемые для стабилизации циркулирующих потоков бензина на нефтеперерабатывающих заводах, но не должно содержать добавок детергентов/диспергаторов и масел селективной очистки. 3/ Должно указываться фактическое содержание серы в топливе, используемом для проведения испытания типа VI.4/Этанол, соответствующий техническим требованиям стандарта prEN 15376, — единственный оксигенат, специально добавляемый к эталонному топливу.

5/ К этому эталонному топливу не должно специально добавляться соединений, содержащих фосфор, железо, марганец или свинец.

Приложение 14, пункты 3–3.2.4.1, изменить следующим образом:

- "3. МЕТОДЫ ИСПЫТАНИЯ ТИПА І
- 3.1 ГЭМ-ВЗУ, ЗАРЯЖАЕМЫЕ С ПОМОЩЬЮ ВНЕШНЕГО ЗАРЯДНОГО УСТРОЙСТВА, БЕЗ ПЕРЕКЛЮЧАТЕЛЯ РАБОЧИХ РЕЖИМОВ
- 3.1.1 Проводятся два испытания при соблюдении следующих условий.

<u>Условие А</u>: испытание проводится с полностью заряженным устройством аккумулирования электрической энергии/мощности.

<u>Условие В</u>: испытание проводится при минимальной зарядке (максимальной разрядке) устройства аккумулирования электрической энергии/мощности.

Диаграмма изменения степени зарядки (СЗ) устройства аккумулирования электрической энергии/мощности на различных этапах испытания типа I приводится в добавлении 1.

- **3.1.2** Условие A
- 3.1.2.1 Процедура испытания начинается с разрядки устройства аккумулирования электрической энергии/мощности транспортного средства при движении (по испытательному треку, на динамометрическом стенде и т.д.):
 - а) с устойчивой скоростью 50 км/ч до тех пор, пока не включится двигатель ГЭМ, работающий на топливе,
 - b) или, если транспортное средство не может достичь устойчивой скорости в 50 км/ч без запуска двигателя, работающего на топливе, скорость снижается до тех пор, пока транспортное средство не сможет двигаться с менее высокой устойчивой скоростью, при которой двигатель, работающий на топливе, не включается в течение определенного времени/пробега (подлежит согласованию технической службой и заводом-изготовителем),
 - с) или в соответствии с рекомендацией завода-изготовителя.

Двигатель, работающий на топливе, должен быть остановлен в течение 10 секунд после его автоматического запуска.

- 3.1.2.2 Подготовка транспортного средства
- 3.1.2.2.1 В случае транспортных средств, оснащенных двигателем с воспламенением от сжатия, используется вторая часть цикла, описанного в добавлении 1 к приложению 4. Прогон по трем последовательным циклам осуществляется в соответствии с пунктом 3.1.2.5.3 ниже.
- 3.1.2.2.2 Транспортные средства, оснащенные двигателями с принудительным зажиганием, проходят предварительную подготовку с использованием одного прогонного цикла, соответствующего первой части, и двух прогонных циклов, соответствующих второй части, как указано в пункте 3.1.2.5.3 ниже.
- 3.1.2.3 После предварительной подготовки и до начала испытания транспортное средство содержится в помещении с относительно постоянной температурой в пределах 293–303 К (20–30 °C). Такая подготовка длится не менее шести часов и продолжается до тех пор, пока температура моторного масла и охлаждающей жидкости, если таковая имеется, не сравняется с температурой помещения ±2 К, а устройство аккумулирования электрической энергии/мощности не будет полностью заряжено в результате зарядки, предписанной в пункте 3.1.2.4 ниже.
- 3.1.2.4 Во время выдержки транспортного средства при заданной температуре производится зарядка устройства аккумулирования электрической энергии/мощности с помощью:
 - а) бортового зарядного устройства, если оно установлено, или
 - b) внешнего зарядного устройства, рекомендованного заводомизготовителем, и с использованием обычной методики зарядки в течение ночи.

Эта методика исключает какие бы то ни было специальные виды подзарядки, которая может включаться автоматически или вручную, например выравнивающей или сервисной подзарядки.

Завод-изготовитель указывает, что в ходе испытания специальная подзарядка не производилась.

- 3.1.2.5 Методика испытания
- 3.1.2.5.1 Двигатель транспортного средства запускается водителем, который использует штатные средства запуска. Первый цикл начинается с инициирования процедуры запуска двигателя транспортного средства.
- 3.1.2.5.2 Методики испытаний, установленные в пункте 3.1.2.5.2.1 или в пункте 3.1.2.5.2.2, могут использоваться в соответствии с методикой, указанной в пункте 3.2.3.2 приложения 8 к Правилам № 101.
- 3.1.2.5.2.1 Отбор проб начинается (НОП) до или с момента инициирования процедуры запуска двигателя транспортного средства и завершается по окончании последнего периода холостого хода в рамках внегородского цикла (вторая часть, завершение отбора проб (ЗОП)).
- 3.1.2.5.2.2 Отбор проб начинается (НОП) до или с момента инициирования процедуры запуска двигателя транспортного средства и продолжается в течение ряда повторяющихся циклов испытания. Он завершается по окончании последнего периода холостого хода в рамках внегородского цикла (вторая часть), в ходе которого аккумуляторная батарея достигла минимального уровня заряженности в соответствии с критерием, определенным ниже (завершение отбора проб (ЗОП)).

Электрическое равновесие Q [Ач] измеряется во время каждого комбинированного цикла с применением методики, установленной в добавлении 2 приложения 8 к Правилам № 101, и используется для определения момента, когда аккумуляторная батарея достигла минимального уровня заряженности.

Минимальный уровень заряженности аккумуляторной батареи считается достигнутым в комбинированном цикле N, если электрическое равновесие, измеренное в ходе комбинированного цикла N+1, соответствует не более чем трехпроцентной разрядке, выраженной в виде номинальной емкости батареи в процентах (в Ач) при ее максимальном уровне заряженности в соответствии с заявлением завода-изготовителя. По просьбе завода-изготовителя, могут быть проведены дополнительные циклы испытания с

включением их результатов в расчеты, приведенные в пунктах 3.1.2.5.5 и 3.1.4.2, при условии, что электрическое равновесие для каждого дополнительного цикла испытания обнаруживает меньшую разрядку аккумуляторной батареи по сравнению с предыдущим циклом.

В период между циклами допускается выдержка при повышенной температуре продолжительностью до 10 минут. Силовая передача на это время отключается.

- 3.1.2.5.3 При управлении транспортным средством должны соблюдаться положения приложения 4, а в случае особой схемы переключения скоростей положения инструкций завода-изготовителя, которые содержатся в справочном пособии для водителей, прилагаемом к серийным транспортным средствам, а также указания, имеющиеся на техническом устройстве переключения скоростей (для информации водителей). Положения добавления 1 к приложению 4, предписывающие моменты, когда должно осуществляться переключение скоростей, к таким транспортным средствам не применяются. В отношении кривой рабочего режима применяется описание, содержащееся в пункте 2.3.3 приложения 4.
- 3.1.2.5.4 Выхлопные газы анализируются в соответствии с положениями приложения 4.
- 3.1.2.5.5 Результаты испытания сравниваются с предельными значениями, предписанными в пункте 5.3.1.4 настоящих Правил, после чего рассчитывается средний объем выбросов каждого загрязняющего вещества в граммах на километр для условия $A(M_{1i})$.

В случае испытания, проводимого в соответствии с пунктом 3.1.2.5.2.1, M_{1i} является просто результатом единственного выполненного комбинированного цикла.

В случае испытания, проводимого в соответствии с пунктом 3.1.2.5.2.2, результат испытания, полученный в каждом выполненном комбинированном цикле (M_{1ia}), умноженный на соответствующие показатель ухудшения и коэффициент K_i , должен быть меньше предельных значений, предписанных в пункте 5.3.1.4 настоящих Правил. Для целей расчета, приведенного в пункте 3.1.4, M_{1i} определяется следующим образом:

$$M_{1i} = \frac{1}{N} \sum_{a=1}^{N} M_{1ia}$$
,

где:

і: загрязняющее вещество

а: цикл.

- 3.1.3 Условие В
- 3.1.3.1 Подготовка транспортного средства
- 3.1.3.1.1 В случае транспортных средств, оснащенных двигателем с воспламенением от сжатия, применяется вторая часть цикла, описанного в добавлении 1 к приложению 4. Прогон по трем последовательным циклам осуществляется в соответствии с пунктом 3.1.3.4.3 ниже.
- 3.1.3.1.2 Транспортные средства, оснащенные двигателем с принудительным зажиганием, проходят предварительную подготовку с использованием одного прогонного цикла, соответствующего первой части, и двух прогонных циклов, соответствующих второй части, как указано в пункте 3.1.3.4.3 ниже.
- 3.1.3.2 Устройство аккумулирования электрической энергии/мощности транспортного средства разряжается при езде (по испытательному треку, на динамометрическом стенде и т.д.):
 - а) с устойчивой скоростью 50 км/ч до тех пор, пока не включится двигатель ГЭМ, работающий на топливе;
 - b) или если транспортное средство не может достичь устойчивой скорости в 50 км/ч без запуска двигателя, работающего на топливе, скорость снижается до тех пор, пока транспортное средство не сможет двигаться с менее высокой устойчивой скоростью, при которой двигатель, работающий на топливе, не включается в течение определенного времени/пробега (подлежит согласованию и технической службой и заводом-изготовителем);
 - с) или в соответствии с рекомендацией завода-изготовителя.

Двигатель, работающий на топливе, должен быть остановлен в течение 10 секунд после его автоматического запуска.

- 3.1.3.3 После предварительной подготовки и до начала испытания транспортное средство содержится в помещении с относительно постоянной температурой в пределах 293–303 К (20–30 °C). Такая подготовка длится не менее шести часов и продолжается до тех пор, пока температура моторного масла и охлаждающей жидкости, если таковая имеется, не сравняется с температурой помещения ±2 К.
- 3.1.3.4 Методика испытания
- 3.1.3.4.1 Двигатель транспортного средства запускается водителем, который использует штатные средства запуска. Первый цикл начинается с инициирования процедуры запуска двигателя транспортного средства.
- 3.1.3.4.2 Отбор проб начинается (НОП) до или с момента инициирования процедуры запуска двигателя транспортного средства и завершается по окончании последнего периода холостого хода в рамках внегородского цикла (вторая часть, завершение отбора проб (ЗОП)).
- 3.1.3.4.3 При управлении транспортным средством должны соблюдаться положения приложения 4, а в случае особой схемы переключения скоростей положения инструкций завода-изготовителя, которые содержатся в справочном пособии для водителей, прилагаемом к серийным транспортным средствам, а также указания, имеющиеся на техническом устройстве переключения скоростей (для информации водителей). Положения добавления 1 к приложению 4, предписывающие моменты, когда должно осуществляться переключение скоростей, к таким транспортным средствам не применяются. В отношении кривой рабочего режима применяется описание, содержащееся в пункте 2.3.3 приложения 4.
- 3.1.3.4.4 Выхлопные газы анализируются в соответствии с положениями приложения 4.
- 3.1.3.5 Результаты испытания сравниваются с предельными значениями, предписанными в пункте 5.3.1.4 настоящих Правил, после чего рассчитывается средний объем выбросов каждого загрязняющего вещества (M_{2i}) для условия В. Результаты испытания M_{2i} , умноженные на соответствующие показатель ухудшения и коэффициент K_i , должны быть меньше предельных значений, предписанных в пункте 5.3.1.4 настоящих Правил.

3.1.4 Результаты испытаний

3.1.4.1 В случае испытаний в соответствии с пунктом 3.1.2.5.2.1.

Для целей сообщения взвешенные показатели рассчитываются следующим образом:

$$M_i = (D_e . M_{li} + D_{av} . M_{2i}) / (D_e + D_{av}),$$

где:

 $M_{i} = \text{масса выбросов загрязняющего вещества } i \ в \ граммах на километр;$

 M_{1i} = средняя масса выбросов загрязняющего вещества і в граммах на километр при полностью заряженном устройстве аккумулирования электрической энергии/мощности, рассчитанная как указано в пункте 3.1.2.5.5;

 M_{2i} = средняя масса загрязняющего вещества і в граммах на километр при минимальном уровне заряженности (максимальной разрядке) устройства аккумулирования электрической энергии/ мощности, рассчитанная, как указано в пункте 3.1.3.5.

D_e = пробег электромобиля на электротяге при использовании методики, описанной в приложении 9 к Правилам № 101, согласно которой завод-изготовитель обязан предоставить средства для замера пробега электромобиля исключительно на электротяге.

 $D_{av} = 25 \ \text{км}$ (среднее расстояние, которое преодолевает транспортное средство в интервале между двумя зарядками батареи).

3.1.4.2 В случае испытаний в соответствии с пунктом 3.1.2.5.2.2.

Для целей сообщения взвешенные показатели рассчитываются следующим образом:

$$M_i = (D_{ovc} . M_{li} + D_{av} . M_{2i}) / (D_{ovc} + D_{av}),$$

где:

- $M_{i} = \mbox{ масса выбросов загрязняющего вещества } i \mbox{ в граммах на } \mbox{ километр;}$
- M_{1i} = средняя масса выбросов загрязняющего вещества і в граммах на километр при полностью заряженном устройстве аккумулирования электрической энергии/мощности, рассчитанная как указано в пункте 3.1.2.5.5;
- М_{2i} = средняя масса загрязняющего вещества і в граммах на километр при минимальном уровне заряженности (максимальной разрядке) устройства аккумулирования электрической энергии/ мощности, рассчитанная, как указано в пункте 3.1.3.5;
- D_{ovc} = пробег ВЗУ при использовании методики, описанной в приложении 9 к Правилам № 101;
- $D_{\rm av} = 25~{\rm кm}$ (среднее расстояние, которое преодолевает транспортное средство в интервале между двумя зарядками батареи).
- 3.2 ГЭМ-ВЗУ, ЗАРЯЖАЕМЫЕ С ПОМОЩЬЮ ВНЕШНЕГО ЗАРЯДНОГО УСТРОЙСТВА, С ПЕРЕКЛЮЧАТЕЛЕМ РАБОЧИХ РЕЖИМОВ
- 3.2.1 Проводится два испытания с соблюдением следующих условий.
- 3.2.1.1 <u>Условие А</u>: испытание проводится с полностью заряженным устройством аккумулирования электрической энергии/мощности.
- 3.2.1.2 <u>Условие В</u>: испытание проводится при минимальном уровне заряженности (максимальной разрядке) устройства аккумулирования электрической энергии/мощности.
- 3.2.1.3 Переключатель рабочих режимов устанавливается как показано в следующей таблице:

Гибридные	-Только	-Только топливо	-Только	-Гибридный режим n
режимы	электричество	-Гибридный	электричество	(1)
	-Гибридный	режим	-Только топливо	
	режим		Гибридный	•••
			режим	Гибридный режим m
Уровень \	Переключатель	Переключатель		(1)
заряженности	в положении	в положении	Переключатель в	
батареи			положении	Переключатель в
				положении
Условие А	Гибридный	Гибридный	Гибридный	Гибридный режим с
Полная зарядка	режим	режим	режим	преимущественным
				потреблением
				электричества (2)
Условие В	Гибридный	Потребление	Потребление	Режим с преимущест-
Минимальная	режим	топлива	топлива	венным потреблением
зарядка				топлива (3)

Примечания:

(1) Например, переключатель режимов может находиться в следующих положениях: спортивный, экономичный, городской, внегородской...

(2) <u>Гибридный режим с преимущественным потреблением</u> <u>электроэнергии</u>:

Гибридный режим, при котором, как это может быть доказано, имеет место наиболее высокое потребление электроэнергии по сравнению со всеми другими возможными гибридными режимами при проведении испытания в соответствии с положениями условия A, указанными в пункте 4 приложения 10 к Правилам № 101; этот режим определяется на основе информации, предоставленной заводом-изготовителем, и по согласованию с технической службой.

(3) Режим с преимущественным потреблением топлива:

Гибридный режим, при котором, как может быть доказано, имеет место наиболее высокое потребление топлива по сравнению со всеми другими возможными гибридными режимами при проведении испытания в соответствии с положениями условия В, указанными в пункте 4 приложения 10 к правилам № 101; этот режим определяется на основе информации, предоставленной заводом-изготовителем, и по согласованию с технической службой.

3.2.2 Условие А

- 3.2.2.1 Если пробег транспортного средства только на электротяге превышает один полный цикл, то по просьбе завода-изготовителя испытание типа I может быть проведено в чисто электрическом режиме. В этом случае предварительную подготовку двигателя, предписанную в пунктах 3.2.2.3.1 или 3.2.2.3.2, можно не проводить.
- 3.2.2.2 Процедура испытания начинается с разрядки устройства аккумулирования электрической энергии/мощности транспортного средства при движении с переключателем, установленным в положение "только электричество" (по испытательному треку или на динамометрическом стенде и т.д.) с устойчивой скоростью равной 70% ± 5% от максимальной скорости, с которой транспортное средство может двигаться в течение 30 минут (определяется в соответствии с Правилами № 101).

Разрядка прекращается:

- когда транспортное средство не способно двигаться со скоростью, равной 65% от максимальной скорости, с которой транспортное средство движется в течение 30 минут, или
- b) когда стандартные бортовые приборы указывают водителю на необходимость остановки транспортного средства, или
- с) после пробега в 100 км.

Если на транспортном средстве режим движения только на электротяге не предусмотрен, то разрядка устройств аккумулирования электрической энергии/мощности достигается путем движения (по испытательному треку, на динамометрическом стенде и т.д.):

- а) с устойчивой скоростью 50 км/ч до тех пор, пока не включится двигатель ГЭМ, работающий на топливе, или
- если транспортное средство не может достичь устойчивой скорости в 50 км/час без запуска двигателя, работающего на топливе, скорость снижается до тех пор, пока транспортное средство не сможет двигаться с менее высокой устойчивой скоростью, при которой двигатель, работающий на топливе, не включается в течение определенного времени/пробега (подлежит согласованию с технической службой и заводом-изготовителем), или

с) в соответствии с рекомендацией завода-изготовителя.

Двигатель, работающий на топливе, должен быть остановлен в течение 10 секунд после его автоматического запуска.

- 3.2.2.3 Подготовка транспортного средства
- 3.2.2.3.1 В случае транспортных средств, оснащенных двигателем с воспламенением от сжатия, используется вторая часть цикла, описанного в добавлении 1 к приложению 4. Прогон по трем последовательным циклам осуществляется в соответствии с пунктом 3.2.2.6.3 ниже.
- 3.2.2.3.2 Транспортные средства, оснащенные двигателями с принудительным зажиганием, проходят предварительную подготовку с использованием одного прогонного цикла, соответствующего первой части, и двух прогонных циклов, соответствующих второй части, как указано в пункте 3.2.2.6.3 ниже.
- 3.2.2.4 После предварительной подготовки и до начала испытания транспортное средство содержится в помещении с относительно постоянной температурой в пределах 293–303 К (20–30°С). Такая подготовка длится не менее шести часов и продолжается до тех пор, пока температура моторного масла и охлаждающей жидкости, если таковая имеется, не сравняется с температурой помещения ±2 К, а устройство аккумулирования электрической энергии/мощности не будет полностью заряжено в результате зарядки, предписанной в пункте 3.2.2.5 ниже.
- 3.2.2.5 Во время выдержки транспортного средства при заданной температуре производится зарядка устройства аккумулирования электрической энергии/мощности с помощью:
 - а) бортового зарядного устройства, если оно установлено, или
 - b) внешнего зарядного устройства, рекомендованного заводомизготовителем, и с использованием обычной методики зарядки в течение ночи.

Эта методика исключает какие бы то ни было специальные виды подзарядки, которая может включаться автоматически или вручную, например выравнивающей или сервисной подзарядки.

Завод-изготовитель указывает, что в ходе испытания специальная подзарядка не производилась.

3.2.2.6 Методика испытания

- 3.2.2.6.1 Двигатель транспортного средства запускается водителем, который использует штатные средства запуска. Первый цикл начинается с инициирования процедуры запуска двигателя транспортного средства.
- 3.2.2.6.2 Методики испытаний, установленные в пункте 3.2.2.6.2.1 или в пункте 3.2.2.6.2.2, могут использоваться в соответствии с методикой, указанной в пункте 4.2.4.2 приложения 8 к Правилам № 101.
- 3.2.2.6.2.1 Отбор проб начинается (НОП) до или с момента инициирования процедуры запуска двигателя транспортного средства и завершается по окончании последнего периода холостого хода в рамках внегородского цикла (вторая часть, завершение отбора проб (ЗОП)).
- 3.2.2.6.2.2 Отбор проб начинается (НОП) до или с момента инициирования процедуры запуска двигателя транспортного средства и продолжается в течение ряда повторяющихся циклов испытания. Он завершается по окончании последнего периода холостого хода в рамках внегородского цикла (вторая часть), в ходе которого аккумуляторная батарея достигла минимального уровня заряженности в соответствии с критерием, определенным ниже (завершение отбора проб (ЗОП)).

Электрическое равновесие Q [Ач] измеряется во время каждого комбинированного цикла с применением методики, установленной в добавлении 2 приложения 8 к Правилам № 101, и используется для определения момента, когда аккумуляторная батарея достигла минимального уровня заряженности.

Минимальный уровень заряженности аккумуляторной батареи считается достигнутым в комбинированном цикле N, если электрическое равновесие, измеренное в ходе комбинированного цикла N+1, соответствует не более чем трехпроцентной разрядке, выраженной в виде номинальной емкости батареи в процентах (в Aч) при ее максимальном уровне заряженности в соответствии с заявлением завода-изготовителя. По просьбе завода-изготовителя, могут быть проведены дополнительные циклы испытания с включением их результатов в расчеты, приведенные в пунктах 3.2.2.7 и 3.2.4.3, при условии, что электрическое равновесие для каждого дополнительного цикла испытания обнаруживает меньшую разрядку аккумуляторной батареи по сравнению с предыдущим циклом.

В период между циклами допускается выдержка при повышенной температуре продолжительностью до 10 минут. Силовая передача на это время отключается.

- 3.2.2.6.3 При управлении транспортным средством должны соблюдаться положения приложения 4, а в случае особой схемы переключения скоростей положения инструкций завода-изготовителя, которые содержатся в справочном пособии для водителей, прилагаемом к серийным транспортным средствам, а также указания, имеющиеся на техническом устройстве переключения скоростей (для информации водителей). Положения добавления 1 к приложению 4, предписывающие моменты, когда должно осуществляться переключение скоростей, к таким транспортным средствам не применяются. В отношении кривой рабочего режима применяется описание, содержащееся в пункте 2.3.3 приложения 4.
- 3.2.2.6.4 Выхлопные газы анализируются в соответствии с положениями приложения 4.
- 3.2.2.7 Результаты испытания сравниваются с предельными значениями, предписанными в пункте 5.3.1.4 настоящих Правил, после чего рассчитывается средний объем выбросов каждого загрязняющего вещества (M_{1i}) для условия A.

В случае испытания, проводимого в соответствии с пунктом 3.2.2.6.2.1, M_{1i} является просто результатом единственного выполненного комбинированного цикла.

В случае испытания, проводимого в соответствии с пунктом 3.2.2.6.2.2, результат испытания, полученный в каждом выполненном комбинированном цикле ($M_{\rm lia}$), умноженный на соответствующие показатель ухудшения и коэффициент $K_{\rm i}$, должен быть меньше предельных значений, предписанных в пункте 5.3.1.4 настоящих Правил. Для целей расчета, приведенного в пункте 3.1.4, $M_{\rm li}$ определяется следующим образом:

$$M_{1i} = \frac{1}{N} \sum_{a=1}^{N} M_{1ia}$$
,

где:

і: загрязняющее вещество

а: цикл.

- 3.2.3 Условие В
- 3.2.3.1 Подготовка транспортного средства
- 3.2.3.1.1 В случае транспортных средств, оснащенных двигателем с воспламенением от сжатия, применяется вторая часть цикла, описанного в добавлении 1 к приложению 4. Прогон по трем последовательным циклам осуществляется в соответствии с пунктом 3.2.3.4.3 ниже.
- 3.2.3.1.2 Транспортные средства, оснащенные двигателями с принудительным зажиганием, проходят предварительную подготовку с использованием одного прогонного цикла, соответствующего первой части, и двух прогонных циклов, соответствующих второй части, как указано в пункте 3.2.3.4.3 ниже.
- 3.2.3.2 Устройство аннулирования электрической энергии/мощности транспортного средства разряжается в соответствии с положениями пункта 3.2.2.2.
- 3.2.3.3 После предварительной подготовки и до начала испытания транспортное средство содержится в помещении с относительно постоянной температурой в пределах 293–303 К (20–30°С). Такая подготовка длится не менее шести часов и продолжается до тех пор, пока температура моторного масла и охлаждающей жидкости, если таковая имеется, не сравняется с температурой помещения ±2 К.

- 3.2.3.4 Методика испытания
- 3.2.3.4.1 Двигатель транспортного средства запускается водителем, который использует штатные средства запуска. Первый цикл начинается с инициирования процедуры запуска двигателя транспортного средства.
- 3.2.3.4.2 Отбор проб начинается (НОП) до или с момента инициирования процедуры запуска двигателя транспортного средства и завершается по окончании последнего периода холостого хода в рамках внегородского цикла (вторая часть, завершение отбора проб (ЗОП)).
- 3.2.3.4.3 При управлении транспортным средством должны соблюдаться положения приложения 4, а в случае особой схемы переключения скоростей положения инструкций завода-изготовителя, которые содержатся в справочном пособии для водителей, прилагаемом к серийным транспортным средствам, а также указания, имеющиеся на техническом устройстве переключения скоростей (для информации водителей). Положения добавления 1 к приложению 4, предписывающие моменты, когда должно осуществляться переключение скоростей, к таким транспортным средствам не применяются. В отношении кривой рабочего режима применяется описание, содержащееся в пункте 2.3.3 приложения 4.
- 3.2.3.4.4 Выхлопные газы анализируются в соответствии с положениями приложения 4.
- 3.2.3.5 Результаты испытания сравниваются с предельными значениями, предписанными в пункте 5.3.1.4 настоящих Правил, после чего рассчитывается средний объем выбросов каждого загрязняющего вещества (M_{2i}) для условия В. Результаты испытания M_{2i} , умноженные на соответствующие показатель ухудшения и коэффициент K_i , должны быть меньше предельных значений, предписанных в пункте 5.3.1.4 настоящих Правил.
- 3.2.4 Результаты испытаний
- 3.2.4.1 В случае испытаний в соответствии с пунктом 3.2.2.6.2.1.

Для целей сообщения взвешенные показатели рассчитываются следующим образом:

$$M_i = (D_e . M_{li} + D_{av} . M_{2i}) / (D_e + D_{av}),$$

где:

 $M_{i} = \mbox{ масса выбросов загрязняющего вещества } i \mbox{ в граммах на } \mbox{ километр;}$

 M_{1i} = средняя масса выбросов загрязняющего вещества і в граммах на километр при полностью заряженном устройстве аккумулирования электрической энергии/мощности, рассчитанная как указано в пункте 3.1.2.5.5;

 M_{2i} = средняя масса загрязняющего вещества і в граммах на километр при минимальном уровне заряженности (максимальной разрядке) устройства аккумулирования электрической энергии/ мощности, рассчитанная, как указано в пункте 3.1.3.5.

 D_e = пробег электромобиля на электротяге при использовании методики, описанной в приложении 9 к Правилам № 101, согласно которой завод-изготовитель обязан предоставить средства для замера пробега электромобиля исключительно на электротяге.

 $D_{av} = 25 \ \mbox{км}$ (среднее расстояние, которое преодолевает транспортное средство в интервале между двумя зарядками батареи).

3.2.4.2 В случае испытаний в соответствии с пунктом 3.2.2.6.2.2.

Для целей сообщения взвешенные показатели рассчитываются следующим образом:

$$M_i = (D_{ovc} \cdot M_{li} + D_{av} \cdot M_{2i}) / (D_{ovc} + D_{av}),$$

где:

- $M_{i} = \mbox{ масса выбросов загрязняющего вещества і в граммах на километр;}$
- M_{1i} = средняя масса выбросов загрязняющего вещества і в граммах на километр при полностью заряженном устройстве аккумулирования электрической энергии/мощности, рассчитанная как указано в пункте 3.1.2.5.5;
- М_{2i} = средняя масса загрязняющего вещества і в граммах на километр при минимальном уровне заряженности (максимальной разрядке) устройства аккумулирования электрической энергии/ мощности, рассчитанная, как указано в пункте 3.1.3.5;
- D_{ovc} = пробег ВЗУ при использовании методики, описанной в приложении 9 к Правилам № 101;
- $D_{av} = 25 \ \mbox{км}$ (среднее расстояние, которое преодолевает транспортное средство в интервале между двумя зарядками батареи)".
